Nitrogen Fertilization and Straw Management Economically Improve Wheat Yield and Energy Use Efficiency, Reduce Carbon Footprint
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Site Description
2.2. Experimental Design
- No fertilizer with wheat residue removal (CK)
- Chemical fertilizer with wheat residue removal (NPK)
- Chemical fertilizer and pig manure with wheat residue removal (NPKPM)
- Chemical fertilizer and cattle manure with wheat residue removal (NPKCM)
- Chemical fertilizer with wheat residue retention (NPKWS).
2.3. Energy Evaluation
2.4. Carbon Footprint
Particulars | Unit | CO2−eq (kg unit−1) | References |
---|---|---|---|
1.Human labor | Day | 0.86 | [34] |
2. Machinery | MJ | 0.071 | [39] |
3. Diesel | L | 2.76 | [40] |
4. Chemical fertilizer | |||
(a) Nitrogen (N) | kg | 1.3 | [34] |
(b) Phosphate (P2O5) | kg | 0.2 | [34] |
(c) Potassium (K2O) | kg | 0.15 | [34] |
5. Farmyard manure | kg | 0.126 | [32] |
6. Chemical pesticides | |||
(a) Insecticide | kg | 5.1 | [34] |
(b) Herbicide | kg | 6.3 | [34] |
7. Seed | kg | 1.22 | [34] |
2.5. Economic Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Energy Input and Output of Wheat Production
3.1.1. Energy Input
3.1.2. Energy Output
3.2. Indicators of Energy Use
3.3. Carbon Footprint and Efficiency
3.4. Economic Analyses
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, X.S.; Zhao, T.; Liu, N.; Kang, J.D. Changes of energy−related GHG emissions in China: An empirical analysis from sectoral perspective. Appl. Energy 2014, 132, 298–307. [Google Scholar] [CrossRef]
- Yao, B.; Zheng, Y.M.; Hu, D.; Nie, L.Q.; Fu, S.; Hu, Q.W. Spatial and temporal variations of county based agricultural carbon emissions and associated effect factors in Jiangxi province. Resources and Environment in the Yangtze Basin. Res. Environ. Yangtze Basin 2014, 23, 311–318. (In Chinese) [Google Scholar] [CrossRef]
- Arvidsson, J. Energy use efficiency in different tillage systems for winter wheat on a clay and silt loam in Sweden. Eur. J. Agron. 2010, 33, 250–256. [Google Scholar] [CrossRef]
- Muhammad, I.; Sainju, U.M.; Zhao, F.; Khan, A.; Ghimire, R.; Fu, X.; Wang, J. Regulation of soil CO2 and N2O emissions by cover crops: A meta-−analysis. Soil Till. Res. 2019, 192, 103–112. [Google Scholar] [CrossRef]
- Muhammad, I.; Wang, J.; Khan, A.; Ahmad, S.; Yang, L.; Ali, I.; Zeeshan, M.; Ullah, S.; Fahad, S.; Ali, S.; et al. Impact of the mixture verses solo residue management and climatic conditions on soil microbial biomass carbon to nitrogen ratio: A systematic review. Environ. Sci. Pollut. Res. 2021, 28, 64241–64252. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.D.; Yuan, Z..; Wang, M.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; Chang, S.X.; et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef]
- Nabavi−Pelesaraei, A.; Rafiee, S.; Mohtasebi, S.S.; Hosseinzadeh−Bandbafha, H.; Chau, K.−W. Energy consumption enhancement and environmental life cycle assessment in paddy production using optimization techniques. J. Clean Prod. 2017, 162, 571–586. [Google Scholar] [CrossRef]
