Nitrogen Use Efficiency of Quality Protein Maize (Zea mays L.) Genotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Preparation, Treatments and Experimental Design
2.2. Trial Management
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Variation between Estimated Parameters
3.2. Performance of Variables Evaluated at Different Levels of N Application
3.3. Performance of Inbred Lines for Estimated Traits and Indices across N Levels
3.4. Grain Yield Performance of Inbred Lines at Various Levels of Nitrogen Application
3.5. Correlation Coefficients between Variables Estimated across N Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Macauley, H.; Ramadjita, T. Cereal Crops: Rice, Maize, Millet, Sorghum, Wheat. In Proceedings of the Feeding Africa, Dakar, Senegal, 21–23 October 2015. [Google Scholar]
- Adejuwon, J.O. Assessment of the changing pattern in maize cultivation in Sokoto-Rima River Basin, Nigeria. J. Appl. Sci. Environ. Manag. 2018, 22, 1433–1437. [Google Scholar] [CrossRef] [Green Version]
- FAO. World Soil Resources: An Explanatory Note on the FAO World Soil Resources Map at 1:25,000,000 Scale; Food and Agriculture Organisation of the United Nations: Rome, Italy, 1991. [Google Scholar]
- Prasanna, B.M.; Vasal, S.K.; Kassahun, B.; Singh, N.N. Quality protein maize. Curr. Sci. 2001, 81, 1308–1319. [Google Scholar]
- Bhatia, C.R.; Rabson, R. Relationship of grain yield and nutritional quality. In Nutritional Quality of Cereal Grains: Genetic and Agronomic Improvement; Olson, R.A., Frey, K.J., Eds.; Agronomy Monograph No. 28; ASA, CSSA, and SSSA: Madison, WI, USA, 1987; pp. 11–43. [Google Scholar]
- Tandzi, L.N.; Mutengwa, C.S.; Ngonkeu, E.L.M.; Woïn, N. Breeding for quality protein maize (QPM) varieties: A review. Agronomy 2017, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Statistical Database of the Food and Agriculture Organization of the United Nations. 2003. Available online: http://www.fao.org/waicent/portal/statistics_en.aspFAOSTAT (accessed on 20 August 2019).
- FAOSTAT. Crop Production, Food and Agriculture Organization, Statistics Section. 2015. Available online: http://faostat3.fao.org/browse/O/*/E (accessed on 17 April 2021).
- FAS, USDA; Foreign Agricultural Service, United States Department of Agriculture. Commodity Intelligence Report. Office of Global Analysis (OGA), International Production Assessment Division (IPAD). 2 July 2018. Available online: www.ipad.fas.usda.gov (accessed on 17 April 2021).
- South African Maize Crop Quality Report 2017/2018 Season. The South African Grain Laboratory NPC-SAGL Maize Reports. 124p. Available online: https://sagl.co.za/maize/reports/#sagl (accessed on 12 March 2020).
- Wallace, M.B.; Knausenberger, W.I. Inorganic Fertilizer Use in Africa: Environmental and Economic Dimensions; Winrock International Environmental Alliance: Arlington, VA, USA, 1997. [Google Scholar]
- Noor, M. Nitrogen management and regulation for optimum NUE in maize—A mini review. Cogent Food Agric. 2017, 3, 1348214. [Google Scholar] [CrossRef]
- Andrews, M.; Raven, J.A.; Ea, P.J. Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Ann. Appl. Biol. 2013, 163, 174–199. [Google Scholar] [CrossRef]
- Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Petrescu, A.M.R.; Leach, A.M.; de Vries, W. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 116. [Google Scholar] [CrossRef] [Green Version]
- Galloway, J.N.; Leach, A.M.; Bleeker, A.; Erisman, J.W. A chronology of human understanding of the nitrogen cycle. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 120. [Google Scholar] [CrossRef] [Green Version]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 164. [Google Scholar]
- Hirel, B.; Gallais, A. Nitrogen use efficiency—Physiological, molecular and genetic investigations towards crop improvement. In Advances in Maize: 3. Essential Reviews in Experimental Biology; Prioul, J.L., Thévenot, C., Molnar, T., Eds.; Society for Experimental Biology: London, UK, 2011; pp. 285–310. [Google Scholar]
- Hirschi, K. Nutritional improvements in plants: Time to bite on biofortified foods. Trends Plant Sci. 2009, 13, 459–462. [Google Scholar] [CrossRef]
- Mi, G.; Chen, F.; Hang, F. Physiological and genetic mechanisms for nitrogen-use efficiency in Maize. J. Crop Sci. Biotech. 2007, 10, 57–63. [Google Scholar]
- Vanlauwe, B.; Kihara, J.; Chivenge, P.; Pypers, P.; Coe, R.; Six, J. Agronomic use efficiency of N fertilizer in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Plant Soil 2011, 339, 35–50. [Google Scholar] [CrossRef]
- Eivazi, A.; Habibi, F. Evaluation of nitrogen use efficiency in corn (Zea mays L.) varieties. World Appl. Sci. J. 2013, 21, 63–68. [Google Scholar]
- Granato, I.S.C.; Bermudez, F.P.; Dos Reis, G.G.; Dovale, J.C.; Miranda, G.V.; Fritsche-Neto, R. Index selection of tropical maize genotypes for nitrogen use efficiency. Bragantio Camp. 2014, 73, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Weih, M.; Hamnér, K.; Pourazari, F. Analysing plant nutrient uptake andutilization efficiencies: Comparison between crops and approaches. Plant Soil 2018, 430, 7–21. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-L.; Guo, L.-G.; Zhou, B.-Y.; Tang, X.-M.; Chen, C.-C.; Zhang, L.; Zhang, S.-Y.; Li, C.-F.; Xiao, K.; Dong, W.-X.; et al. Characterization of low-N responses in maize (Zea mays L.) cultivars with contrasting nitrogen use efficiency in the North China Plain. J. Integr. Agric. 2019, 18, 2141–2152. [Google Scholar] [CrossRef]
- Hawkesford, M.J. Reducing the reliance on nitrogen fertilizer for wheat production. J. Cereal Sci. 2014, 59, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Rochiman, K.; Purnobasuki, H. Effect of Nitrogen Supply and Genotypic Variation for Nitrogen Use Efficiency in Maize. Am. J. Exp. Agric. 2013, 3, 182–199. [Google Scholar]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Dobermann, A.R. Nitrogen Use Efficiency—State of the Art. Agronomy—Faculty Publications. Agronomy and Horticulture Department of Nebraska—Lincoln. 2005. Available online: www.digitalcommons.unl.edu/agronomyfacpub/316 (accessed on 18 July 2015).
- Ismail, A.M.A. A Critical analysis of Harvest Index. Qatar Univ. Sci. J. 1993, 13, 253–263. [Google Scholar]
- Muchow, R.C. Nitrogen utilization efficiency in maize and grain sorghum. Field Crop Res. 1998, 56, 209–216. [Google Scholar] [CrossRef]
