Conservation Agriculture and Agroecological Weed Management
1. Transitioning towards Conservation Agriculture
1.1. Mastering Weed Management in Conservation Agriculture Takes Time
1.2. Improved Weed Regulation through Selection of the Best Crop/Cover Crop Cultivars
2. Effect of the Pillars of Conservation Agriculture
2.1. Increased Crop Diversity as a Lever of Weed Management
2.2. Crop Diversity Modifies the Resource Pool Diversity and Weed–Crop Competition
2.3. Effect of Mulching
2.4. Interactive Effect of Tillage and Crop Residues on Weed Community Composition
2.5. Optimization of Herbicide Weed Management
3. Management Options Straying from the Pillars of Conservation Agriculture
3.1. Superficial Tillage Is Worst Than Ploughing after a Long-Term CA Phase
3.2. Compensating Minimum Tillage Implemented in CA Systems by Increased Mulching
4. Effect of Weed Management on Ecosystem Services Provided by Conservation Agriculture
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Hobbs, P.R. Conservation agriculture: What is it and why is it important for future sustainable food production? J. Agric. Sci. 2007, 145, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Reicosky, D.C. Conservation tillage is not conservation agriculture. J. Soil Water Conserv. 2015, 70, 103A–108A. [Google Scholar] [CrossRef] [Green Version]
- FAO. Conservation Agriculture Principles. Available online: https://www.fao.org/conservation-agriculture/overview/principles-of-ca/en/ (accessed on 13 December 2021).
- Faulkner, E.H. Plowman’s Folly; University of Oklahoma Press: Norman, OK, USA, 1943. [Google Scholar]
- Gebhardt, M.R.; Daniel, T.C.; Schweizer, E.E.; Allmaras, R.R. Conservation tillage. Science 1985, 230, 625–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derpsch, R. Historical review of no-tillage cultivation of crops. In Proceedings of the 1st JIRCAS Seminar on Soybean Research. No-tillage Cultivation and Future Research Needs, Iguassu Falls, Brazil, 5–6 March 1998; JIRCAS Working Report No. 13. pp. 1–18. [Google Scholar]
- Scharbau, W. Recent developments in the use of herbicides to replace cultivations in some European arable crops situations. In Proceedings of the 9th British Weed Control Conference, Brighton, UK, 18–21 November 1990; pp. 1306–1317. [Google Scholar]
- Baeumer, K.; Bakermans, W. Zero-tillage. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 1974; Volume 25, pp. 77–123. [Google Scholar]
- Watson, G.A. Motivation and response in the development of minimal tillage techniques outside the United Kingdom. In Proceedings of the 12th British Weed Control Conference, Brighton, UK, 18–21 November 1974; Volume 3, pp. 1051–1062. [Google Scholar]
- Evans, D.M. Field performance of glyphosate derivatives in the control of Agropyron repens and other perennial weeds. In Proceedings of the 11th British Weed Control Conference, Brighton, UK, 13–16 November 1972; Volume 1, pp. 64–70. [Google Scholar]
- Allen, R.; Musick, J.; Wood, F.; Dusek, D. No-till seeding of irrigated sorghum double cropped after wheat. Trans. ASAE 1975, 18, 1109–1113. [Google Scholar] [CrossRef]
- Altikat, S.; Celik, A.; Gozubuyuk, Z. Effects of various no-till seeders and stubble conditions on sowing performance and seed emergence of common vetch. Soil Tillage Res. 2013, 126, 72–77. [Google Scholar] [CrossRef]
- Desbiolles, J. Disc seeders in conservation agriculture: An Australian survey. In Proceedings of the 5th World Congress on Conservation Agriculture, Brisbane, Australia, 26–29 September 2011; pp. 26–29. [Google Scholar]
- Chauhan, B.S.; Singh, R.G.; Mahajan, G. Ecology and management of weeds under conservation agriculture: A review. Crop. Protect. 2012, 38, 57–65. [Google Scholar] [CrossRef]
