Soil Responses to High Olive Mill Wastewater Spreading
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. OMW Characteristics
3.2. Mineral Fraction Evolution after OMW Spreading on Soil
3.2.1. Effect of OMW on pH Soil and EC Progress
3.2.2. N, P and K Evolution
3.2.3. Na, Ca and Mg Variation
3.2.4. Cl− and SO42− Changes
3.3. Organic Fraction Dynamic after OMW Spreading on Soil
3.3.1. Organic Matter Evolution
3.3.2. UV Absorption of Humic Substances
3.3.3. PC Evolution
3.4. Phytotoxicity Test
3.5. PCA Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO (Food and Agriculture Organization of United Nations). FAOSTAT. Available online: http://www.fao.org/faostat/en/?#data (accessed on 3 April 2022).
- Mechri, B.; Mariem, F.B.; Baham, M.; Elhadj, S.B.; Hammami, M. Change in soil properties and the soil microbial community following land spreading of olive mill wastewater affects olive trees key physiological parameters and the abundance of arbuscularmycorrhizal fungi. Soil Biol. Biochem. 2008, 40, 152–161. [Google Scholar] [CrossRef]
- Sellami, F.; Hachicha, S.; Chtourou, M.; Medhioub, K.; Ammar, E. Maturity assessment of composted olive mill wastes using UV spectra and humification parameters. Bioresour. Technol. 2008, 99, 6900–6907. [Google Scholar] [CrossRef] [PubMed]
- Moraetis, D.; Stamati, F.E.; Nikolaidis, N.P.; Kalogerakis, N. Olive mill wastewater irrigation of maize: Impacts on soil and groundwater. Agric. Water Manag. 2011, 98, 1125–1132. [Google Scholar] [CrossRef]
- Kapellakis, I.E.; Tsagarakis, K.P.; Crowther, J.C. Olive oil history, production and by-product management. Rev. Environ. Sci. Bio/Technol. 2008, 7, 1–26. [Google Scholar] [CrossRef]
- Sierra, J.; Martí, E.; Garau, M.A.; Cruañas, R. Effects of the agronomic use of olive oil mill wastewater: Field experiment. Sci. Total Environ. 2007, 378, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Federici, F. Waste waters from the olive oil extraction process disposal or valorization. Promologia Croatcia 2006, 12, 15–27. [Google Scholar]
- Vlyssides, A.G.; Loizides, M.; Karlis, P.K. Integrated strategic approach for reusing olive oil extraction by-products. J. Clean. Prod. 2004, 12, 603–611. [Google Scholar] [CrossRef]
- Dourou, M.; Kancelista, A.; Juszczyk, P.; Sarris, D.; Bellou, S.; Triantaphyllidou, I.E.; Rywinska, A.; Papanikolaou, S.; Aggelis, G. Bioconversion of olive mill wastewater into high-added value products. J. Clean. Prod. 2016, 139, 957–969. [Google Scholar] [CrossRef]
- Calabrò, P.S.; Fòlino, A.; Tamburino, V.; Zappia, G.; Zema, D.A. Increasing the tolerance to polyphenols of the anaerobic digestion of olive wastewater through microbial adaptation. Biosyst. Eng. 2018, 172, 19–28. [Google Scholar] [CrossRef]
- Jaouani, A.; Sayadi, S.; Vanthournhout, M.; Penninckx, M.J. Potent fungi for decolourisation of olive oil mill waste waters. Enzym. Microb. Technol. 2003, 33, 802–809. [Google Scholar] [CrossRef]
- Daâssi, D.; Belbahri, L.; Vallat, A.; Woodward, S.; Nesri, M.; Mechichi, T. Enhanced reduction of phenol content and toxicity in olive mill waste waters by a newly isolated strain of Coriolopsis gallica. Environ. Sci. Pollut. Res. Int. 2014, 21, 1746–1758. [Google Scholar] [CrossRef] [PubMed]
