Rerouting Artificial Light for Efficient Crops Production: A Review of Lighting Strategy in PFALs
Abstract
:1. Introduction
2. Alternate Lighting
3. Intermittent Lighting
4. Continuous Lighting
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kozai, T. Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. Proc. Jpn. Acad. 2013, 89, 447–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozai, T.; Niu, G.H. Plant factory as a resource-efficient closed plant production system. In Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Kozai, T., Niu, G.H., Takagaki, M., Eds.; Academic Press Ltd-Elsevier Science Ltd.: London, UK, 2016; pp. 69–90. [Google Scholar]
- Kozai, T.; Kubota, C.; Jeong, B.R. Environmental control for the large-scale production of plants through in vitro techniques. Plant Cell Tissue Organ. 1997, 51, 49–56. [Google Scholar] [CrossRef]
- Morgan, L. Plant factories—Closed plant production systems. In Hydroponics and Protected Cultivation: A practical Guide; CABI: Wallingford, UK, 2021; pp. 229–245. [Google Scholar]
- Kozai, T.; Niu, G.H.; Takagaki, M. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Academic Press Ltd-Elsevier Science Ltd.: London, UK, 2016; pp. 3–5. [Google Scholar]
- Shinohara, Y. Plant factory as a new food resource production system. Kagaku Seibutsu 2015, 53, 402–406. [Google Scholar] [CrossRef]
- Yeh, N.; Ding, T.J.; Yeh, P. Light-emitting diodes light qualities and their corresponding scientific applications. Renew. Sust. Energ. Rev. 2015, 51, 55–61. [Google Scholar] [CrossRef]
- Rehman, M.; Ullah, S.; Bao, Y.N.; Wang, B.; Peng, D.X.; Liu, L.J. Light-emitting diodes: Whether an efficient source of light for indoor plants? Environ. Sci. Pollut. Res. 2017, 24, 24743–24752. [Google Scholar] [CrossRef] [PubMed]
- Bula, R.J.; Morrow, R.C.; Tibbitts, T.W.; Barta, D.J.; Ignatius, R.W.; Martin, T.S. Light-emitting diodes as a radiation source for plants. HortScience 1991, 26, 203–205. [Google Scholar] [CrossRef] [Green Version]
- He, D.X.; Kozai, T.; Niu, G.H.; Zhang, X. Light-emitting diodes for horticulture. In Solid State Lighting Technology and Application Series; Guo, Q.Z., Wu, L., Eds.; Springer: Cham, Switzerland, 2019; pp. 513–547. [Google Scholar]
- Xu, Y.L.; Tan, L.; Guo, L.; Yang, G.L.; Li, Q.; Lai, F.; He, K.Z.; Jin, Y.L.; Du, A.; Fang, Y.; et al. Increasing starch productivity of Spirodela polyrhiza by precisely control the spectral composition and nutrients status. Ind. Crops Prod. 2019, 134, 284–291. [Google Scholar] [CrossRef]
- Sirisuk, P.; Ra, C.H.; Jeong, G.T.; Kim, S.K. Effects of wavelength mixing ratio and photoperiod on microalgal biomass and lipid production in a two-phase culture system using LED illumination. Bioresour. Technol. 2018, 253, 175–181. [Google Scholar] [CrossRef]
- Wang, J.; Lu, W.; Tong, Y.X.; Yang, Q.C. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front. Plant Sci. 2016, 7, 00250. [Google Scholar] [CrossRef] [Green Version]
- Fang, W. Total performance evaluation in plant factory with artificial lighting. In Plant Factory Using Artificial Light: Adaption to Environmental Disruption and Clues to Agricultural Innovation; Anpo, M., Fukuda, H., Wada, T., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2019; pp. 155–165. [Google Scholar]
- Bian, Z.H.; Cheng, R.F.; Yang, Q.C.; Wang, J.; Lu, C.G. Continuous light from red, blue, and green light-emitting diodes reduces nitrate content and enhances phytochemical concentrations and antioxidant capacity in lettuce. J. Am. Soc. Hortic. Sci. 2016, 141, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Folta, K.M.; Maruhnich, S.A. Green light: A signal to slow down or stop. J. Exp. Bot. 2007, 58, 3099–3111. [Google Scholar] [CrossRef]
