Assessment of Economic Efficiency of Water Use through a Household Farmer Survey in North China
Abstract
:1. Introduction
- (1)
- Clarify the input and output values and actual water consumption in the agricultural production process of major crops based on survey data.
- (2)
- Assess the EEWU values of major crops to provide economic indicators for agricultural water management.
- (3)
- Analyse the impact of annual and monthly price changes on EEWU.
2. Methods and Data Sources
2.1. Farmer Household Survey
2.2. Agricultural Water Consumption
2.3. Water Use Efficiency
2.4. Economic Efficiency of Water Use
2.5. The Determination of Hydrologic Years
3. Results
3.1. Agricultural Water Consumption of Different Crops
3.1.1. Irrigation Water
3.1.2. Effective Precipitation
3.1.3. Total Water
3.2. WUE of Different Crops
3.3. Economic Input of Different Crops
3.4. Economic Effciency of Water Use under Net Profit and Gross Profit in 2019
3.5. Effects of Crop Prices on Economic Effciency of Water Use
3.5.1. Monthly Changes in Crop Prices
3.5.2. Annual Changes in Crop Prices
4. Discussion
4.1. Accurate Estimation of the Irrigation Water Use and Economic Output of Different Crops Is Critical for EEWU Assessment
4.2. An Economic Lever for Agricultural Water Management
4.3. Economy Factors Should Be Taken into Account in Crop Structure Adjustment
4.4. Relationship between Water Use Efficiency, Economic Efficiency of Water Use, and Application Scenarios
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Crop Species | Crop Economic Input and Output | |
---|---|---|
Crop area: hm2 | Seed input: ¥/ hm2 | Seed variety: |
Sowing date: | Harvest Date: | |
Land preparation: | How to prepare Land: | Cost: ¥/ hm2 |
Sowing method: | Own/hire machinery | Cost: ¥/ hm2 |
Harvest method: | Own/hire machinery | Cost: ¥/ hm2 |
Irrigation method: | Condition of irrigation machine Wells: | Cost: ¥/ hm2 |
Fertilizing method of base fertilizer: | (Name of organic fertilizer/fertilizer/amount/area of a piece of land and amount/unit price) | Cost: ¥/ hm2 |
Fertilizing method of other fertilizer: | (Name/amount/Unit price) | Cost: ¥/ hm2 |
Pesticide usage: | (Total number of times/growth period or time, month) | Cost: ¥/ hm2 |
Labor input: | Name of labor project/Number of people required/time invested/remuneration | |
Output: kg/hm2 | Keeping: Price: | |
Others (greenhouse fixed assets input, etc.) | ||
References
- Yang, Y.; Watanabe, M.; Zhang, X.; Zhang, J.; Wang, Q.; Hayashi, S. Optimizing irrigation management for wheat to reduce groundwater depletion in the piedmont region of the Taihang Mountains in the North China Plain. Agric. Water Manag. 2006, 82, 25–44. [Google Scholar] [CrossRef]
- Cao, X.; Wu, M.; Guo, X.; Zheng, Y.; Gong, Y.; Wu, N.; Wang, W. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Sci. Total Environ. 2017, 609, 587–597. [Google Scholar]