- Khoufi, S.; Aloui, F.; Sayadi, S. Pilot scale hybrid process for olive mill wastewater treatment and reuse. Chem. Eng. Process. Process Intensif. 2009, 48, 643–650. [Google Scholar] [CrossRef]
- Khoufi, S.; Aloui, F.; Sayadi, S. Treatment of olive oil mill wastewater by combined process electro-Fenton reaction and anaerobic digestion. Water Res. 2006, 40, 2007–2016. [Google Scholar] [CrossRef] [PubMed]
- Fki, M.; Allouche, N.; Bouaziz, M.; Gargoubi, A.; Saydi, S. Effect of storage of olive millwastewaters on hydroxytyrosol concentration. Eur. J. Lipid. Sci. Technol. 2006, 108, 1021–1027. [Google Scholar] [CrossRef]
- Yangui, T.; Rhouma, A.; Triki, M.A.; Gargouri, K.; Bouzid, J. Control of damping-off caused by Rhizoctonia solani and Fusarium solani using olive mill waste water and some of its indigenous bacterial strains. Crop Prot. 2008, 27, 189–197. [Google Scholar] [CrossRef]
- Abid, N.; Sayadi, S. Detrimental effects of olive mill wastewater on the composting process of agricultural wastes. Waste Manag. 2006, 26, 1099–1107. [Google Scholar] [CrossRef]
- Barbera, A.C.; Maucieri, C.; Ioppolo, A.; Milani, M.; Cavallaro, V. Effects of olive mill wastewater physico-chemical treatments on polyphenol abatement and Italian ryegrass (Lolium multiflorum Lam.) germinability. Water Res. 2014, 1, 275–281. [Google Scholar] [CrossRef]
- Chaari, L.; Elloumi, N.; Mseddi, S.; Gargouri, K.; Rouina, B.; Mechichi, T.; Kallel, M. Changes in Soil Macronutrients after a Long-Term Application of Olive Mill Wastewater. J. Agric. Chem. Environ. 2015, 4, 53450. [Google Scholar] [CrossRef] [Green Version]
- S’habou, R.; Zairi, M.; Kallel, A.; Aydi, A.; Ben Dhia, H. Assessing the effect of an olive mill wastewater evaporation pond in Sousse, Tunisia. Environ. Geol. 2009, 58, 679–686. [Google Scholar] [CrossRef]
- Paredes, C.; Cegarra, J.; Roig, A.; Sanchez-Monedero, M.A.; Bernal, M.P. Caracterisation of olive mill waste water (Alpechin) and its sludge for agriculture purposes. Bioresour. Technol. 1999, 67, 111–115. [Google Scholar] [CrossRef]
- Di Bene, C.; Pellegrino, E.; Debolini, M.; Silvestri, N.; Bonari, E. Short- and long-term effects of olive mill wastewater land spreading on soil chemical and biological properties. Soil Biol. Biochem. 2013, 56, 21–30. [Google Scholar] [CrossRef]
- Mekki, A.; Dhouib, A.; Feki, F.; Sayadi, S. Assessment of toxicity of the untreated and treated olive mill wastewaters and soil irrigated by using microbiotests. Ecotoxicol. Environ. Saf. 2008, 69, 488–495. [Google Scholar] [CrossRef] [PubMed]
- El Hassani, F.Z.; Fadile, A.; Faouzi, M.; Zinedine, A.; Merzouki, M.; Benlemlih, M. The long-term effect of Olive Mill Wastewater (OMW) on organic matter humification in a semi-arid soil. Heliyon 2020, 6, e03181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chartzoulakis, K.; Psarras, G.; Moutsopoulou, M.; Stefanoudaki, E. Application of olive mill wastewater to a Cretan olive orchard: Effects on soil properties, plant performance and the environment. Agric. Ecosyst. Environ. 2010, 138, 293–298. [Google Scholar] [CrossRef]