- Ilahi, S.; Wu, Y.; Raza, M.A.A.; Wei, W.; Imran, M.; Bayasgalankhuu, L. Optimization approach for improving energy efficiency and evaluation of greenhouse gas emission of wheat crop using data envelopment analysis. Sustainability 2019, 11, 3409. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, I.; Khan, F.U.; Khan, A.; Wang, J. Soil fertility in response to urea and farmyard manure incorporation under different tillage systems in Peshawar, Pakistan. Int. J. Agric. Biol. 2018, 20, 1539–1547. [Google Scholar] [CrossRef]
- Fathi, A.; Barari, T.D.; Fallah, A.H.; Niknejad, Y. Study of energy consumption and greenhouse gas (GHG) emissions in corn production systems: Influence of different tillage systems and use of fertilizer. Commun. Soil Sci. Plant Anal. 2020, 51, 769–778. [Google Scholar] [CrossRef]
- Kaur, N.; Vashist, K.K.; Brar, A.S. Energy and productivity analysis of maize based crop sequences compared to rice−wheat system under different moisture regimes. Energy 2021, 216, 119286. [Google Scholar] [CrossRef]
- Kazlauskas, M.; Bručienė, I.; Jasinskas, A.; Šarauskis, E. Comparative analysis of energy and GHG emissions using fixed and variable fertilization rates. Agronomy 2021, 11, 138. [Google Scholar] [CrossRef]
- Abdollahi, L.; Schjønning, P.; Elmholt, S.; Munkholm, L.J. The effects of organic matter application and intensive tillage and traffic on soil structure formation and stability. Soil Till. Res. 2014, 136, 28–37. [Google Scholar] [CrossRef]
- Song, Z.W.; Gao, H.J.; Zhu, P.; Peng, C.; Deng, A.X.; Zheng, C.Y.; Mannaf, M.A.; Islam, M.N.; Zhang, W.J. Organic amendments increase corn yield by enhancing soil resilience to climate change. Crop J. 2015, 3, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Dhadli, H.S.; Brar, B.S. Effect of long−term differential application of inorganic fertilizers and manure on soil CO2 emissions. Plant Soil Environ. 2016, 62, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, I.; Wang, J.; Sainju, U.M.; Zhang, S.; Zhao, F.; Khan, A. Cover cropping enhances soil microbial biomass and affects microbial community structure: A meta−analysis. Geoderma 2021, 381, 114696. [Google Scholar] [CrossRef]
- Lu, X.L.; Lu, X.N. Tillage and crop residue effects on the energy consumption, input−output costs and greenhouse gas emissions of maize crops. Nutr. Cycl. Agroecosys. 2017, 108, 323–337. [Google Scholar] [CrossRef]
- Hua, K.K.; Wang, D.Z.; Guo, Z.B. Soil organic carbon contents as a result of various organic amendments to a vertisol. Nutr. Cycl. Agroecosys. 2017, 108, 135–148. [Google Scholar] [CrossRef]
- Kumar, R.; Mishra, J.S.; Rao, K.K.; Bhatt, B.P.; Hazra, K.K.; Hans, H.; Mondal, S. Sustainable intensification of rice fallows of Eastern India with suitable winter crop and appropriate crop establishment technique. Environ. Sci. Pollut. Res. 2019, 26, 29409–29423. [Google Scholar] [CrossRef] [PubMed]
- Ronga, D.; Gallingani, T.; Zaccardelli, M.; Perrone, D.; Francia, E.; Milc, J.; Pecchioni, N. Carbon footprint and energetic analysis of tomato production in the organic vs. the conventional cropping systems in Southern Italy. J. Clean Prod. 2019, 220, 836–845. [Google Scholar] [CrossRef] [Green Version]
- Saad, A.A.; Das, T.K.; Rana, D.S.; Sharma, A.R.; Bhattacharyya, R.; Lal, K. Energy auditing of a maize–wheat–greengram cropping system under conventional and conservation agriculture in irrigated north−western Indo−Gangetic Plains. Energy 2016, 116, 293–305. [Google Scholar] [CrossRef]