- Evans, R.G.; Sadler, E.J. Methods and technologies to improve efficiency of water use. Water Resour. Res. 2008, 44, 767–768. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Liu, Y.; Yao, C.; Song, W.; Xu, X.; Zhang, M.; Zhou, X.; Gao, Y.; Wang, Z.; et al. Effects of micro-sprinkling with different irrigation amount on grain yield and water use efficiency of winter wheat in the North China Plain. Agric. Water Manag. 2019, 224, 105736. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Gong, S.; Xu, D.; Juan, S.; Zhao, Y. Evapotranspiration, crop coefficient and yield for drip-irrigated winter wheat with straw mulching in North China Plain. Field Crops Res. 2018, 217, 218–228. [Google Scholar] [CrossRef]
- Yan, Z.; Gao, C.; Ren, Y.; Zong, R.; Ma, Y.; Li, Q. Effects of pre-sowing irrigation and straw mulching on the grain yield and water use efficiency of summer maize in the North China Plain. Agric. Water Manag. 2017, 186, 21–28. [Google Scholar] [CrossRef]
- Zhao, J.; Han, T.; Wang, C.; Jia, H.; Worqlul, A.W.; Norelli, N.; Zeng, Z.; Chu, Q. Optimizing irrigation strategies to synchronously improve the yield and water productivity of winter wheat under interannual precipitation variability in the North China Plain. Agric. Water Manag. 2020, 240, 106298. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Sun, H.; Shao, L.; Wang, Y. Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades. Agric. Water Manag. 2011, 98, 1097–1104. [Google Scholar] [CrossRef]
- Cai, X.; Rosegrant, M.W.; Ringler, C. Physical and economic efficiency of water use in the river basin: Implications for efficient water management. Water Resour. Res. 2003, 39, 1013. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, C.; Gong, H.; Yeh, P.J.F.; Shen, Y.; Guo, Y.; Huang, Z.; Li, X. Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China. Geophys. Res. Lett. 2017, 44, 190–199. [Google Scholar] [CrossRef]
- van Oort, P.A.J.; Wang, G.; Vos, J.; Meinke, H.; Li, B.G.; Huang, J.K.; van der Werf, W. Towards groundwater neutral cropping systems in the Alluvial Fans of the North China Plain. Agric. Water Manag. 2016, 165, 131–140. [Google Scholar] [CrossRef]
- Xiao, D.; Shen, Y.; Qi, Y.; Moiwo, J.P.; Min, L.; Zhang, Y.; Guo, Y.; Pei, H. Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain Region. Agric. Syst. 2017, 153, 109–117. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Liu, D.L.; Nordblom, T.; Wu, B.; Yan, N. Regional Water Balance Based on Remotely Sensed Evapotranspiration and Irrigation: An Assessment of the Haihe Plain, China. Remote Sens. 2014, 6, 2514–2533. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Sun, Q.; Chen, X.; Cui, Z.; Yue, S.; Zhang, F.; Römheld, V. Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agric. Ecosyst. Environ. 2012, 146, 93–102. [Google Scholar] [CrossRef]
- Ren, D.D.; Yang, Y.H.; Hu, Y.K.; Yang, Y.M. Evaluating the potentials of cropping adjustment for groundwater conservation and food production in the piedmont region of the North China Plain. Stoch. Environ. Res. Risk Assess. 2021, 35, 117–128. [Google Scholar] [CrossRef]