- Magdich, S.; Jarboui, R.; Rouina, B.B.; Boukhris, M.; Ammar, E. A yearly spraying of olive mill wastewater on agricultural soil over six successive years: Impact of different application rates on olive production, phenolic compounds, phytotoxicity and microbial counts. Sci. Total Environ. 2012, 430, 209–216. [Google Scholar] [CrossRef]
- Mahmoud, M.; Janssen, M.; Peth, S.; Horn, R.; Lennartz, B. Long-term impact of irrigation with olive mill wastewater on aggregate properties in the top soil. Soil Tillage Res. 2012, 124, 24–31. [Google Scholar] [CrossRef]
- Mahmoud, M.; Janssen, M.; Haboub, N.; Nassour, A.; Lennartz, B. The impact of olive mill wastewater application on flow and transport properties in soils. Soil Tillage Res. 2010, 107, 36–41. [Google Scholar] [CrossRef]
- Piotrowska, A.; Iamarino, G.; Rao, M.A.; Gianfreda, L. Short-term effects of olive mill waste water (OMW) on chemical and biochemical properties of a semiarid Mediterranean soil. Soil Biol. Biochem. 2006, 38, 600–610. [Google Scholar] [CrossRef]
- Mechri, B.; Cheheb, H.; Boussadia, O.; Attia, F.; Ben Mariem, F.; Braham, M.; Hammami, M. Effects of agronomic application of olive mill wastewater in a field of olive trees on carbohydrate profiles, chlorophyll a fluorescence and mineral nutrient content. Environ. Exp. Bot. 2011, 71, 184–191. [Google Scholar] [CrossRef]
- Tarchitzky, J.; Lerner, O.; Shani, U.; Arye, G.; Lowengart-Aycicegi, A.; Brener, A.; Chen, Y. Water distribution pattern in treated wastewater irrigated soils: Hydrophobicity effect. Eur. J. Soil Sci. 2007, 58, 573–588. [Google Scholar] [CrossRef]
- Travis, M.J.; Weisbrod, N.; Gross, A. Accumulation of oil and grease in soils irrigated with greywater and their potential role in soil water repellency. Sci. Total Environ. 2008, 394, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Borja, M.E.; Zema, D.A.; Carra, B.G.; Cerda, A.; Plaza-Alvarez, P.A.; Cozar, J.S.; de las Heras, J. Short-term changes in infiltration between straw mulched and non-mulched soils after wildfire in Mediterranean forest ecosystems. Ecol. Eng. 2018, 122, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Fortugno, D.; Boix-Fayos, C.; Bombino, G.; Denisi, P.; Quinonero Rubio, J.M.; Tamburino, V.; Zema, D.A. Adjustments in channel morphology due to land-use changes and check dam installation in mountain torrents of Calabria (southern Italy). Earth Surf. Process. Landf. 2017, 42, 2469–2483. [Google Scholar] [CrossRef]
- Bombino, G.; Andiloro, S.; Folino, A.; Lucas-Borja, M.E.; Zema, D.A. Short-term effects of olive oil mill wastewater application on soil water repellency. Agric. Water Manag. 2021, 244, 106563. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Koutsos, T. Olive mill wastewater as a source of organic matter, water and nutrients for restoration of degraded soils and for crops managed with sustainable systems. Agric. Water Manag. 2017, 190, 55–64. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis, Part 2; Page, A.L., Milller, R.H., Keeny, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- OECD. Earthworm, Acute Toxicity Tests. Guideline for Testing of Chemicals; OECD: Paris, France, 1984. [Google Scholar] [CrossRef]
- Pauwels, J.M.; Van Rust, E.; Verloo, M.; Mvondo, Z.E.A. Manual of Soil Laboratory Analytical Methods of Soil and Plants, 28th ed.; AGCD: Bruxelles Belgium, 1992.