- Derrouch, D.; Chauvel, B.; Cordeau, S.; Dessaint, F. Functional shifts in weed community composition following adoption of conservation agriculture. Weed Res. 2021, 62, 103–112. Available online: https://onlinelibrary.wiley.com/doi/10.1111/wre.12517 (accessed on 14 December 2021). [CrossRef]
- Derrouch, D.; Chauvel, B.; Felten, E.; Dessaint, F. Weed Management in the Transition to Conservation Agriculture: Farmers’ Response. Agronomy 2020, 10, 843. [Google Scholar] [CrossRef]
- Antier, C.; Andersson, R.; Auskalnienė, O.; Barić, K.; Baret, P.; Besenhofer, G.; Calha, L.; Carrola Dos Santos, S.; De Cauwer, B.; Chachalis, D.; et al. A survey on the uses of glyphosate in European countries. INRAE 2020. [Google Scholar] [CrossRef]
- Alonso-Ayuso, M.; Gabriel, J.L.; Hontoria, C.; Ibáñez, M.Á.; Quemada, M. The cover crop termination choice to designing sustainable cropping systems. Eur. J. Agron. 2020, 114, 126000. [Google Scholar] [CrossRef]
- Adeux, G.; Cordeau, S.; Antichi, D.; Carlesi, S.; Mazzoncini, M.; Munier-Jolain, N.M.; Barberi, P. Cover crops promote crop productivity but do not enhance weed management in tillage-based cropping systems. Eur. J. Agron. 2021, 123, 126221. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Wortmann, C.S. Does occasional tillage undo the ecosystem services gained with no-till? A review. Soil Tillage Res. 2020, 198, 104534. [Google Scholar] [CrossRef]
- Hill, S.B.; MacRae, R.J. Conceptual framework for the transition from conventional to sustainable agriculture. J. Sustain. Agric. 1995, 7, 81–87. [Google Scholar] [CrossRef]
- Petit, S.; Cordeau, S.; Chauvel, B.; Bohan, D.; Guillemin, J.-P.; Steinberg, C. Biodiversity-based options for arable weed management. A review. Agron. Sustain. Dev. 2018, 38, 48. [Google Scholar] [CrossRef] [Green Version]
- Wezel, A.; Soboksa, G.; McClelland, S.; Delespesse, F.; Boissau, A. The blurred boundaries of ecological, sustainable, and agroecological intensification: A review. Agron. Sustain. Dev. 2015, 35, 1283–1295. [Google Scholar] [CrossRef]
- Bybee-Finley, A.K.; Cordeau, S.; Yvoz, S.; Mirsky, S.B.; Ryan, M.R. Finding the right mix: A framework for selecting seeding rates for cover crop mixtures. Ecol. Appl. 2022, 32, e02484. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.G.; Warren, N.D.; Cordeau, S. Are cover crop mixtures better at suppressing weeds than cover crop monocultures? Weed Sci. 2020, 68, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Bond, W.; Grundy, A. Non-chemical weed management in organic farming systems. Weed Res. 2001, 41, 383–405. [Google Scholar] [CrossRef]
- Teasdale, J.R. Contribution of cover crops to weed management in sustainable agricultural systems. J. Prod. Agric. 1996, 9, 475–479. [Google Scholar] [CrossRef]
- Mohammadi, G. Living mulch as a tool to control weeds in agroecosystems: A Review. Weed Control 2012, 29, 75–100. [Google Scholar]
- Mahé, I.; Chauvel, B.; Colbach, N.; Cordeau, S.; Gfeller, A.; Reiss, A.; Moreau, D. Deciphering field-based evidences for crop allelopathy in weed regulation. A review. Agron. Sustain. Dev. 2022, in press. [Google Scholar]
- Leoni, F.; Lazzaro, M.; Carlesi, S.; Moonen, A.-C. Legume Ecotypes and Commercial Cultivars Differ in Performance and Potential Suitability for Use as Permanent Living Mulch in Mediterranean Vegetable Systems. Agronomy 2020, 10, 1836. [Google Scholar] [CrossRef]
- Chabert, A.; Sarthou, J.-P. Conservation agriculture as a promising trade-off between conventional and organic agriculture in bundling ecosystem services. Agric. Ecosyst. Environ. 2020, 292, 106815. [Google Scholar] [CrossRef]
- Farooq, M.; Flower, K.C.; Jabran, K.; Wahid, A.; Siddique, K.H.M. Crop yield and weed management in rainfed conservation agriculture. Soil Tillage Res. 2011, 117, 172–183. [Google Scholar] [CrossRef]
- Cordeau, S.; Baudron, A.; Adeux, G. Is Tillage a Suitable Option for Weed Management in Conservation Agriculture? Agronomy 2020, 10, 1746. [Google Scholar] [CrossRef]
