Diversity Characterization of Soybean Germplasm Seeds Using Image Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soybean Germplasm
2.2. High-Throughput Phenotyping and Morphological Indicators of Seed
2.3. Primary Parameters Measurement of Selected Soybean Germplasm Seeds
2.4. The UPOV Guideline Classification Criteria
2.5. Statistical Analyses
3. Results
3.1. Variability of Seed Morphological Traits
3.2. Correlation Analysis
3.3. Clustering and Diversity Analysis
3.4. Verification between Image Measurement and Actual Measurement
3.5. Seed Phenotypic Chararcterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hymowitz, T. The history of the soybean. In Soybeans; Elsevier: Amsterdam, The Netherlands, 2008; pp. 1–31. [Google Scholar]
- Boerema, A.; Peeters, A.; Swolfs, S.; Vandevenne, F.; Jacobs, S.; Staes, J.; Meire, P. Soybean trade: Balancing environmental and socio-economic impacts of an intercontinental market. PLoS ONE 2016, 11, e0155222. [Google Scholar] [CrossRef]
- RDA-Genebank. Available online: http://genebank.rda.go.kr/ (accessed on 22 February 2022).
- Carter, T.E., Jr.; Nelson, R.L.; Sneller, C.H.; Cui, Z. Genetic diversity in soybean. Soybeans Improv. Prod. Uses 2004, 16, 303–416. [Google Scholar]
- Furbank, R.T.; Tester, M. Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 2011, 16, 635–644. [Google Scholar] [CrossRef]
- Minervini, M.; Scharr, H.; Tsaftaris, S.A. Image analysis: The new bottleneck in plant phenotyping [applications corner]. IEEE Signal Process. Mag. 2015, 32, 126–131. [Google Scholar] [CrossRef] [Green Version]
- El Masry, G.; Mandour, N.; Al-Rejaie, S.; Belin, E.; Rousseau, D. Recent applications of multispectral imaging in seed phenotyping and quality monitoring—An Overview. Sensors 2019, 19, 1090. [Google Scholar] [CrossRef] [Green Version]
- Juliano, B.O.; Villareal, C. Grain Quality Evaluation of World Rices; International Rice Research Institute: Manila, Philippines, 1993. [Google Scholar]
- Evers, A.; Cox, R.; Shaheedullah, M.; Withey, R. Predicting milling extraction rate by image analysis of wheat grains. Asp. Appl. Biol. 1990, 25, 417–426. [Google Scholar]
- Lee, S. Soybean seed phenotype study based on image analysis. Korea Soybean Res. Soc. 2020, 348, 5–7. [Google Scholar]
- Prasad, R.; Mukherjee, K.; Gangopadhyay, G. Image-analysis based on seed phenomics in sesame. Plant Breed. Seed Sci. 2014, 68, 119. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, M. A 3D Print repository for plant phenomics. Plant Phenomics 2020, 2020, 8640215. [Google Scholar] [CrossRef] [PubMed]
- Gregory, P.J.; Bengough, A.G.; Grinev, D.; Schmidt, S.; Thomas, W.B.T.; Wojciechowski, T.; Young, I.M. Root phenomics of crops: Opportunities and challenges. Funct. Plant Biol. 2009, 36, 922–929. [Google Scholar] [CrossRef]