- Ozkan, B.; Fert, C.; Karadeniz, C.F. Energy and cost analysis for greenhouse and open−field grape production. Energy 2007, 32, 1500–1504. [Google Scholar] [CrossRef]
- Jat, H.S.; Jat, R.D.; Nanwal, R.K.; Lohan, S.K.; Yadav, A.K.; Poonia, T.; Sharma, P.C.; Jat, M.L. Energy use efficiency of crop residue management for sustainable energy and agriculture conservation in NW India. Renew. Energy 2020, 155, 1372–1382. [Google Scholar] [CrossRef]
- Stout, B.A. Handbook of Energy for World Agriculture; Pergamon: Amsterdam, The Netherlands, 1990; pp. 95–148. [Google Scholar]
- Meul, M.; Nevens, F.; Reheul, D.; Hofman, G. Energy use efficiency of specialised dairy, arable and pig farms in Flanders. Agric. Ecosys. Environ. 2007, 119, 135–144. [Google Scholar] [CrossRef]
- Sayin, C.; Mencet, M.N.; Ozkan, B. Assessing of energy policies based on Turkish agriculture: Current status and some implications. Energy Policy 2005, 33, 2361–2373. [Google Scholar] [CrossRef]
- Ghorbani, R.; Mondani, F.; Amirmoradi, S.; Feizi, H.; Khorramdel, S.; Teimouri, M.; Sanjani, S.; Anvarkhah, S.; Aghel, H. A case study of energy use and economical analysis of irrigated and dryland wheat production systems. Appl. Energy 2011, 88, 283–288. [Google Scholar] [CrossRef]
- Tabatabaeefar, A.; Emamzadeh, H.; Varnamkhasti, M.G.; Rahimizadeh, R.; Karimi, M. Comparison of energy of tillage systems in wheat production. Energy 2009, 34, 41–45. [Google Scholar] [CrossRef]
- Jones, C.D.; Fraisse, C.W.; Ozores−Hampton, M. Quantification of greenhouse gas emissions from open field−grown Florida tomato production. Agric. Syst. 2012, 113, 64–72. [Google Scholar] [CrossRef]
- Mobtaker, H.G.; Keyhani, A.; Mohammadi, A.; Rafiee, S.; Akram, A. Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran. Agric. Ecosyst. Environ. 2010, 137, 367–372. [Google Scholar] [CrossRef]
- Yadav, G.S.; Babu, S.; Das, A.; Mohapatra, K.P.; Singh, R.; Avasthe, R.K.; Roy, S. No−till and mulching enhance energy use efficiency and reduce carbon footprint of a direct−seeded upland rice production system. J. Clean Prod. 2020, 271, 122700. [Google Scholar] [CrossRef]
- Šarauskis, E.; Masilionytė, L.; Juknevičius, D.; Buragienė, S.; Kriaučiūnienė, Z. Energy use efficiency, GHG emissions, and cost−effectiveness of organic and sustainable fertilisation. Energy 2019, 172, 1151–1160. [Google Scholar] [CrossRef]
- Asgharipour, M.R.; Mousavinik, S.M.; Enayat, F.F. Evaluation of energy input and greenhouse gases emissions from alfalfa production in the Sistan region, Iran. Energy Rep. 2016, 2, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Kirschbaum, M.U.F. Climate−change impact potentials as an alternative to global warming potentials. Environ. Res. Lett. 2014, 9, 034014. [Google Scholar] [CrossRef] [Green Version]
- Tubiello, F.N.; Condor−Golec, R.D.; Salvatore, M.; Piersante, A.; Federici, S.; Ferrara, A.; Rossi, S.; Flammini, A.; Cardenas, P.; Biancalani, R.; et al. Estimating Greenhouse Gas Emissions in Agriculture: A Manual to Address Data Requirements for Developing Countries; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; p. 150. [Google Scholar]
- Meena, B.P.; Biswas, A.K.; Singh, M.; Das, H.; Chaudhary, R.S.; Singh, A.B.; Shirale, A.O.; Patra, A.K. Energy budgeting and carbon footprint in long−term integrated nutrient management modules in a cereal−legume (Zea mays—Cicer arietinum) cropping system. J. Clean Prod. 2021, 314, 127900. [Google Scholar] [CrossRef]