- D’Odorico, P.; Chiarelli, D.D.; Rosa, L.; Bini, A.; Zilberman, D.; Rulli, M.C. The global value of water in agriculture. Proc. Natl. Acad. Sci. USA 2020, 117, 21985–21993. [Google Scholar] [CrossRef]
- Franois, D.; Youssef, Z. Spatio-Temporal Design for a Water Quality Monitoring Network Maximizing the Economic Value of Information to optimize the detection of accidental pollution. Water Resour. Econ. 2020, 32, 100156. [Google Scholar]
- Berbel, J.; Mesa-Jurado, M.A.; Piston, J.M. Value of Irrigation Water in Guadalquivir Basin (Spain) by Residual Value Method. Water Resour. Manag. 2011, 25, 1565–1579. [Google Scholar] [CrossRef]
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving agricultural water productivity: Between optimism and caution. Agric. Water Manag. 2010, 97, 528–535. [Google Scholar] [CrossRef]
- Bierkens, M.; Reinhard, S.; Bruijn, J.A.; Veninga, W.; Wada, Y. The Shadow Price of Irrigation Water in Major Groundwater depleting Countries. Water Resour. Res. 2019, 55, 4266–4287. [Google Scholar] [CrossRef] [Green Version]
- Ziolkowska, J.R. Shadow price of water for irrigation—A case of the High Plains. Agric. Water Manag. 2015, 153, 20–31. [Google Scholar] [CrossRef]
- Bazrafshan, O.; Zamani, H.; Ramezani Etedali, H.; Gerkaninezhad Moshizi, Z.; Shamili, M.; Ismaelpour, Y.; Gholami, H. Improving water management in date palms using economic value of water footprint and virtual water trade concepts in Iran. Agric. Water Manag. 2020, 229, 105941. [Google Scholar] [CrossRef]
- Chouchane, H.; Hoekstra, A.Y.; Krol, M.S.; Mekonnen, M.M. The water footprint of Tunisia from an economic perspective. Ecol. Indic. 2015, 52, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Qin, X.; Zang, H.; Chen, C.; Zhang, Y.; Wang, Z. Value of groundwater used for producing extra grain in North China Plain. Field Crops Res. 2017, 210, 47–51. [Google Scholar] [CrossRef]
- Döll, P.; Siebert, S. Global modeling of irrigation water requirements. Water Resour. Res. 2002, 38, 8-1–8-10. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Moiwo, J.P.; Hu, Y. Estimation of irrigation requirement for sustainable water resources reallocation in North China. Agric. Water Manag. 2010, 97, 1711–1721. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Qin, W.L.; Chen, S.Y.; Shao, L.W.; Sun, H.Y. Responses of yield and WUE of winter wheat to water stress during the past three decades-A case study in the North China Plain. Agric. Water Manag. 2017, 179, 47–54. [Google Scholar] [CrossRef]
- Duan, A. Connotation of water use efficiency and its application in water-saving practice. J. Irrigat. Drain. 2005, 24, 8–11. [Google Scholar]
- Tan, M.; Zheng, L. Increase in economic efficiency of water use caused by crop structure adjustment in arid areas. J. Environ. Manag. 2019, 230, 386–391. [Google Scholar] [CrossRef]
Cultivation Pattern | Crop | Number of Surveyed Farmers | Area of Involved Cropland (ha) |
---|---|---|---|
Open-field | Garlic | 32 | 7.3 |
Wheat | 84 | 22.4 | |
Apple | 20 | 5.3 | |
Onion | 28 | 4.7 | |
Chili | 21 | 8.0 | |
Watermelon | 20 | 4.0 | |
Peanut | 21 | 4.0 | |