- Yang, W.; Feng, H.; Zhang, X.; Zhang, J.; Doonan, J.H.; Batchelor, W.D.; Xiong, L.; Yan, J. Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Mol. Plant 2020, 13, 187–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, J.; Claussen, J.; Wörlein, N.; Eggert, A.; Fleury, D.; Garnett, T.; Gerth, S. Drought and heat stress tolerance screening in wheat using computed tomography. Plant Methods 2020, 16, 15. [Google Scholar] [CrossRef] [PubMed]
- Fritsche-Neto, R.; Borém, A. Phenomics: How Next-Generation Phenotyping is Revolutionizing Plant Breeding; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Gustin, J.L.; Settles, A.M. Seed phenomics. In Phenomics; Springer: Berlin/Heidelberg, Germany, 2015; pp. 67–82. [Google Scholar]
- Herridge, R.P.; Day, R.C.; Baldwin, S.; Macknight, R.C. Rapid analysis of seed size in arabidopsis for mutant and QTL discovery. Plant Methods 2011, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanabata, T.; Shibaya, T.; Hori, K.; Ebana, K.; Yano, M. SmartGrain: High-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiol. 2012, 160, 1871–1880. [Google Scholar] [CrossRef] [Green Version]
- Baek, J.; Lee, E.; Kim, N.; Kim, S.L.; Choi, I.; Ji, H.; Chung, Y.S.; Choi, M.-S.; Moon, J.-K.; Kim, K.-H. High throughput phenotyping for various traits on soybean seeds using image analysis. Sensors 2020, 20, 248. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Xu, Y.; Liu, X.-F.; Yang, S.-X.; Wei, S.-P.; Xie, F.-T.; Zhang, Y.-M. Association mapping for seed size and shape traits in soybean cultivars. Mol. Breed. 2013, 31, 785–794. [Google Scholar] [CrossRef]
- Korea Copyright Commossion. Available online: https://www.cros.or.kr (accessed on 22 February 2022).
- Ferreira, T.; Rasband, W. ImageJ user guide. ImageJ Fiji 2012, 1, 155–161. [Google Scholar]
- Pérez, J.M.M.; Pascau, J. Image Processing with ImageJ; Packt Publishing Ltd.: Birmingham, UK, 2013. [Google Scholar]
- UPOV. Available online: https://www.upov.int/edocs/mdocs/upov/en/twa_46/tg_80_7_proj_3.pdf (accessed on 15 March 2021).
- Seo, E.; Kim, K.; Jun, T.-H.; Choi, J.; Kim, S.-H.; Muñoz-Amatriaín, M.; Sun, H.; Ha, B.-K. Population structure and genetic diversity in korean cowpea germplasm based on SNP markers. Plants 2020, 9, 1190. [Google Scholar] [CrossRef]
- Igathinathane, C.; Pordesimo, L.; Columbus, E.; Batchelor, W.; Methuku, S. Shape identification and particles size distribution from basic shape parameters using ImageJ. Comput. Electron. Agric. 2008, 63, 168–182. [Google Scholar] [CrossRef]