- Demotes-Mainard, S.; Péron, T.; Corot, A.; Bertheloot, J.; Gourrierec, J.L.; Pelleschi-Travier, S.; Crespel, L.; Morel, P.; Huché-Thélier, L.; Boumaza, R.; et al. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [Google Scholar] [CrossRef]
- Li, K.; Li, Z.P.; Yang, Q.C. Improving light distribution by zoom lens for electricity savings in a plant factory with light-emitting diodes. Front. Plant Sci. 2016, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Yang, Q.C.; Tong, Y.X.; Cheng, R.F. Using movable light-emitting diodes for electricity savings in a plant factory growing lettuce. HortTechnology 2014, 24, 546–553. [Google Scholar] [CrossRef] [Green Version]
- Jishi, T.; Fujiwara, K. Time-varying photosynthetic photon flux density and relative spectral photon flux density distribution to improve plant growth and morphology in plant factories with artificial lighting. Hortic. J. 2021, 90, 147–153. [Google Scholar] [CrossRef]
- Pattison, P.M.; Tsao, J.Y.; Brainard, G.C. LEDs for photons, physiology and food. Nature 2018, 563, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Virsile, A.; Miliauskiene, J.; Haimi, P.J.; Lauzike, K.; Samuoliene, G. The comparison of constant and dynamic red and blue light irradiation effects on red and green leaf lettuce. Agronomy 2020, 10, 1802. [Google Scholar] [CrossRef]
- Meng, Q.S.; Runkle, E.S. Growth responses of red-leaf lettuce to temporal spectral changes. Front. Plant Sci. 2020, 11, 571788. [Google Scholar] [CrossRef] [PubMed]
- Son, K.H.; Lee, J.H.; Oh, Y.; Kim, D.; Oh, M.M.; In, B.C. Growth and bioactive compound synthesis in cultivated lettuce subject to light-quality changes. Hortscience 2017, 52, 584–591. [Google Scholar] [CrossRef]
- Chen, X.L.; Yang, Q.C. Effects of intermittent light exposure with red and blue light emitting diodes on growth and carbohydrate accumulation of lettuce. Sci. Hortic. 2018, 234, 220–226. [Google Scholar] [CrossRef]
- Shimokawa, A.; Tonooka, Y.; Matsumoto, M.; Ara, H.; Suzuki, H.; Yamauchi, N.; Shigyo, M. Effect of alternating red and blue light irradiation generated by light emitting diodes on the growth of leaf lettuce. BioRxiv 2014. [Google Scholar] [CrossRef]
- Zha, L.Y.; Zhang, Y.B.; Liu, W.K. Dynamic responses of ascorbate pool and metabolism in lettuce to long-term continuous light provided by red and blue LEDs. Environ. Exp. Bot. 2019, 163, 15–23. [Google Scholar] [CrossRef]
- Liang, D.D.; Yousef, A.F.; Wei, X.X.; Ali, M.M.; Yu, W.J.; Yang, L.Q.; Oelmueller, R.; Chen, F.X. Increasing the performance of Passion fruit (Passiflora edulis) seedlings by LED light regimes. Sci. Rep. 2021, 11, 20967. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Pantaleo, M.A.; Santamaria, P. Applications and development of LEDs as supplementary lighting for tomato at different latitudes. Agronomy 2021, 11, 835. [Google Scholar] [CrossRef]
- Chen, X.L.; Yang, Q.C.; Song, W.P.; Wang, L.C.; Guo, W.Z.; Xue, X.Z. Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. Sci. Hortic. 2017, 223, 44–52. [Google Scholar] [CrossRef]
- Jishi, T.; Kimura, K.; Matsuda, R.; Fujiwara, K. Effects of temporally shifted irradiation of blue and red LED light on cos lettuce growth and morphology. Sci. Hortic. 2016, 198, 227–232. [Google Scholar] [CrossRef]
- Jishi, T.; Matsuda, R.; Fujiwara, K. Blue light monochromatic irradiation for 12 hours in lighting pattern with combinations of blue and red light elongates young cos lettuce leaves and promotes growth under high daily light integral. Hortscience 2021, 56, 940–945. [Google Scholar] [CrossRef]