- Kavvadias, V.; Doula, M.K.; Komnitsas, K.; Liakopoulou, N. Disposal of olive oil mill wastes in evaporation ponds: Effects on soil properties. J. Hazard. Mater. 2010, 182, 144–155. [Google Scholar] [CrossRef]
- Zbytniewski, R.; Buszewski, B. Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 2: Multivariate techniques in the study of compost maturation. Bioresour. Technol. 2005, 96, 479–484. [Google Scholar] [CrossRef]
- Kumada, K. Chemistry of Soil Organic Matter; Developments in Soil Science, Japan Scientific Societies Press: Tokyo, Japan; Elsevier Science & Tech: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Mari, I.; Ehaliotis, C.; Kotsou, M.; Balis, C.; Georgakakis, D. Respiration profiles in monitoring the composting of by-products from the olive oil agro-industry. Bioresour. Technol. 2003, 87, 331–336. [Google Scholar] [CrossRef]
- Arshad, M.A.; Martin, S. Identifying critical limits for soil quality indicators in agro-ecosystems. Agric. Ecosyst. Environ. 2002, 88, 153–160. [Google Scholar] [CrossRef]
- Jalali, M. Effect of sodium and magnesium on kinetics of potassium release in some calcareous soils of western Iran. Geoderma 2008, 145, 207–215. [Google Scholar] [CrossRef]
- Piotrowska, A.; Rao, M.A.; Scotti, R.; Gianfreda, L. Changes in soil chemical and biochemical properties following amendment with crude and dephenolized olive mill waste water (OMW). Geoderma 2011, 161, 8–17. [Google Scholar] [CrossRef]
- Camberato, J.J. Nitrogen in soil and fertilizers. SC Turfgrass Found. News 2001, 8, 6–10. [Google Scholar]
- Amin, M.; Flowers, T.H. Effect of two applications of substrate on nitrification and pH of soils. J. Res. Bahauddin Zakariya Univ. Multan Pak. 2004, 15, 263–269. [Google Scholar]
- Paredes, M.J.; Moreno, E.; Ramos-Cormenzana, A.; Martinez, J. Characteristics of soil after pollution with waste waters from olive oil extraction plants. Chemosphere 1987, 16, 1557–1564. [Google Scholar] [CrossRef]
- Tisdale, S.L.; Nelson, W.L. Soil Fertility and Fertilizers, 3rd ed.; Macmillan: New York, NY, USA, 1998. [Google Scholar]
- Niaounakis, M.; Halvadakis, C. Olive Processing Waste Management, Literature Review and Patent Survey Waste Management Series, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 5. [Google Scholar]
- Di Serio, M.G.; Lanza, B.; Mucciarella, M.R.; Russi, F.; Iannucci, E.; Marfisi, P.; Madeo, A. Effects of olive mill wastewater spreading on the physico-chemical and microbiological characteristics of soil. Int. Biodeterior. Biodegrad. 2008, 62, 403–407. [Google Scholar] [CrossRef]
- López-Piñeiro, A.; Albarrán, A.; RatoNunes, J.M.; Barreto, C. Short- and medium-term effects of two-phase olive mill waste application on olive grove production and soil properties under semiarid Mediterranean conditions. Bioresour. Technol. 2008, 99, 7982–7987. [Google Scholar] [CrossRef]
- López-Piñeiro, A.; Fernández, J.; RatoNunes, J.M.; García, A. Response of soil and wheat crop to the application of two-phase olive mill waste to Mediterranean agricultural soils. Soil Sci. 2006, 171, 728–736. [Google Scholar] [CrossRef]