- Lamprecht, M.R.; Sabatini, D.M.; Carpenter, A.E. CellProfiler™: Free, versatile software for automated biological image analysis. Biotechniques 2007, 42, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Faroq, A.-T.; Adam, H.; Dos Anjos, A.; Lorieux, M.; Larmande, P.; Ghesquière, A.; Jouannic, S.; Shahbazkia, H.R. P-TRAP: A panicle trait phenotyping tool. BMC Plant Biol. 2013, 13, 122. [Google Scholar]
- Groves, F.E.; Bourland, F.M. Estimating seed surface area of cottonseed. J. Cotton Sci. 2010, 14, 74–81. [Google Scholar]
- Cober, E.; Voldeng, H.; Frégeau-Reid, J. Heritability of seed shape and seed size in soybean. Crop Sci. 1997, 37, 1767–1769. [Google Scholar] [CrossRef]
- Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Bylesjö, M.; Rantalainen, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Trygg, J. OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. J. Chemom. 2006, 20, 341–351. [Google Scholar] [CrossRef]
- Leem, J.-Y. Discrimination model of cultivation area of alismatis rhizoma using a GC-MS-based metabolomics approach. J. Korean Pharm. 2016, 60, 29–35. [Google Scholar] [CrossRef]
- Cui, Z.; Carter, T.E.; Burton, J.W.; Wells, R. Phenotypic diversity of modern chinese and north american soybean cultivars. Crop Sci. 2001, 41, 1954–1967. [Google Scholar] [CrossRef] [Green Version]
- Marega Filho, M.; Deednendstro, D.; Miranda, L.A.; Spinosa, W.A.; Carrão-Panizzi, M.C.; Montalván, R. Relationships among oil content, protein content and seed size in soybeans. Braz. Arch. Biol. Technol. 2001, 44, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Maestri, D.M.; Guzmán, G.A.; Giorda, L.M. Correlation between seed size, protein and oil contents, and fatty acid composition in soybean genotypes. Grasasy Aceites 1998, 49, 450–453. [Google Scholar] [CrossRef] [Green Version]
- Poeta, F.; Borrás, L.; Rotundo, J.L. Variation in seed protein concentration and seed size affects soybean crop growth and development. Crop Sci. 2016, 56, 3196–3208. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Kim, S.; Hong, E. Present status and perspectives of soybean breeding program for high seed quality in Korea. Korea Soybean Dig. 1995, 12, 1–20. [Google Scholar]
- Wang, X.F.; Fu, J.; Meng, F.-G.; Ma, W. Factors influencing seed protein content in soybean and its improving ways. Soybean Sci. 2008, 27, 515–520. [Google Scholar]
- Hoeck, J.A. Molecular Marker Analysis of Seed Size in Soybean; Iowa State University: Ames, IA, USA, 2002. [Google Scholar]
- Gupta, A.; Mahajan, V.; Khati, P.; Srivastva, A. Distinctness in Indian soybean (Glycine max) varieties using DUS characters. Indian J. Agric. Sci. 2010, 80, 1081. [Google Scholar]
- Dhananjaya, P.; Channakeshava, B.; Mallikarjuna, M.; Swamy, M.; Chandramohan, S. Characterization of soybean (Glycine max (L.) Merrill) genotypes on the basis of seed and seedling morphology. BIOINFOLET Q. J. Life Sci. 2012, 9, 465–467. [Google Scholar]