- Kuno, Y.; Shimizu, H.; Nakashima, H.; Miyasaka, J.; Ohdoi, K. Effects of irradiation patterns and light quality of red and blue light-emitting diodes on growth of leaf lettuce (Lactuca sativa L.”Greenwave”). Environ. Control Biol. 2017, 55, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.L.; Li, Y.L.; Wang, L.C.; Guo, W.Z. Red and blue wavelengths affect the morphology, energy use efficiency and nutritional content of lettuce (Lactuca sativa L.). Sci. Rep. 2021, 11, 8374. [Google Scholar] [CrossRef]
- Hogewoning, S.W.; Trouwborst, G.; Maljaars, H.; Poorter Ieperen, V.W.; Harbinson, J. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot. 2010, 61, 3107–3117. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.M.; Noga, G.; Hunsche, M. Alternating high and low intensity of blue light affects PSII photochemistry and raises the contents of carotenoids and anthocyanins in pepper leaves. Plant Growth Regul. 2016, 79, 275–285. [Google Scholar] [CrossRef]
- Li, X.P.; Huff, J.; Crunkleton, D.W.; Johannes, T.W. LED alternating between blue and red-orange light improved the biomass and lipid productivity of Chlamydomonas reinhardtii. J. Biotechnol. 2021, 341, 96–102. [Google Scholar] [CrossRef]
- Velez-Ramirez, A.I.; Carreno-Quintero, N.; Vreugdenhil, D.; Millenaar, F.F.; Van Ieperen, W. Sucrose and starch content negatively correlates with PSII maximum quantum efficiency in tomato (Solanum lycopersicum) exposed to abnormal light/dark cycles and continuous light. Plant Cell Physiol. 2017, 58, 1339–1349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanoue, J.; Zheng, J.; Little, C.; Thibodeau, A.; Hao, X. Alternating red and blue light-emitting diodes allows for injury-free tomato production with continuous lighting. Front. Plant Sci. 2019, 10, 1114. [Google Scholar] [CrossRef] [Green Version]
- Ohtake, N.; Ishikura, M.; Suzuki, H.; Yamori, W.; Goto, E. Continuous irradiation with alternating red and blue light enhances plant growth while keeping nutritional quality in lettuce. Hortscience 2018, 53, 1804–1809. [Google Scholar] [CrossRef] [Green Version]
- Takasu, S.; Shimizu, H.; Nakashima, H.; Miyasaka, J.; Ohdoi, K. Photosynthesis and morphology of leaf lettuce (Lactuca sativa L. cv. Greenwave) grown under alternating irradiation of red and blue light. Environ. Control Biol. 2019, 57, 93–98. [Google Scholar] [CrossRef]
- Landi, M.; Zivcak, M.; Sytar, O.; Brestic, M.; Allakhverdiev, S.I. Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. Biochim. Biophys. Acta-Bioenerg. 2019, 1861, 148131. [Google Scholar] [CrossRef]
- Casal, J.J. Phytochromes, cryptochromes, phototropin: Photoreceptor interactions in plants. Photochem. Photobiol. 2000, 71, 1–11. [Google Scholar] [CrossRef]
- Huang, J.; Xu, Y.L.; Duan, F.M.; Du, X.; Yang, Q.C.; Zheng, Y.J. Improvement of the growth and nutritional quality of two-leaf-color pak choi by supplemental alternating red and blue light. Hortscience 2021, 56, 118–125. [Google Scholar] [CrossRef]
- Belbin, F.E. Plant circadian rhythms and vertical agriculture. In Plant Factory Using Artificial Light: Adapting to Environmental Distruption and Clues to Agricultural Innovation; Anpo, M., Fukuda, H., Wada, T., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2019; pp. 79–88. [Google Scholar]
- Dong, C.; Shao, L.Z.; Liu, G.H.; Wang, M.J.; Liu, H.; Xie, B.Z.; Li, B.W.; Fu, Y.M.; Liu, H. Photosynthetic characteristics, antioxidant capacity and biomass yield of wheat exposed to intermittent light irradiation with millisecond-scale periods. J. Plant Physiol. 2015, 184, 28–36. [Google Scholar] [CrossRef]
- Sivakumar, G.; Heo, J.W.; Kozai, T.; Paek, K.Y. Effect of continuous or intermittent radiation on sweet potato plantlets in vitro. J. Hortic. Sci. Biotechnol. 2006, 81, 546–548. [Google Scholar] [CrossRef]