- Feller, C.; Beare, M.H. Physical control of soil organic matter dynamics in the tropics. Geoderma 1997, 97, 69–116. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Pérez-Murcia, M.D.; Paredes, C.; Moral, R.; Pérez-Espinosa, A.; Moreno-Caselles, J. Short-term carbon and nitrogen mineralization in soil amended with winery and distillery organic wastes. Bioresour. Technol. 2007, 98, 3269–3277. [Google Scholar] [CrossRef]
- Hernández, T.; Moral, R.; Perez-Espinosa, A.; Moreno-Caselles, J.; Perez-Murcia, M.D.; García, C. Nitrogen mineralisation potential in calcareous soils amended with sewage sludge. Bioresour. Technol. 2002, 83, 213–219. [Google Scholar] [CrossRef]
- Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 1991, 30, 3875–3883. [Google Scholar] [CrossRef]
- Brunetti, G.; Senesi, N.; Plaza, C. Effects of amendment with treated and untreated olive oil mill wastewaters on soil properties, soil humic substances and wheat yield. Geoderma 2007, 138, 144–152. [Google Scholar] [CrossRef]
- Montemurro, F.; Convertini, G.; Ferri, D. Mill wastewater and olive pomace compost as amendments for rye-grass. Agronomie 2004, 24, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Magdich, S.; Ben Ahmed, C.; Jarboui, R.; Ben Rouina, B.; Boukhris, M.; Ammar, E. Dose and frequency dependent effects of olive mill wastewater treatment on the chemical and microbial properties of soil. Chemosphere 2013, 93, 1896–1903. [Google Scholar] [CrossRef]
- Stigter, T.Y.; Van Ooijen, S.P.J.; Post, V.E.A.; Appelo, C.A.J.; Carvalho Dill, A.M.M. A hydrogeological and hydrochemical explanation of the groundwater composition under irrigated land in a Mediterranean environment, Algarve, Portugal. J. Hydrol. 1998, 208, 262–279. [Google Scholar] [CrossRef]
- Gupta, R.K.; Abrol, I.P. Salt-Affected Soils: Their Reclamation and Management for Crop Production. Adv. Soil Sci. 1990, 11, 223–289. [Google Scholar]
- Sierra, J.; Marti, E.; Montserrat, G.; Cruanas, R.; Garau, M.A. Characterization and evolution of a soil affected by olive oil mill waste water disposal. Sci. Total Environ. 2001, 279, 207–214. [Google Scholar] [CrossRef]
- Mkhabela, M.; Warman, P.R. The influence of municipal solid waste compost on yield, soil phosphorus availability and uptake by two vegetable crops, grown in a Pugwash sandy loam soil in Nova Scotia. Agric. Ecosyst. Environ. 2005, 106, 57–67. [Google Scholar] [CrossRef]
- Mojiri, A. Effects of municipal wastewater on physical and chemical properties of saline soil. J. Biol. Environ. Sci. 2011, 5, 71–76. [Google Scholar]
- Khan, Z.; Anjaneyulu, Y. Influence of soil components on adsorption-desorption of hazardous organics-developpement of low cost technology for reclamation of hazardous waste dumpsites. J. Hazard. Mater. 2005, 118, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Gargouri, K.; Masmoudi, M.; Rhouma, A. Influence of Olive Mill Wastewater (OMW) Spread on Carbon and Nitrogen Dynamics and Biology of an Arid Sandy Soil. Commun. Soil Sci. Plant Anal. 2014, 45, 1–14. [Google Scholar] [CrossRef]
- Kotsou, M.; Mari, I.; Lasaridi, K.; Chatzipavlidis, I.; Balis, C.; Kyriacou, A. The effect of olive oil mill wastewater (OMW) on soil microbial communities and suppressiveness against Rhizoctoniasolani. Appl. Soil Ecol. 2004, 26, 113–121. [Google Scholar] [CrossRef]