- Song, J.; Liu, Z.; Hong, H.; Ma, Y.; Tian, L.; Li, X.; Li, Y.-H.; Guan, R.; Guo, Y.; Qiu, L.-J. Identification and validation of loci governing seed coat color by combining association mapping and bulk segregation analysis in soybean. PLoS ONE 2016, 11, e0159064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | 100 Weight | Height | Width | Perimeter | Area | AR | Solidity | Circularity |
---|---|---|---|---|---|---|---|---|
Height | 0.712 *** | |||||||
Width | 0.841 *** | 0.495 *** | ||||||
Perimeter | 0.876 *** | 0.899 *** | 0.813 *** | |||||
Area | 0.909 *** | 0.835 *** | 0.884 *** | 0.970 *** | ||||
AR | −0.310 *** | 0.296 *** | −0.655 *** | −0.118 | −0.255 *** | |||
Solidity | 0.440 *** | 0.384 *** | 0.440 *** | 0.385 *** | 0.485 *** | −0.193 *** | ||
Circularity | 0.158 | −0.358 *** | 0.450 *** | −0.073 | 0.103 | −0.850 *** | 0.528 *** | |
Roundness | 0.259 *** | −0.362 *** | 0.618 *** | 0.061 | 0.194 *** | −0.976 *** | 0.145 | 0.815 *** |
Cluster No. | Origin | 100 Weight (g) | Height (mm) | Width (mm) | Perimeter (mm) | Area (mm2) | AR | Solidity | Circularity | Roundness |
---|---|---|---|---|---|---|---|---|---|---|
Cluster 1 (58 accessions) | Mean | 9.59 ± 6.30 a | 6.25 ± 0.77 a | 4.29 ± 0.39 a | 17.71 ± 2.45 a | 20.78 ± 11.25 a | 1.545 ± 0.178 a | 0.981 ± 0.000 a | 0.827 ± 0.004 a | 0.694 ± 0.026 a |
CHN (17) | 9.87 ± 9.51 | 6.91 ± 0.50 | 4.18 ± 0.37 | 18.77 ± 1.30 | 22.47 ± 8.46 | 1.757 ± 0.163 | 0.982 ± 0.001 | 0.798 ± 0.005 | 0.604 ± 0.020 | |
US (25) | 9.71 ± 6.50 | 6.35 ± 0.59 | 4.21 ± 0.55 | 17.79 ± 2.22 | 20.76 ± 12.16 | 1.621 ± 0.196 | 0.981 ± 0.001 | 0.818 ± 0.005 | 0.665 ± 0.027 | |
KOR (16) | 9.10 ± 3.04 | 5.39 ± 0.16 | 4.54 ± 0.13 | 16.47 ± 1.43 | 19.03 ± 7.75 | 1.202 ± 0.005 | 0.981 ± 0.001 | 0.876 ± 0.001 | 0.838 ± 0.003 | |
Cluster 2 (122 accessions) | Mean | 15.66 ± 2.85 b | 7.12 ± 0.33 b | 5.28 ± 0.20 b | 20.79 ± 0.66 b | 29.20 ± 3.87 b | 1.387 ± 0.063 b | 0.983 ± 0.000 b | 0.847 ± 0.001 ab | 0.743 ± 0.011 b |
CHN (42) | 15.42 ± 3.69 | 7.18 ± 0.26 | 5.29 ± 0.23 | 20.90 ± 0.55 | 29.46 ± 4.41 | 1.397 ± 0.066 | 0.984 ± 0.001 | 0.845 ± 0.002 | 0.738 ± 0.011 | |
US (73) | 15.79 ± 2.40 | 7.10 ± 0.37 | 5.29 ± 0.18 | 20.75 ± 0.72 | 29.17 ± 3.42 | 1.385 ± 0.065 | 0.984 ± 0.001 | 0.85 ± 0.002 | 0.745 ± 0.011 | |
KOR (7) | 15.79 ± 2.85 | 6.94 ± 0.37 | 5.21 ± 0.18 | 20.48 ± 0.70 | 27.94 ± 4.44 | 1.354 ± 0.057 | 0.982 ± 0.001 | 0.837 ± 0.002 | 0.758 ± 0.011 | |
Cluster 3 (236 accessions) | Mean | 19.31 ± 2.71 c | 7.52 ± 0.13 c | 5.81 ± 0.06 c | 22.41 ± 0.40 c | 34.06 ± 2.39 bc | 1.311 ± 0.013 bc | 0.983 ± 0.000 bc | 0.851 ± 0.000 b | 0.771 ± 0.003 b |
CHN (107) | 19.14 ± 3.30 | 7.60 ± 0.13 | 5.84 ± 0.07 | 22.57 ± 0.38 | 34.52 ± 2.47 | 1.318 ± 0.014 | 0.984 ± 0.001 | 0.85 ± 0.001 | 0.769 ± 0.004 | |