- Shapiro, C.A.; Wortmann, C.S. Corn response to N rate, row spacing and plant density in Eastern Nebraska. Agron. J. 2006, 98, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Mastrodomenico, A.T.; Hendrix, C.C.; Below, F.E. Nitrogen Use efficiency and the genetic variation of maize expired plant variety protection germplasm. Agriculture 2018, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Presterl, T.; Groh, S.; Landbeck, M.; Seitz, G.; Schmidt, W.; Geiger, H.H. Nitrogen uptake and utilization efficiency of European maize hybrids developed under conditions of low and high nitrogen input. Plant Breed. 2002, 121, 480–486. [Google Scholar] [CrossRef]
- Haegele, J.W.; Cook, K.A.; Nichols, D.M.; Below, F.E. Changes in nitrogen use traits associated with genetic improvement for grain yield of maize hybrids released in different decades. Crop Sci. 2013, 53, 1256–1268. [Google Scholar] [CrossRef] [Green Version]
- Gallais, A.; Oque, M. Genetic variation and selection for nitrogen use efficiency in maize: A synthesis. Maydica 2005, 50, 531–537. [Google Scholar]
- Raun, W.R.; Johnson, G.V. Improving nitrogen use efficiency for cereal production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Moose, S.P.; Below, F.E. Biotechnology approaches to improving maize nitrogen use efficiency. In Molecular Genetic Approaches to Maize Improvement. Biotechnology in Agriculture and Forestry Series; Kriz, A.L., Larkins, B.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 63, pp. 65–77. ISBN 978-3-540-68919-5. [Google Scholar]
- Onasanya, R.O.; Aiyelari, O.P.; Oikeh, S.; Nwilene, F.E.; Oyelakin, O.O. Growth and yield response of maize (Zea mays L.) to different rates of nitrogen and phosphorus fertilizers in Southern Nigeria. World J. Agric. Sci. 2009, 5, 400–407. [Google Scholar]
- Rehman, A.; Saleem, M.F.; Safdar, M.E.; Hussain, S.; Akhtar, N. Grain quality, nutrient use efficiency, and bioeconomics of maize under different sowing methods and NPK levels. Chil. J. Agric. Res. 2011, 71, 586–593. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Liu, W.; Li, X.; Li, M.; Zhang, D.; Hao, Z.; Weng, J.; Xu, Y.; Bai, L.; Zhang, S.; et al. Low-nitrogen stress tolerance and nitrogen agronomic efficiency among maize inbred: Comparison of multiple indices and evaluation of genetic variation. Euphytica 2011, 180, 281–290. [Google Scholar] [CrossRef]
Quality Seeds Germplasm (a) | |||||
---|---|---|---|---|---|
Inbred No. | Source of Material | Genotype | Inbred No. | Source of Material | Genotype |
L1 | SO181W | QSW2 | L22 | HM238W | QSW16 |
L3 | SO507W | QSW3 | L23 | HM267W | QSW17 |
L5 | V0548W | QSW4 | L24 | HM267W | QSW18 |
L7 | V0298W | QSW5 | L25 | HM284W | QSW20 |
L9 | B0388W | QSW6 | L26 | HM1472W | QSW21 |
L11 | EM362W | QSW7 | L27 | JM2261W | QSW22 |
L13 | EM583W | QSW8 | L28 | JM2341W | QSW23 |
L15 | E625W | QSW10 | L29 | JM2561W | QSW25 |
L17 | GM15W | QSW12 | L30 | JM2641W | QSW28 |
L19 | GM44W | QSW13 | L31 | E5 | QSW29 |
L20 | HM18W | QSW14 | L32 | E27 | QSW32 |
L21 | HM233W | QSW15 | |||
CIMMYT Germplasm (b) | |||||
Inbred No. | Genotype | Pedigree | |||
L2 | IBL1 | [CLQRCW Q50/CML 312 SR]-2-2-1-B-B-1-B-B | |||
L4 | IBL2 | [CML 202/CML 144] F2-1-1-3-B-1 B*6[GQL5/[GQL5/[MSR × POOL 9] C1F2-205-1 (OSU23i)-5-3-X-X-1-BB[F2-4sx]-11-3-1-1-B*4]-B*5-1-B | |||
L6 | IBL6 | [CML150/CML 373]-B-2-2-B*4-4-B-B | |||