- Chowdhury, A.K.M.; Akratos, C.S.; Vayenas, D.V.; Paulou, S. Olive Mill Waste Composting: A Review. Int. Biodeter. Biodegr. 2013, 85, 108–119. [Google Scholar] [CrossRef]
- Mohawesh, O.; Mahmoud, M.; Janssen, M.; Lennartz, B. Effect of irrigation with olive mill wastewater on soil hydraulic and solute transport properties. Int. J. Environ. Sci. Technol. 2014, 11, 927–934. [Google Scholar] [CrossRef] [Green Version]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Caravaca, F.; Lax, A.; Albaladejo, J. Soil aggregate stability and organic matter in clay and fine silt fractions in urban refuse-amended semiarid soils. Soil Sci. Soc. Am. J. 2001, 65, 1235–1238. [Google Scholar] [CrossRef]
- Celik, I.; Ortas, I.; Kilic, S. Effects of composts, mycorrhiza, manure and fertilizer on some physical properties of Chromoxert soil. Soil Till. Res. 2004, 78, 59–67. [Google Scholar] [CrossRef]
- Zenjari, B.; Nejmeddine, A. Impact of spreading olive mill waste water on soil characteristics: Laboratory experiments. Agronomie 2001, 21, 749–755. [Google Scholar] [CrossRef]
- Mekki, A.; Dhouib, A.; Sayadi, S. Polyphenols dynamics and phytotoxicity in a soil amended by olive mill wastewaters. J. Environ. Manag. 2007, 84, 134–140. [Google Scholar] [CrossRef]
- Sayadi, S.; Allouche, N.; Jaoua, M.; Aloui, F. Detrimental effects of high molecular masspolyphenols on olive mill wastewater biotreatment. Process Biochem. 2000, 35, 725–735. [Google Scholar] [CrossRef]
- Paredes, C.; Bernal, M.P.; Cegarra, J.; Roig, A. Biodegradation of olive mill waste water sludge by its co-composting with agricultural wastes. Bioresour. Technol. 2002, 85, 1–8. [Google Scholar] [CrossRef]
- Hachicha, S.; Cegarra, J.; Sellami, F.; Hachicha, R.; Drira, N.; Medhioub, K.; Ammar, E. Elimination of polyphenols toxicity from olive mill wastewater sludge by its co-composting with sesame bark. J. Hazard. Mater. 2009, 161, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- El Hadrami, A.; Belaqziz, M.; El Hassni, M.; Hanifi, S.; Abbad, A. Physico-chemical characterization and effects of olive oil mill wastewaters fertirrigation on the growth of some Mediterranean crops. J. Agron. 2004, 3, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Saadi, I.; Laor, Y.; Raviv, M.; Medina, S. Land spreading of olive mill wastewater: Effects on soil microbial activity and potential phytotoxicity. Chemosphere 2007, 66, 75–83. [Google Scholar] [CrossRef]
- Pierantozzi, P.; Zampini, C.; Torres, M.; Isla, M.I.; Verdenelli, R.A.; Merilesa, J.M.; Maestria, D. Physico-chemical and toxicological assessment of liquid wastes from olive processing-related industries. J. Sci. Food Agric. 2011, 92, 216–223. [Google Scholar] [CrossRef]
- Ouzounidou, G.; Asfi, M.; Sotirakis, N.; Papadopoulou, P.; Gaitis, F. Olive mill wastewater triggered changes in physiology and nutritional quality of tomato (Lycopersicon esculentum Mill.) depending on growth substrate. J. Hazard. Mater. 2008, 158, 523–530. [Google Scholar] [CrossRef]
- Buchmann, C.; Felten, A.; Peikert, B.; Muñoz, K.; Bandow, N.; Dag, A.; Schaumann, G.E. Development of phytotoxicity and composition of a soil treated with olive mill wastewater (OMW): An incubation study. Plant Soil 2015, 386, 99–112. [Google Scholar] [CrossRef]