- Adeux, G.; Munier-Jolain, N.; Meunier, D.; Farcy, P.; Carlesi, S.; Barberi, P.; Cordeau, S. Diversified grain-based cropping systems provide long-term weed control while limiting herbicide use and yield losses. Agron. Sustain. Dev. 2019, 39, 42. [Google Scholar] [CrossRef]
- Weisberger, D.; Nichols, V.; Liebman, M. Does diversifying crop rotations suppress weeds? A meta-analysis. PLoS ONE 2019, 14, e0219847. [Google Scholar] [CrossRef] [Green Version]
- Adeux, G.; Yvoz, S.; Biju-Duval, L.; Cadet, E.; Farcy, P.; Fried, G.; Guillemin, J.-P.; Munier-Jolain, N.; Petit, S.; Cordeau, S. Cropping system diversification does not always beget weed diversity. Eur. J. Agron. 2022, 133, 126438. [Google Scholar] [CrossRef]
- Butkevičienė, L.M.; Skinulienė, L.; Auželienė, I.; Bogužas, V.; Pupalienė, R.; Steponavičienė, V. The Influence of Long-Term Different Crop Rotations and Monoculture on Weed Prevalence and Weed Seed Content in the Soil. Agronomy 2021, 11, 1367. [Google Scholar] [CrossRef]
- Colbach, N.; Cordeau, S. Are no-till herbicide-free systems possible? A simulation study. Front. Agron. 2022, in press. [Google Scholar] [CrossRef]
- Colbach, N.; Cordeau, S. Reduced herbicide use does not increase crop yield loss if it is compensated by alternative preventive and curative measures. Eur. J. Agron. 2018, 94, 67–78. [Google Scholar] [CrossRef]
- Ulber, L.; Steinmann, H.-H.; Klimek, S.; Isselstein, J. An on-farm approach to investigate the impact of diversified crop rotations on weed species richness and composition in winter wheat. Weed Res. 2009, 49, 534–543. [Google Scholar] [CrossRef]
- Adeux, G.; Vieren, E.; Carlesi, S.; Bàrberi, P.; Munier-Jolain, N.; Cordeau, S. Mitigating crop yield losses through weed diversity. Nat. Sustain. 2019, 2, 1018–1026. [Google Scholar] [CrossRef]
- Smith, R.G.; Mortensen, D.A.; Ryan, M.R. A new hypothesis for the functional role of diversity in mediating resource pools and weed–crop competition in agroecosystems. Weed Res. 2010, 50, 37–48. [Google Scholar] [CrossRef]
- Menalled, U.D.; Bybee-Finley, K.; Smith, R.G.; DiTommaso, A.; Pethybridge, S.J.; Ryan, M.R. Soil-mediated effects on weed-crop competition: Elucidating the role of annual and perennial intercrop diversity legacies. Agronomy 2020, 10, 1373. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Mohler, C.L. The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci. 2000, 48, 385–392. [Google Scholar] [CrossRef]
- Webster, T.M.; Simmons, D.B.; Culpepper, A.S.; Grey, T.L.; Bridges, D.C.; Scully, B.T. Factors affecting potential for Palmer amaranth (Amaranthus palmeri) suppression by winter rye in Georgia, USA. Field Crops Res. 2016, 192, 103–109. [Google Scholar] [CrossRef]
- Gauer, E.; Shaykewich, C.F.; Stobbe, E.H. Soil temperature and soil water under zero tillage in Vanitoba. Can. J. Soil Sci. 1982, 62, 46. [Google Scholar] [CrossRef]
- Williams, A.; Wells, M.S.; Dickey, D.A.; Hu, S.; Maul, J.; Raskin, D.T.; Reberg-Horton, S.C.; Mirsky, S.B. Establishing the relationship of soil nitrogen immobilization to cereal rye residues in a mulched system. Plant Soil 2018, 426, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.U.; Wang, X.; Mehmood, T.; Latıf, S.; Khan, S.U.; Fiaz, S.; Qayyum, A. Comparison of Organic and Inorganic Mulching for Weed Suppression in Wheat under Rain-Fed Conditions of Haripur, Pakistan. Agronomy 2021, 11, 1131. [Google Scholar] [CrossRef]
- Legere, A.; Stevenson, F.; Benoit, D. Diversity and assembly of weed communities: Contrasting responses across cropping systems. Weed Res. 2005, 45, 303–315. [Google Scholar] [CrossRef]
- Fried, G.; Chauvel, B.; Reboud, X. A functional analysis of large-scale temporal shifts from 1970 to 2000 in weed assemblages of sunflower crops in France. J. Veget. Sci. 2009, 20, 49–58. [Google Scholar] [CrossRef]