- Avgoustaki, D.D.; Bartzanas, T.; Xydis, G. Minimizing the energy footprint of indoor food production while maintaining a high growth rate: Introducing disruptive cultivation protocols. Food Control 2021, 130, 108290. [Google Scholar] [CrossRef]
- Jao, R.C.; Fang, W. Effects of frequency and duty ratio on the growth of potato plantlets in vitro using light-emitting diodes. Hortscience 2004, 39, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Son, K.H.; Lee, S.R.; Oh, M.M. Comparison of lettuce growth under continuous and pulsed irradiation using light-emitting diodes. Hortic. Sci. Technol. 2018, 36, 542–551. [Google Scholar] [CrossRef] [Green Version]
- Vaštakaitė, V.; Viršilė, A.; Brazaitytė, A.; Samuolienė, G.; Jankauskienė, J.; Novičkovas, A.; Duchovskis, P. Pulsed light-emitting diodes for a higher phytochemical level in microgreens. J. Agric. Food Chem. 2017, 65, 6529–6534. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.S.; He, D.X.; He, J.; Niu, G.H.; Ji, F. Effects of short light/dark cycles on photosynthetic pathway switching and growth of medicinal Dendrobium officinale in aeroponic cultivation. Int. J. Agric. Biol. Eng. 2019, 12, 38–43. [Google Scholar] [CrossRef]
- Olvera-González, E.; Alaniz-Lumbreras, D.; Ivanov-Tsonchev, R.; Villa-Hernández, J.; Lara-Herrera, A. Chlorophyll fluorescence emission of tomato plants as a response to pulsed light-based LEDs. Plant Growth Regul. 2013, 69, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.S.; He, D.X.; He, J.; Niu, G.H.; Gao, R.F. Effect of light/dark cycle on photosynthetic pathway switching and CO2 absorption in two dendrobium species. Front. Plant Sci. 2019, 10, 659–668. [Google Scholar] [CrossRef]
- Chihiro, U.; Hiroshi, S.; Hiroshi, N.; Juro, M.; Katsuaki, O. Optimization of light-dark cycles of Lactuca sativa L. in plant factory. Environ. Control Biol. 2017, 55, 85–91. [Google Scholar]
- Macneill, G.J.; Sahar, M.; Minow, M.; Patterson, J.A.; Tetlow, I.J.; Emes, M.J. Starch as a source, starch as a sink: The bifunctional role of starch in carbon allocation. J. Exp. Bot. 2017, 68, 4433–4453. [Google Scholar] [CrossRef] [PubMed]
- Sulpice, R.; Pyla, E.T.; Ishihara, H.; Trenkamp, S.; Steinfath, M.; Witucka-Wallc, H.; Gibona, Y.; Usadela, B.; Poreea, F.; Piquesa, M.C.; et al. Starch as a major integrator in the regulation of plant growth. Proc. Natl. Acad. Sci. USA 2009, 106, 10348–10353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, G.; Alison, M.S. Starch and the clock: The dark side of plant productivity. Trends Plant Sci. 2011, 16, 169–175. [Google Scholar]
- Sulpice, R.; Flis, A.; Ivakov, A.A.; Apelt, F.; Krohn, N.; Encke, B.; Abel, C. Arabidopsis coordinates the diurnal regulation of carbon allocation and growth across a wide range of photoperiods. Mol. Plant. 2014, 7, 137–155. [Google Scholar] [CrossRef]
- Kölling, K.; Thalmann, M.; Müller, A.; Jenny, C.; Zeeman, S.C. Carbon partitioning in Arabidopsis thaliana is a dynamic process controlled by the plants metabolic status and its circadian clock. Plant. Cell Environ. 2015, 38, 1965–1979. [Google Scholar] [CrossRef] [Green Version]
- Sharkey, T.D. Understanding carbon partitioning and its role in determining plant growth. Plant. Cell Environ. 2015, 38, 1963–1964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Slabas, A.R.; Chivasa, S. Proteomic analysis of dark response in Arabidopsis cell suspension cultures. J. Plant Physiol. 2012, 169, 1690–1697. [Google Scholar] [CrossRef] [PubMed]
- Jishi, T.; Matsuda, R.; Fujiwara, K. A kinetic model for estimating net photosynthetic rates of cos lettuce leaves under pulsed light. Photosyn. Res. 2015, 124, 107–116. [Google Scholar] [CrossRef]