- Greco, G.; Colarieti, M.L.; Toscano, G.; Iamarino, G.; Rao, M.A.; Gianfreda, L. Mitigation of olive mill wastewater toxicity. J. Agric. Food Chem. 2006, 54, 6776–6782. [Google Scholar] [CrossRef]
Characteristics | Mean Value |
---|---|
pH | 5.33 |
EC (mS·cm−1) | 18.58 |
COD (g O2·L−1) | 154.9 |
OM (g·L−1) | 210.55 |
N (g N·L−1) | 0.432 |
P (g P·L−1) | 0.65 |
PC (g·L−1) | 4.62 |
Na+ (ppm) | 3490 |
K+ (ppm) | 7716 |
Ca2+ (ppm) | 1028.5 |
Mg2+ (ppm) | 541 |
Cl− (ppm) | 2058 |
SO42− (ppm) | 840 |
pH | CE (µS·cm−1) | CaCO3 (%) | |
---|---|---|---|
Soil 1 | 7.12 | 570 | 4.25 |
Soil 2 | 8 | 900 | 10.75 |
Peat | 7.2 | 420 | - |
Parameters | pH | CE | SOM | P | NTK | Na | K | Ca | Mg | PC | GIT | GIA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | |||||||||||
CE | 0.050 | 1 | ||||||||||
SOM | −0.018 | −0.109 | 1 | |||||||||
P | −0.216 | 0.079 | −0.447 * | 1 | ||||||||
NTK | 0.177 | −0.490 * | 0.374 | 0.023 | 1 | |||||||
Na | 0.655 * | 0.228 | 0.372 | −0171 | −0.208 | 1 | ||||||
K | −0.306 | 0.570 * | −0.045 | 0.242 | −0.690 * | 0.435 | 1 | |||||
Ca | 0.225 | −0.677 * | 0.064 | 0.213 | 0.548 * | −0.306 | −0.433 | 1 | ||||
Mg | 0.084 | 0.000 | 0.277 | −0.261 | 0.604 * | 0.056 | −0.420 | 0.287 | 1 | |||
PC | −0.515 * | 0.429 | 0.283 | −0.368 | −0.345 | 0.877 * | 0.447 * | −0.472 * | 0.108 | 1 | ||
GIT | 0.395 | −0.057 | 0.30 | −0.029 | −0.312 | −0.426 | 0.347 | −0.017 | −0.400 | −0.362 | 1 | |
GIA | 0.640 * | 0.102 | −0.007 | −0.230 | −0.120 | −0.444 | 0.014 | −0.009 | −0.227 | −0.442 | 0.589 * | 1 |
Parameters | pH | CE | SOM | P | NTK | Na | K | Ca | Mg | PC | GIT | GIA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | |||||||||||
CE | −0.250 | 1 | ||||||||||
SOM | −0.309 | 0.412 | 1 | |||||||||
P | −0.680 * | 0.245 | 0.039 | 1 | ||||||||
NTK | 0.279 | −0.802 * | −0.229 | −0.274 | 1 | |||||||
Na | −0.428 | 0.293 | −0.037 | 0.773 * | −0.216 | 1 | ||||||
K | −0.510 * | 0.798 * | 0.183 | 0.458 * | −0.750 * | 0.499 * | 1 | |||||
Ca | 0.485 * | −0.572 * | −0.701 * | −0.318 | 0.327 | −0.332 | −0.364 | 1 | ||||
Mg | 0.201 | 0.087 | −0.370 | 0.090 | −0.190 | 0.302 | 0.291 | 0.339 | 1 | |||
PC | 0.020 | 0.105 | −0.085 | −0.313 | 0.110 | −0.257 | 0.075 | 0.033 | −0.273 | 1 | ||
GIT | 0.223 | 0.145 | 0.000 | −0.034 | −0.490 * | 0.093 | 0.130 | 0.236 | 0.497 * | −0.522 * | 1 | |
GIA | 0.246 | 0.090 | −0.037 | 0.092 | −0.225 | 0.229 | 0.174 | 0.43 | 0.619 * | −0.716 * | 0.656 * | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaâri, L.; Alsaiari, N.S.; Amari, A.; Ben Rebah, F.; Kallel, M.; Mechichi, T. Soil Responses to High Olive Mill Wastewater Spreading. Agronomy 2022, 12, 972. https://doi.org/10.3390/agronomy12040972
Chaâri L, Alsaiari NS, Amari A, Ben Rebah F, Kallel M, Mechichi T. Soil Responses to High Olive Mill Wastewater Spreading. Agronomy. 2022; 12(4):972. https://doi.org/10.3390/agronomy12040972
Chicago/Turabian StyleChaâri, Leïla, Norah Salem Alsaiari, Abdelfattah Amari, Faouzi Ben Rebah, Monem Kallel, and Tahar Mechichi. 2022. "Soil Responses to High Olive Mill Wastewater Spreading" Agronomy 12, no. 4: 972. https://doi.org/10.3390/agronomy12040972
APA StyleChaâri, L., Alsaiari, N. S., Amari, A., Ben Rebah, F., Kallel, M., & Mechichi, T. (2022). Soil Responses to High Olive Mill Wastewater Spreading. Agronomy, 12(4), 972. https://doi.org/10.3390/agronomy12040972