- Gaba, S.; Perronne, R.; Fried, G.; Gardarin, A.; Bretagnolle, F.; Biju-Duval, L.; Colbach, N.; Cordeau, S.; Fernández-Aparicio, M.; Gauvrit, C. Response and effect traits of arable weeds in agro-ecosystems: A review of current knowledge. Weed Res. 2017, 57, 123–147. [Google Scholar] [CrossRef]
- Armengot, L.; Blanco-Moreno, J.M.; Bàrberi, P.; Bocci, G.; Carlesi, S.; Aendekerk, R.; Berner, A.; Celette, F.; Grosse, M.; Huiting, H.; et al. Tillage as a driver of change in weed communities: A functional perspective. Agric. Ecosyst. Environ. 2016, 222, 276–285. [Google Scholar] [CrossRef]
- Steponavičienė, V.; Marcinkevičienė, A.; Butkevičienė, L.M.; Skinulienė, L.; Bogužas, V. The effect of different soil tillage systems and crop residues on the composition of weed communities. Agronomy 2021, 11, 1276. [Google Scholar] [CrossRef]
- Büchi, L.; Cordeau, S.; Hull, R.; Rodenburg, J. Vulpia myuros, an increasing threat for agriculture. Weed Res. 2021, 61, 13–24. [Google Scholar] [CrossRef]
- Bajwa, A.A. Sustainable weed management in conservation agriculture. Crop Protect. 2014, 65, 105–113. [Google Scholar] [CrossRef]
- Peterson, M.A.; Collavo, A.; Ovejero, R.; Shivrain, V.; Walsh, M.J. The challenge of herbicide resistance around the world: A current summary. Pest Manag. Sci. 2018, 74, 2246–2259. [Google Scholar] [CrossRef]
- Zahan, T.; Hossain, M.F.; Chowdhury, A.K.; Ali, M.O.; Ali, M.A.; Dessoky, E.S.; Hassan, M.M.; Maitra, S.; Hossain, A. Herbicide in Weed Management of Wheat (Triticum aestivum L.) and Rainy Season Rice (Oryza sativa L.) under Conservation Agricultural System. Agronomy 2021, 11, 1704. [Google Scholar] [CrossRef]
- Rosa-Schleich, J.; Loos, J.; Mußhoff, O.; Tscharntke, T. Ecological-economic trade-offs of diversified farming systems—A review. Ecol. Econ. 2019, 160, 251–263. [Google Scholar] [CrossRef]
- Grovermann, C.; Schreinemachers, P.; Riwthong, S.; Berger, T. ‘Smart’policies to reduce pesticide use and avoid income trade-offs: An agent-based model applied to Thai agriculture. Ecol. Econ. 2017, 132, 91–103. [Google Scholar] [CrossRef]
- Cordeau, S.; Guillemin, J.P.; Reibel, C.; Chauvel, B. Weed species differ in their ability to emerge in no-till systems that include cover crops. Ann. Appl. Biol. 2015, 166, 444–455. [Google Scholar] [CrossRef]
- Cordeau, S.; Wayman, S.; Reibel, C.; Strbik, F.; Chauvel, B.; Guillemin, J.P. Effects of drought on weed emergence and growth vary with seed burial depth and presence of a cover crop. Weed Biol. Manag. 2018, 18, 12–25. [Google Scholar] [CrossRef]
- Triplett, G.; Lytle, G. Control and ecology of weeds in continuous corn grown without tillage. Weed Sci. 1972, 20, 453–457. [Google Scholar] [CrossRef]
- Cardina, J.; Herms, C.P.; Doohan, D.J. Crop rotation and tillage system effects on weed seedbanks. Weed Sci. 2002, 50, 448–460. [Google Scholar] [CrossRef]
- Benvenuti, S. Natural weed seed burial: Effect of soil texture, rain and seed characteristics. Seed Sci. Res. 2007, 17, 211–219. [Google Scholar] [CrossRef]
- Thomas, A.G.; Derksen, D.A.; Blackshaw, R.E.; Van Acker, R.C.; Légère, A.; Watson, P.R.; Turnbull, G.C. A multistudy approach to understanding weed population shifts in medium- to long-term tillage systems. Weed Sci. 2004, 52, 874–880. [Google Scholar] [CrossRef]
- Trichard, A.; Alignier, A.; Chauvel, B.; Petit, S. Identification of weed community traits response to conservation agriculture. Agric. Ecosyst. Environ. 2013, 179, 179–186. [Google Scholar] [CrossRef]
- Crawford, M.H.; Rincon-Florez, V.; Balzer, A.; Dang, Y.P.; Carvalhais, L.C.; Liu, H.; Schenk, P.M. Changes in the soil quality attributes of continuous no-till farming systems following a strategic tillage. Soil Res. 2015, 53, 263–273. [Google Scholar] [CrossRef]