- Pandey, D.; Agrawal, M. Carbon Footprint Estimation in the Agriculture Sector. In Assessment of Carbon Footprint in Different Industrial Sectors; Muthu, S.S., Ed.; Springer: Singapore, 2014; Volume 1, pp. 25–47. [Google Scholar]
- Dyer, J.A.; Desjardins, R.L. Carbon dioxide emissions associated with the manufacturing of tractors and farm machinery in Canada. Biosyst. Eng. 2006, 93, 107–118. [Google Scholar] [CrossRef]
- Nabavi−Pelesaraei, A.; Hosseinzadeh−Bandbafha, H.; Qasemi−Kordkheili, P.; Kouchaki−Penchah, H.; Riahi−Dorcheh, F. Applying optimization techniques to improve of energy efficiency and GHG (greenhouse gas) emissions of wheat production. Energy 2016, 103, 672–678. [Google Scholar] [CrossRef]
- Soni, P.; Taewichit, C.; Salokhe, V.M. Energy consumption and CO2 emissions in rainfed agricultural production systems of Northeast Thailand. Agric. Syst. 2013, 116, 25–36. [Google Scholar] [CrossRef]
- Yuan, S.; Peng, S.B.; Wang, D.; Man, J.G. Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China. Energy 2018, 160, 184–191. [Google Scholar] [CrossRef]
- Lal, B.; Gautam, P.; Nayak, A.K.; Panda, B.B.; Bihari, P.; Tripathi, R.; Shahid, M.; Guru, P.K.; Chatterjee, D.; Kumar, U.; et al. Energy and carbon budgeting of tillage for environmentally clean and resilient soil health of rice−maize cropping system. J. Clean Prod. 2019, 226, 815–830. [Google Scholar] [CrossRef]
- Chaudhary, V.P.; Chandra, R.; Chaudhary, R.; Bhattacharyya, R. Global warming potential and energy dynamics of conservation tillage practices for different rabi crops in the Indo−Gangetic Plains. J. Environ. Manag. 2021, 296, 113182. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.; Batool, T.; Siddique, G.; Ali, S.; Binyamin, R.; Shahid, M.J.; Rizwan, M.; Alsahli, A.A.; Alyemeni, M.N. Integrated nutrient management enhances soil quality and crop productivity in maize−based cropping system. Sustainability 2020, 12, 10214. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, W.J.; Yu, X.C.; Huang, Q.R. Effects of long−term fertilization on corn productivity and its sustainability in an Ultisol of southern China. Agric. Ecosyst. Environ. 2010, 138, 44–50. [Google Scholar] [CrossRef]
- Wang, D.L.; Feng, H.; Li, Y.; Zhang, T.B.; Dyck, M.; Wu, F. Energy input−output, water use efficiency and economics of winter wheat under gravel mulching in Northwest China. Agric. Water Manag. 2019, 222, 354–366. [Google Scholar] [CrossRef]
- Batabyal, K.; Mandal, B.; Sarkar, D.; Murmu, S.; Tamang, A.; Das, I.; Hazra, G.C.; Chattopadhyay, P.S. Comprehensive assessment of nutrient management technologies for cauliflower production under subtropical conditions. Eur. J. Agron. 2016, 79, 1–13. [Google Scholar] [CrossRef]
- Sarkar, D.; Baishya, L.K.; Meitei, C.B.; Naorem, G.C.; Thokchom, R.C.; Singh, J.; Bhuvaneswari, S.; Batabyal, K.; Das, R.; Padhan, D.; et al. Can sustainability of maize−mustard cropping system be achieved through balanced nutrient management? Field Crop. Res. 2018, 225, 9–21. [Google Scholar] [CrossRef]
- Singh, P.; Benbi, D.K.; Verma, G. Nutrient management impacts on nutrient use efficiency and energy, carbon, and net ecosystem economic budget of a rice–wheat cropping system in Northwestern India. J. Soil Sci. Plant Nutr. 2021, 21, 559–577. [Google Scholar] [CrossRef]