- Sarvikas, P.; Hakala-Yatkin, M.; Dönmez, S.; Tyystjärvi, E. Short flashes and continuous light have similar photoinhibitory efficiency in intact leaves. J. Exp. Bot. 2010, 61, 4239–4247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.K.; Zha, L.Y.; Zhang, Y.B. Growth and nutrient element content of hydroponic lettuce are modified by LED continuous lighting of different intensities and spectral qualities. Agronomy 2020, 10, 1678. [Google Scholar] [CrossRef]
- Velez-Ramirez, A.I.; Ieperen, W.V.; Vreugdenhil, D.; Millenaar, F.F. Plants under continuous light. Trends Plant Sci. 2011, 16, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Sysoeva, M.; Markovskaya, E.; Shibaeva, T. Plants under continuous light: A review. Plant Stress 2010, 4, 5–17. [Google Scholar]
- Mdp, A.; Hh, A.; Swp, A.; Mc, A.; Hl, A.; Cca, B. Leaf chlorosis, epinasty, carbohydrate contents and growth of tomato show different responses to the red/blue wavelength ratio under continuous light. Plant Physiol. Biochem. 2019, 141, 477–486. [Google Scholar]
- Zha, L.Y.; Liu, W.K.; Zhang, Y.B.; Zhou, C.B.; Shao, M.J. Morphological and physiological stress responses of lettuce to different intensities of continuous light. Front. Plant Sci. 2019, 10, 1440. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Zha, L.Y.; Liu, W.K.; Zhou, C.B.; Yang, Q.C. LED light quality of continuous light before harvest affects growth and AsA metabolism of hydroponic lettuce grown under increasing doses of nitrogen. Plants 2021, 10, 176. [Google Scholar] [CrossRef]
- Zhou, W.L.; Liu, W.K.; Yang, Q.C. Quality changes in hydroponic lettuce grown under pre-harvest short-duration continuous light of different intensities. J. Hortic. Sci. Biotechnol. 2012, 87, 429–434. [Google Scholar] [CrossRef]
- Bian, Z.H.; Cheng, R.F.; Wang, Y.; Yang, Q.C.; Lu, C.G. Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce (Lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes. Environ. Exp. Bot. 2018, 153, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Bian, Z.H.; Yang, Q.C.; Li, T.; Cheng, R.F.; Barnett, Y.; Liu, C.G. Study of the beneficial effects of green light on lettuce grown under short-term continuous red and blue light-emitting diodes. Physiol. Plant. 2018, 164, 226–240. [Google Scholar] [CrossRef] [Green Version]
- Plevin, D.; Galletly, C. The neuropsychiatric effects of vitamin C deficiency: A systematic review. BMC Psychiatry 2020, 20, 315–323. [Google Scholar] [CrossRef]
- Schlueter, A.K.; Johnston, C.S. Vitamin C: Overview and update. J. Evid. Based Complement. Altern. Med. 2011, 16, 49–57. [Google Scholar] [CrossRef]
- Wu, M.C.; Hou, C.Y.; Jiang, C.M.; Wang, Y.T.; Wang, C.Y.; Chen, H.H.; Chang, H.M. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem. 2007, 101, 1753–1758. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Xu, Y.; Wang, Y.; Yang, Q.; Li, Q. Rerouting Artificial Light for Efficient Crops Production: A Review of Lighting Strategy in PFALs. Agronomy 2022, 12, 1021. https://doi.org/10.3390/agronomy12051021
Liu X, Xu Y, Wang Y, Yang Q, Li Q. Rerouting Artificial Light for Efficient Crops Production: A Review of Lighting Strategy in PFALs. Agronomy. 2022; 12(5):1021. https://doi.org/10.3390/agronomy12051021
Chicago/Turabian StyleLiu, Xinying, Yaliang Xu, Yu Wang, Qichang Yang, and Qingming Li. 2022. "Rerouting Artificial Light for Efficient Crops Production: A Review of Lighting Strategy in PFALs" Agronomy 12, no. 5: 1021. https://doi.org/10.3390/agronomy12051021
APA StyleLiu, X., Xu, Y., Wang, Y., Yang, Q., & Li, Q. (2022). Rerouting Artificial Light for Efficient Crops Production: A Review of Lighting Strategy in PFALs. Agronomy, 12(5), 1021. https://doi.org/10.3390/agronomy12051021