L8 | IBL7 | [CML159/[CML159/[MSRXPOOL9]C1F2-205-1(OSU23i)-5-3-X-X-1-BB]F2-3sx]-8-1-1-BBB-4-B-B | |||
L10 | IBL15 | CLQRCWQ50-BB-1-2-B-B | |||
L12 | IBL17 | CML181-B-1-5-B-B7 | |||
L14 | IBL18 | CML182-BB-B | |||
L16 | IBL21 | CML492-BB-2-1-B-B | |||
L18 | IBL22 | WW01408-1-1-2-B*4-#B-B-B |
Source (a) | DF | Bio Total N | G Total N | Yield | NUtE | ||
---|---|---|---|---|---|---|---|
N Level | 4 | 1.07 *** | 1.2 *** | 67.4 *** | 4.3 *** | ||
Inbred | 31 | 0.03 ns | 0.03 ns | 8.8 *** | 8.09 *** | ||
Replication | 1 | 0.0002 ns | 0.2 * | 97.1 *** | 108.6 *** | ||
N Level*Inbred | 124 | 0.03 ns | 0.03 ns | 2.3 *** | 0.2 *** | ||
Error | 159 | 0.03 | 0.03 | 0.8 | 0.09 | ||
Source (b) | DF | REN | PEN | AE | NUE | NUpE | HI |
N Level | 3 | 0.0005 *** | 1009 ** | 10118 *** | 0.2 *** | 0.06 *** | 0.009 ns |
Inbred | 31 | 0.0001 *** | 1079 ns | 3896 *** | 0.002 *** | 51 × 106 ns | 0.02 * |
Replication | 1 | 0.00 ns | 459 ns | 685 ns | 0.02 *** | 1 × 105 ns | 0.1 ns |
Error | 220 | 0.00003 | 715 | 682 | 0.0002 | 2 × 105 | 0.01 |
N Level (a) | Bio Total N | G Total N | Yield | NUtE | HI |
---|---|---|---|---|---|
0 kg N ha−1 | 1.55 c | 1.61 c | 4.07 d | 1.30 d | 0.26 a |
30 kg N ha−1 | 1.46 d | 1.57 c | 5.41 c | 1.79 b | 0.27 a |
60 kg N ha−1 | 1.59 c | 1.76 b | 6.31 ab | 1.90 ab | 0.29 a |
90 kg N ha−1 | 1.68 b | 1.82 ab | 6.74 a | 1.93 a | 0.26 a |
120 kg N ha−1 | 1.79 a | 1.89 a | 5.88 b | 1.60 c | 0.28 a |
Mean | 1.61 | 1.73 | 5.68 | 1.70 | 0.27 |
N Level (b) | REN | PEN | AE | NUE | NUpE |
30 kg N ha−1 | −0.003 b | −3.43 a | 44.4 a | 0.2 a | 0.10 a |
60 kg N ha−1 | 0.001 a | 3.10 a | 37.3 ab | 0.11 b | 0.06 b |
90 kg N ha−1 | 0.001 a | 6.06 a | 29.6 b | 0.07 c | 0.04 c |
120 kg N ha−1 | 0.003 a | 2.31 a | 15.1 c | 0.05 d | 0.03 d |
Mean | 0.0005 | 2.01 | 31.6 | 0.11 | 0.06 |
REN | PEN | AE | NUE | NUpE | Bio Total N | G Total N | Yield | NUtE | HI | |
---|---|---|---|---|---|---|---|---|---|---|
REN | 1 | |||||||||
PEN | ns | 1 | ||||||||
AE | ns | ns | 1 | |||||||
NUE | ns | 0.4 * | 0.4 * | 1 | ||||||
NUpE | ns | ns | ns | ns | 1 | |||||
Bio Total N | −0.6 *** | ns | ns | ns | ns | 1 | ||||
G Total N | ns | ns | ns | ns | ns | ns | 1 | |||
Yield | ns | 0.4 * | ns | 0.9 *** | ns | ns | ns | 1 | ||
NUtE | ns | 0.4 * | ns | 0.9 *** | ns | ns | ns | 0.99 *** | 1 | |
HI | ns | ns | ns | 0.5 ** | ns | ns | ns | 0.5 ** | 0.5 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeoluwa, O.O.; Mutengwa, C.S.; Chiduza, C.; Tandzi, N.L. Nitrogen Use Efficiency of Quality Protein Maize (Zea mays L.) Genotypes. Agronomy 2022, 12, 1118. https://doi.org/10.3390/agronomy12051118
Adeoluwa OO, Mutengwa CS, Chiduza C, Tandzi NL. Nitrogen Use Efficiency of Quality Protein Maize (Zea mays L.) Genotypes. Agronomy. 2022; 12(5):1118. https://doi.org/10.3390/agronomy12051118
Chicago/Turabian StyleAdeoluwa, Olusola Oluyinka, Charles Shelton Mutengwa, Cornelius Chiduza, and Ngoune Liliane Tandzi. 2022. "Nitrogen Use Efficiency of Quality Protein Maize (Zea mays L.) Genotypes" Agronomy 12, no. 5: 1118. https://doi.org/10.3390/agronomy12051118
APA StyleAdeoluwa, O. O., Mutengwa, C. S., Chiduza, C., & Tandzi, N. L. (2022). Nitrogen Use Efficiency of Quality Protein Maize (Zea mays L.) Genotypes. Agronomy, 12(5), 1118. https://doi.org/10.3390/agronomy12051118