- Dang, Y.P.; Seymour, N.P.; Walker, S.R.; Bell, M.J.; Freebairn, D.M. Strategic tillage in no-till farming systems in Australia’s northern grains-growing regions: I. Drivers and implementation. Soil Tillage Res. 2015, 152, 104–114. [Google Scholar] [CrossRef]
- Douglas, M.R.; Tooker, J.F. Slug (Mollusca: Agriolimacidae, Arionidae) Ecology and Management in No-Till Field Crops, with an Emphasis on the mid-Atlantic Region. J. Integr. Pest Manag. 2012, 3, C1–C9. [Google Scholar] [CrossRef] [Green Version]
- Peixoto, D.S.; Silva, B.M.; Oliveira, G.C.d.; Moreira, S.G.; da Silva, F.; Curi, N. A soil compaction diagnosis method for occasional tillage recommendation under continuous no tillage system in Brazil. Soil Tillage Res. 2019, 194, 104307. [Google Scholar] [CrossRef]
- Çelik, İ.; Günal, H.; Acar, M.; Acir, N.; Bereket Barut, Z.; Budak, M. Strategic tillage may sustain the benefits of long-term no-till in a Vertisol under Mediterranean climate. Soil Tillage Res. 2019, 185, 17–28. [Google Scholar] [CrossRef]
- Díaz-Zorita, M.; Grove, J.H.; Murdock, L.; Herbeck, J.; Perfect, E. Soil structural disturbance effects on crop yields and soil properties in a no-till production system. Agron. J. 2004, 96, 1651–1659. [Google Scholar] [CrossRef]
- Van den Putte, A.; Govers, G.; Diels, J.; Gillijns, K.; Demuzere, M. Assessing the effect of soil tillage on crop growth: A meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 2010, 33, 231–241. [Google Scholar] [CrossRef]
- Colbach, N.; Petit, S.; Chauvel, B.; Deytieux, V.; Lechenet, M.; Munier-Jolain, N.; Cordeau, S. The pitfalls of relating weeds, herbicide use and crop yield: Don’t fall into the trap! A critical review. Front. Agron. 2020, 2, 615470. [Google Scholar] [CrossRef]
- Gathala, M.K.; Timsina, J.; Islam, M.S.; Rahman, M.M.; Hossain, M.I.; Harun-Ar-Rashid, M.; Ghosh, A.K.; Krupnik, T.J.; Tiwari, T.P.; McDonald, A. Conservation agriculture based tillage and crop establishment options can maintain farmers’ yields and increase profits in South Asia’s rice–maize systems: Evidence from Bangladesh. Field Crops Res. 2015, 172, 85–98. [Google Scholar] [CrossRef]
- Hossain, M.M.; Begum, M.; Hashem, A.; Rahman, M.; Ahmed, S.; Hassan, M.M.; Javed, T.; Shabbir, R.; Hadifa, A.; Sabagh, A.E. Strip tillage and crop residue retention decrease the size but increase the diversity of the weed seed bank under intensive rice-based crop rotations in Bangladesh. Agronomy 2021, 11, 1164. [Google Scholar] [CrossRef]
- Cordeau, S.; Baudron, A.; Busset, H.; Farcy, P.; Vieren, E.; Smith, R.G.; Munier-Jolain, N.; Adeux, G. Legacy effects of contrasting long-term integrated weed management systems. Front. Agron. 2022, 3, 769992. [Google Scholar] [CrossRef]
- Derrouch, D.; Dessaint, F.; Fried, G.; Chauvel, B. Weed community diversity in conservation agriculture: Post-adoption changes. Agric. Ecosyst. Environ. 2021, 312, 107351. [Google Scholar] [CrossRef]
- Blanco-Sepúlveda, R.; Aguilar-Carrillo, A.; Lima, F. Impact of Weed Control by Hand Tools on Soil Erosion under a No-Tillage System Cultivation. Agronomy 2021, 11, 974. [Google Scholar] [CrossRef]
- Lal, R. Tillage Systems in the Tropics: Management Options and Sustainability Implications; Food & Agriculture Org.: Rome, Italy, 1995. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordeau, S. Conservation Agriculture and Agroecological Weed Management. Agronomy 2022, 12, 867. https://doi.org/10.3390/agronomy12040867
Cordeau S. Conservation Agriculture and Agroecological Weed Management. Agronomy. 2022; 12(4):867. https://doi.org/10.3390/agronomy12040867
Chicago/Turabian StyleCordeau, Stéphane. 2022. "Conservation Agriculture and Agroecological Weed Management" Agronomy 12, no. 4: 867. https://doi.org/10.3390/agronomy12040867
APA StyleCordeau, S. (2022). Conservation Agriculture and Agroecological Weed Management. Agronomy, 12(4), 867. https://doi.org/10.3390/agronomy12040867