- Song, Q.L.; Zhu, J.; Gong, Z.P.; Feng, Y.J.; Wang, Q.; Sun, Y.; Zeng, X.N.; Lai, Y.C. Effect of straw retention on carbon footprint under different cropping sequences in Northeast China. Environ. Sci. Pollut. Res. 2021, 28, 54792–54801. [Google Scholar] [CrossRef] [PubMed]
- Mondani, F.; Aleagha, S.; Khoramivafa, M.; Ghobadi, R. Evaluation of greenhouse gases emission based on energy consumption in wheat Agroecosystems. Energy Rep. 2017, 3, 37–45. [Google Scholar] [CrossRef]
- Singh, P.; Singh, G.; Sodhi, G.P.S. Energy and carbon footprints of wheat establishment following different rice residue management strategies vis−à−vis conventional tillage coupled with rice residue burning in north−western India. Energy 2020, 200, 117554. [Google Scholar] [CrossRef]
- Li, C.J.; Li, S. Energy budget and carbon footprint in a wheat and maize system under ridge furrow strategy in dry semi humid areas. Sci. Rep. 2021, 11, 9367. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, J.C.; Wang, X.Q.; Ma, L. Economic and environmental sustainability of maize−wheat rotation production when substituting mineral fertilizers with manure in the North China Plain. J. Clean. Prod. 2020, 271, 122683. [Google Scholar] [CrossRef]
- Tang, Q.; Cotton, A.; Wei, Z.J.; Xia, Y.Q.; Daniell, T.; Yan, X.Y. How does partial substitution of chemical fertiliser with organic forms increase sustainability of agricultural production? Sci. Total Environ. 2022, 803, 149933. [Google Scholar] [CrossRef] [PubMed]
Treatment | Chemical Fertilizer | Wheat Straw | Pig Manure | Cattle Manure | Total | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | N | P | K | N | P | K | N | P | K | N | P | K | |||||
CK | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | ||||
NPK | 180 | 39 | 112 | − | − | − | − | − | − | − | − | − | 180 | 39 | 112 | ||||
NPKPM | 180 | 39 | 112 | − | − | − | 77 | 84 | 93 | − | − | − | 257 | 123 | 205 | ||||
NPKCM | 180 | 39 | 112 | − | − | − | − | − | − | 95 | 42 | 182 | 275 | 81 | 294 | ||||
NPKWS | 180 | 39 | 112 | 28 | 4 | 45 | − | − | − | − | − | − | 208 | 43 | 157 |
Particulars | Unit | Energy Equivalent(MJ unit−1) | Reference |
---|---|---|---|
Input | |||
1. Human labor | h | 1.96 | [22] |
2. Machinery | h | 13.06 | [22] |
3. Diesel | L | 56.31 | [23] |
4. Chemical fertilizers | |||
(a) Nitrogen | kg | 75.46 | [24] |
(b) Phosphorus(P2O5) | kg | 13.07 | [24] |
(c) Potassium(K2O) | kg | 11.15 | [25] |
5. Farmyard manure | kg | 0.47 | [26] |
6. Chemical pesticides | |||
(a) Insecticides | kg | 101.2 | [26] |
(b) Herbicide | kg | 238 | [27] |
7. Seed | kg | 20.1 | [28] |
8. Irrigation water | m3 | 1.02 | [29] |
Output | |||
1. Wheat grain | kg | 14.48 | [28] |
2. Wheat straw | kg | 9.25 | [28] |
Particulars | CK | NPK | NPKPM | NPKCM | NPKWS |
---|---|---|---|---|---|
Input | |||||
Human labor | 323.54 | 382.64 | 464.34 | 464.34 | 660.25 |
Diesel | 2111.63 | 2111.63 | 2533.95 | 2533.95 | 2533.95 |
Chemical fertilizer | − | 14,530.05 | 14,530.05 | 14,530.05 | 14,530.05 |
Farmyard manure | − | − | 7050 | 14100 | − |
Chemical pesticides | 473.25 | 473.25 | 473.25 | 473.25 | 473.25 |
Seed | 3768.75 | 3768.75 | 3768.75 | 3768.75 | 3768.75 |
Water | 2040 | 2040 | 2040 | 2040 | 2040 |