Maize | 80 | 20.0 | |
Soybean | 20 | 2.0 | |
Temporary greenhouse | Pepper | 25 | 1.3 |
Cabbage | 25 | 1.3 | |
Chinese cabbage | 32 | 4.7 | |
Cauliflower | 22 | 2.7 |
Irrigation Times (Frequency) | |||
---|---|---|---|
Garlic | 5 (32%) | 6 (68%) | |
Wheat | 3 (5%) | 4 (86%) | 5 (9%) |
Onion | 5 (28%) | 6 (65%) | 7 (7%) |
Apple | 6 (10%) | 7 (68%) | 8 (22%) |
Pepper | 3 (2%) | 4 (13%) | 5 (85%) |
Cabbage | 3 (86%) | 4 (14%) | |
Chili | 3 (52%) | 4 (48%) | |
Cauliflower | 3 (9%) | 4 (88%) | 5 (3%) |
Watermelon | 4 (88%) | 5 (12%) | |
Peanut | 1 (32%) | 2 (68%) | |
Maize | 0 (7%) | 1 (93%) | |
Soybean | 1 (6%) | 2 (68%) | 3 (26%) |
Chinese cabbage | 3 (78%) | 4 (22%) |
Crops | Cultivation Period | Effective Precipitation (m3/ha) | |||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Nov. | Dec. | ||||||||||||||||||||||||||
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | ||
Apple | 4230 | ||||||||||||||||||||||||||||||||||||
Chili | 3514 | ||||||||||||||||||||||||||||||||||||
Soybean | 3386 | ||||||||||||||||||||||||||||||||||||
Maize | 3193 | ||||||||||||||||||||||||||||||||||||
Peanut | 2797 | ||||||||||||||||||||||||||||||||||||
Watermelon | 1889 | ||||||||||||||||||||||||||||||||||||
Wheat | 983 | ||||||||||||||||||||||||||||||||||||
Garlic | 981 | ||||||||||||||||||||||||||||||||||||
Onion | 790 | ||||||||||||||||||||||||||||||||||||
Cauliflower | 723 | ||||||||||||||||||||||||||||||||||||
Pepper | 720 | ||||||||||||||||||||||||||||||||||||
Cabbage | 714 | ||||||||||||||||||||||||||||||||||||
Chinses Cabbage | 711 |
Year | ||||||
---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
Apples | 55.47 ± 3.83 | 46.31 ± 3.2 | 46.76 ± 3.23 | 42.7 ± 2.95 | 56.72 ± 3.92 | 55.59 ± 3.84 |
Cauliflower | 44.56 ± 3.13 | 29.14 ± 2.05 | 33.1 ± 2.33 | 36.68 ± 2.58 | 44.14 ± 3.1 | 44.34 ± 3.12 |
Watermelon | 42.66 ± 3.85 | 63.99 ± 5.77 | 23.11 ± 2.09 | 23.46 ± 2.12 | 30.57 ± 2.76 | 41.59 ± 3.75 |
Pepper | 30.78 ± 2.31 | 32.14 ± 2.41 | 24.47 ± 1.83 | 25.32 ± 1.9 | 30.6 ± 2.29 | 26.91 ± 2.02 |
Chili | 26.24 ± 2.75 | 19.02 ± 2 | 27.33 ± 2.87 | 20.77 ± 2.18 | 25.15 ± 2.64 | 27.92 ± 2.93 |
Chinese cabbage | 27.02 ± 1.62 | 20.81 ± 1.25 | 21.88 ± 1.31 | 22.92 ± 1.37 | 18.1 ± 1.09 | 34.58 ± 2.07 |
Cabbage | 21.44 ± 1.44 | 23.69 ± 1.59 | 18.23 ± 1.22 | 21.89 ± 1.47 | 33.16 ± 2.23 | 22.78 ± 1.53 |
Garlic | 32.28 ± 1.93 | 8.47 ± 0.51 | 39.69 ± 2.38 | 16.99 ± 1.02 | 5.72 ± 0.34 | 22.54 ± 1.35 |
Onion | 28.93 ± 2.16 | 21.9 ± 1.63 | 16.53 ± 1.23 | 9.5 ± 0.71 | 20.66 ± 1.54 | 21.97 ± 1.64 |
Peanut | 18.71 ± 1.2 | 14.48 ± 0.93 | 18.31 ± 1.18 | 19.66 ± 1.26 | 19.2 ± 1.23 | 22.82 ± 1.46 |
Soybean | 17.63 ± 1.49 | 16.87 ± 1.42 | 15.79 ± 1.33 | 18.38 ± 1.55 | 19.15 ± 1.61 | 14.73 ± 1.24 |
Maize | 16.94 ± 1.37 | 15.39 ± 1.25 | 12.71 ± 1.03 | 13.33 ± 1.08 | 14.4 ± 1.17 | 13.04 ± 1.06 |
Wheat | 5.16 ± 0.53 | 5.09 ± 0.53 | 4.9 ± 0.51 | 5.22 ± 0.54 | 5.09 ± 0.53 | 4.75 ± 0.49 |
Year | ||||||
---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
Cauliflower | 30.98 ± 2.18 | 20.26 ± 1.42 | 23.02 ± 1.62 | 25.5 ± 1.79 | 30.69 ± 2.16 | 30.83 ± 2.17 |