US (119) | 19.33 ± 2.06 | 7.48 ± 0.12 | 5.79 ± 0.06 | 22.28 ± 0.40 | 33.67 ± 2.03 | 1.313 ± 0.014 | 0.984 ± 0.001 | 0.852 ± 0.001 | 0.771 ± 0.004 | |
KOR (10) | 20.86 ± 1.97 | 7.28 ± 0.04 | 5.94 ± 0.02 | 22.14 ± 0.23 | 33.70 ± 2.10 | 1.234 ± 0.002 | 0.984 ± 0.001 | 0.862 ± 0.001 | 0.814 ± 0.001 | |
Cluster 4 (130 accessions) | Mean | 23.03 ± 4.56 d | 8.01 ± 0.13 d | 6.23 ± 0.06 d | 24.0 ± 0.55 d | 38.86 ± 4.13 c | 1.299 ± 0.008 c | 0.984 ± 0.000 c | 0.847 ± 0.000 b | 0.777 ± 0.002 c |
CHN(81) | 22.48 ± 4.25 | 8.05 ± 0.13 | 6.27 ± 0.07 | 24.11 ± 0.65 | 39.35 ± 4.92 | 1.297 ± 0.007 | 0.985 ± 0.001 | 0.849 ± 0.001 | 0.779 ± 0.003 | |
US (32) | 23.30 ± 3.82 | 7.98 ± 0.12 | 6.11 ± 0.04 | 23.73 ± 0.35 | 37.98 ± 2.13 | 1.322 ± 0.009 | 0.984 ± 0.001 | 0.848 ± 0.001 | 0.764 ± 0.003 | |
KOR (17) | 25.17 ± 1.48 | 7.89 ± 0.11 | 6.26 ± 0.07 | 23.99 ± 0.30 | 38.23 ± 1.35 | 1.268 ± 0.012 | 0.983 ± 0.001 | 0.837 ± 0.002 | 0.797 ± 0.004 | |
Cluster 5 (43 accessions) | Mean | 28.90 ± 12.38 e | 8.83 ± 0.34 e | 6.56 ± 0.11 e | 25.93 ± 1.09 e | 45.05 ± 10.69 c | 1.365 ± 0.018 c | 0.985 ± 0.000 c | 0.842 ± 0.001 b | 0.743 ± 0.005 c |
CHN (17) | 28.20 ± 8.46 | 8.64 ± 0.43 | 6.70 ± 0.13 | 25.88 ± 1.65 | 45.10 ± 14.05 | 1.309 ± 0.019 | 0.985 ± 0.001 | 0.846 ± 0.001 | 0.777 ± 0.006 | |
US (14) | 29.45 ± 11.61 | 9.23 ± 0.27 | 6.36 ± 0.09 | 26.34 ± 0.74 | 45.69 ± 10.95 | 1.477 ± 0.014 | 0.985 ± 0.001 | 0.828 ± 0.001 | 0.686 ± 0.003 | |
KOR (12) | 29.26 ± 8.13 | 8.63 ± 0.07 | 6.60 ± 0.05 | 25.52 ± 0.49 | 44.23 ± 6.17 | 1.317 ± 0.003 | 0.986 ± 0.001 | 0.853 ± 0.001 | 0.765 ± 0.001 | |
Total (589 accessions) | Mean | 19.12 ± 25.99 | 7.52 ± 0.62 | 5.699 ± 0.48 | 22.22 ± 4.89 | 33.67 ± 40.54 | 1.351 ± 0.044 | 0.983 ± 0.000 | 0.846 ± 0.001 | 0.757 ± 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-H.; Jo, J.W.; Wang, X.; Shin, M.-J.; Hur, O.S.; Ha, B.-K.; Hahn, B.-S. Diversity Characterization of Soybean Germplasm Seeds Using Image Analysis. Agronomy 2022, 12, 1004. https://doi.org/10.3390/agronomy12051004
Kim S-H, Jo JW, Wang X, Shin M-J, Hur OS, Ha B-K, Hahn B-S. Diversity Characterization of Soybean Germplasm Seeds Using Image Analysis. Agronomy. 2022; 12(5):1004. https://doi.org/10.3390/agronomy12051004
Chicago/Turabian StyleKim, Seong-Hoon, Jeong Won Jo, Xiaohan Wang, Myoung-Jae Shin, On Sook Hur, Bo-Keun Ha, and Bum-Soo Hahn. 2022. "Diversity Characterization of Soybean Germplasm Seeds Using Image Analysis" Agronomy 12, no. 5: 1004. https://doi.org/10.3390/agronomy12051004
APA StyleKim, S. -H., Jo, J. W., Wang, X., Shin, M. -J., Hur, O. S., Ha, B. -K., & Hahn, B. -S. (2022). Diversity Characterization of Soybean Germplasm Seeds Using Image Analysis. Agronomy, 12(5), 1004. https://doi.org/10.3390/agronomy12051004