Machinery | 435.55 | 435.55 | 435.55 | 435.55 | 435.55 |
Total energy input | 9152.71 | 23,741.86 | 31,295.89 | 38,345.89 | 24,441.80 |
Output | |||||
Grain output | 6434.55 c | 85,359.60 b | 91,622.20 ab | 95,920.95 a | 92,726.30 a |
Straw output | 8615.44 d | 55,408.25 c | 75,712.31 a | 74,590.32 a | 70,098.69 b |
Total energy output | 15,049.99 d | 140,767.85 c | 167,334.51 ab | 170,511.27 a | 162,824.99 b |
Energy Indicators | Unit | CK | NPK | NPKPM | NPKCM | NPKWS |
---|---|---|---|---|---|---|
Net energy gain | MJ ha−1 | 5897.28 c | 117,025.99 b | 136,038.62 a | 132,165.37 a | 138,383.19 a |
Energy use efficiency | − | 1.64 e | 5.93 b | 5.35 c | 4.45 d | 6.66 a |
Energy productivity | kg MJ−1 | 0.05 d | 0.25 a | 0.20 b | 0.17 c | 0.26 a |
Specific energy | MJ kg−1 | 20.67 a | 4.05 c | 4.95 bc | 5.80 b | 3.84 c |
Energy profitability | − | 0.64 e | 4.93 b | 4.35 c | 3.45 d | 5.66 a |
Items | Unit | CK | NPK | NPKPM | NPKCM | NPKWS |
---|---|---|---|---|---|---|
CFs | kg CO2−eq ha−1 | 793.76 | 1818.82 | 4122.02 | 6146.98 | 1978.72 |
CFy | kg CO2−eq kg−1 | 1.79 a | 0.33 d | 0.65 c | 0.93 b | 0.31 d |
Carbon input | kg ha−1 | 216.48 | 496.04 | 1124.19 | 1676.45 | 539.65 |
Carbon output | kg ha−1 | 444.38 c | 5895.00 b | 6327.5 ab | 6624.37 a | 6403.75 ab |
Carbon efficiency | − | 2.05 d | 11.88 a | 5.63 b | 3.95 c | 11.87 a |
Items | CK | NPK | NPKPM | NPKCM | NPKWS |
Costs | |||||
Human labor | 264.09 | 312.32 | 379.02 | 379.02 | 538.92 |
Diesel | 3.44 | 3.44 | 3.64 | 3.64 | 3.64 |
Fertilizer | − | 353.77 | 353.77 | 353.77 | 353.77 |
Farmyard manure | − | − | 94.34 | 188.68 | 0.00 |
Pesticide | 56.82 | 56.82 | 56.82 | 56.82 | 56.82 |
Seed | 186.00 | 186.00 | 186.00 | 186.00 | 186.00 |
Water | 3.47 | 3.47 | 3.47 | 3.47 | 3.47 |
Total | 513.81 | 918.60 | 1417.93 | 1850.22 | 1145.90 |
Gross return | 204.41c | 2711.70 b | 2910.65 ab | 3047.21 a | 2945.73 ab |
Net return | −309.4c | 1793.10 a | 1492.72 ab | 1196.99 b | 1799.82 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Zhang, X.; Chen, H.; Wang, D.; Nawaz, M.M.; Danso, F.; Chen, J.; Deng, A.; Song, Z.; Jamali, H.; et al. Nitrogen Fertilization and Straw Management Economically Improve Wheat Yield and Energy Use Efficiency, Reduce Carbon Footprint. Agronomy 2022, 12, 848. https://doi.org/10.3390/agronomy12040848
Wu L, Zhang X, Chen H, Wang D, Nawaz MM, Danso F, Chen J, Deng A, Song Z, Jamali H, et al. Nitrogen Fertilization and Straw Management Economically Improve Wheat Yield and Energy Use Efficiency, Reduce Carbon Footprint. Agronomy. 2022; 12(4):848. https://doi.org/10.3390/agronomy12040848
Chicago/Turabian StyleWu, Liuge, Xin Zhang, Huan Chen, Daozhong Wang, Muhammad Mohsin Nawaz, Frederick Danso, Jian Chen, Aixing Deng, Zhenwei Song, Hizbullah Jamali, and et al. 2022. "Nitrogen Fertilization and Straw Management Economically Improve Wheat Yield and Energy Use Efficiency, Reduce Carbon Footprint" Agronomy 12, no. 4: 848. https://doi.org/10.3390/agronomy12040848
APA StyleWu, L., Zhang, X., Chen, H., Wang, D., Nawaz, M. M., Danso, F., Chen, J., Deng, A., Song, Z., Jamali, H., Zheng, C., & Zhang, W. (2022). Nitrogen Fertilization and Straw Management Economically Improve Wheat Yield and Energy Use Efficiency, Reduce Carbon Footprint. Agronomy, 12(4), 848. https://doi.org/10.3390/agronomy12040848