Pepper | 24.3 ± 1.82 | 25.38 ± 1.9 | 19.32 ± 1.45 | 19.99 ± 1.5 | 24.16 ± 1.81 | 21.24 ± 1.59 |
Apples | 24.31 ± 1.68 | 20.3 ± 1.4 | 20.49 ± 1.41 | 18.71 ± 1.29 | 24.86 ± 1.72 | 24.36 ± 1.68 |
Chinese cabbage | 20.53 ± 1.23 | 15.81 ± 0.95 | 16.62 ± 1 | 17.42 ± 1.04 | 13.76 ± 0.82 | 26.28 ± 1.58 |
Cabbage | 16.36 ± 1.1 | 18.07 ± 1.21 | 13.91 ± 0.93 | 16.7 ± 1.12 | 25.31 ± 1.7 | 17.39 ± 1.17 |
Garlic | 25.79 ± 1.55 | 6.77 ± 0.41 | 31.71 ± 1.9 | 13.57 ± 0.81 | 4.57 ± 0.27 | 18.01 ± 1.08 |
Watermelon | 18.88 ± 1.7 | 28.32 ± 2.56 | 10.23 ± 0.92 | 10.38 ± 0.94 | 13.53 ± 1.22 | 18.41 ± 1.66 |
Onion | 23.34 ± 1.74 | 17.67 ± 1.32 | 13.34 ± 0.99 | 7.67 ± 0.57 | 16.67 ± 1.24 | 17.73 ± 1.32 |
Chili | 9.36 ± 0.98 | 6.79 ± 0.71 | 9.75 ± 1.02 | 7.41 ± 0.78 | 8.97 ± 0.94 | 9.96 ± 1.05 |
Peanut | 5.62 ± 0.36 | 4.35 ± 0.28 | 5.5 ± 0.35 | 5.9 ± 0.38 | 5.77 ± 0.37 | 6.85 ± 0.44 |
Wheat | 4.05 ± 0.42 | 4 ± 0.41 | 3.85 ± 0.4 | 4.1 ± 0.42 | 4 ± 0.41 | 3.73 ± 0.39 |
Maize | 4.24 ± 0.34 | 3.85 ± 0.31 | 3.18 ± 0.26 | 3.34 ± 0.27 | 3.61 ± 0.29 | 3.27 ± 0.26 |
Soybean | 3.2 ± 0.27 | 3.06 ± 0.26 | 2.86 ± 0.24 | 3.33 ± 0.28 | 3.47 ± 0.29 | 2.67 ± 0.23 |
Crop Structure (%) | |||||
---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | |
Wheat | 38.57 | 38.33 | 38.30 | 39.29 | 39.31 |
Maize | 47.37 | 47.70 | 47.68 | 52.07 | 50.91 |
Soybean | 1.08 | 1.06 | 1.05 | 0.47 | 0.67 |
Peanut | 6.01 | 5.89 | 5.79 | 3.52 | 3.94 |
Chinese cabbage | 3.08 | 3.07 | 3.07 | 1.88 | 2.25 |
Cabbage | 0.54 | 0.54 | 0.53 | 0.18 | 0.23 |
Cauliflower | 0.44 | 0.41 | 0.50 | 0.45 | 0.36 |
Garlic | 0.23 | 0.22 | 0.24 | 0.09 | 0.10 |
Watermelon | 1.61 | 1.66 | 1.61 | 1.15 | 1.23 |
Apples | 1.06 | 1.11 | 1.23 | 0.89 | 1.00 |
Year | |||||
---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | |
Economic efficiency of irrigation water (¥/m3) | 13.83 | 12.81 | 11.14 | 11.07 | 11.81 |
Economic efficiency of total water (¥/m3) | 5.42 | 5.04 | 4.53 | 4.34 | 4.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Ren, D.; Yang, Y.; Sheng, Z.; Yu, L.; Han, S.; Yang, Y.; Hou, Z. Assessment of Economic Efficiency of Water Use through a Household Farmer Survey in North China. Agronomy 2022, 12, 1100. https://doi.org/10.3390/agronomy12051100
Ma L, Ren D, Yang Y, Sheng Z, Yu L, Han S, Yang Y, Hou Z. Assessment of Economic Efficiency of Water Use through a Household Farmer Survey in North China. Agronomy. 2022; 12(5):1100. https://doi.org/10.3390/agronomy12051100
Chicago/Turabian StyleMa, Lexin, Dandan Ren, Yonghui Yang, Zhuping Sheng, Linfei Yu, Shumin Han, Yanmin Yang, and Zhenjun Hou. 2022. "Assessment of Economic Efficiency of Water Use through a Household Farmer Survey in North China" Agronomy 12, no. 5: 1100. https://doi.org/10.3390/agronomy12051100
APA StyleMa, L., Ren, D., Yang, Y., Sheng, Z., Yu, L., Han, S., Yang, Y., & Hou, Z. (2022). Assessment of Economic Efficiency of Water Use through a Household Farmer Survey in North China. Agronomy, 12(5), 1100. https://doi.org/10.3390/agronomy12051100