In-Field Route Planning Optimisation and Performance Indicators of Grain Harvest Operations
Abstract
:1. Introduction
2. Literature Review of Harvest Fleet Operation Optimisation Methods
3. Materials and Methods
3.1. Overview
3.2. Coverage Path Planning Method
3.2.1. Field Partitioning
- A2H:
- Turning manoeuvres from a field access point to a headland pass, allowing machines to enter and exit the field.
- H2H:
- Turning manoeuvres between two headland passes, near the access points and in field corners.
- T2H:
- Turning manoeuvres between a track and a headland pass.
- T2T:
- Turning manoeuvres between two tracks. These are only generated, if there is no direct transition between the two tracks via a headland pass and T2H turns.
3.2.2. Route Generation
3.3. Data Collection
3.3.1. Fields
3.3.2. Machinery and GPS Positioning System
3.3.3. Decomposition of Recorded Data for Coverage Path Planning Input Parameters
- Field entry position (UTM E & N position)
- Field exit position (UTM E & N position)
- Headland width
- Number of headland passes
- Driving orientations at main field
- Yield, total (yield sensor)
- Yield, total (weigh bridge)
- Yield, headland
- Yield, main field
- Working width
- Forward speed, harvest, median
- Forward speed, turnings, median
- Forward speed, transport in field, upper 95%
- Total harvest time (operational only, maintenance stops not included)
- Total in-field travel distance (velocity > 0.1 m−1)
- No. of auger unloading when driving
- No. of auger unloading when stationary
- Unloading capacity
- Bin capacity
- Turning radius
- Distance from field to storage, SU1
- Distance from field to storage, SU2
- Total in-field travel distance, SU1
- Total in-field travel distance, SU2
- No. of load at weighbridge registrations
- No. of grain transports, SU1 (Fendt)
- No. of grain transports, SU2 (John Deere)
- Bin capacity, SU1 and SU2
- Unloading time duration (off-field), SU1, average
- Forward speed, transport in field, upper 99%
- Unloading time duration (off-field), SU2, average
- Forward speed, transport in field, upper 99%
3.4. Data Analysis for Comparison between Recorded and Optimised Harvest Operations
3.5. Fuel Consumption Estimations Using ASAE Standards
4. Results and Discussion
4.1. Unloading Efficiency
4.2. Transport Vehicle Efficiency
4.3. CTF Model Constraint and Its Reduction in Risk of Soil Compaction
4.4. Fuel Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dos Reis, A.V.; Medeiros, F.A.; Ferreira, M.F.; Machado, R.L.T.; Romano, L.N.; Marini, V.K.; Francetto, T.R.; Tavares Machado, A.L. Technological trends in digital agriculture and their impact on agricultural machinery development practices. Rev. Cienc. Agron. 2020, 51, 1–12. [Google Scholar] [CrossRef]
- Blackmore, S.; Griepentrog, H.W. Autonomous Vehicles and Robotics; CIGR Handbook of Agricultural Engineering Volume VI Information Technology; Chapter 4 Mechatronics and Applications; Munaxk, A., Ed.; ASABE: St. Joseph, MI, USA, 2006. [Google Scholar] [CrossRef]
- Sørensen, C.A.G.; Bochtis, D.D. Conceptual model of fleet management in agriculture. Biosyst. Eng. 2010, 105, 41–50. [Google Scholar] [CrossRef]
- Bochtis, D.D.; Sørensen, C.A.G.; Busato, P. Advances in agricultural machinery management: A review. Biosyst. Eng. 2014, 126, 69–81. [Google Scholar] [CrossRef]
- Saiz-Rubio, V.; Rovira-Mas, F. From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy 2020, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Ansorge, D.; Godwin, R.J. The effect of tyres and a rubber track at high axle loads on soil compaction, Part 1: Single axle-studies. Biosyst. Eng. 2007, 98, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Ansorge, D.; Godwin, R.J. The effect of tyres and a rubber track at high axle loads on soil compaction—Part 2: Multi-axle machine studies. Biosyst. Eng. 2008, 99, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Vahdanjoo, M.; Zhou, K.; Sørensen, C.A.G. Route Planning for Agricultural Machines with Multiple Depots: Manure Application Case Study. Agronomy 2020, 10, 1608. [Google Scholar] [CrossRef]
- Jensen, M.F.; Bochtis, D.D.; Sørensen, C.G. Coverage planning for capacitated field operations, part II: Optimisation. Biosyst. Eng. 2015, 139, 149–164. [Google Scholar] [CrossRef]
- Edwards, G.T.C.; Hinge, J.; Skou-Nielsen, N.; Villa-Henriksen, A.; Sørensen, C.A.G.; Green, O. Route planning evaluation of a prototype optimised infield route planner for neutral material flow agricultural operations. Biosyst. Eng. 2017, 153, 149–157. [Google Scholar] [CrossRef]
- Rodias, E.; Berruto, R.; Busato, P.; Bochtis, D.D.; Sørensen, C.G.; Zhou, K. Energy Savings from Optimised In-Field Route Planning for Agricultural Machinery. Sustainability 2017, 9, 1956. [Google Scholar] [CrossRef] [Green Version]
- Utamima, A.; Reiners, T.; Ansaripoor, A.H. Optimisation of agricultural routing planning in field logistics with Evolutionary Hybrid Neighbourhood Search. Biosyst. Eng. 2019, 184, 166–180. [Google Scholar] [CrossRef]
- Jensen, M.A.F.; Bochtis, D.D.; Sørensen, C.G.; Blas, M.R.; Lykkegaard, K.L. In-field and inter-field path planning for agricultural transport units. Comput. Electron. Agric. 2012, 63, 1054–1061. [Google Scholar] [CrossRef]
- Guevara, L.; Rocha, R.P.; Cheein, F.A. Improving the manual harvesting operation efficiency by coordinating a fleet of N-trailer vehicles. Comput. Electron. Agric. 2021, 185, 106103. [Google Scholar] [CrossRef]
- Conesa-Munoz, J.; Pajares, G.; Ribeiro, A. Mix-opt: A new route operator for optimal coverage path planning for a fleet in an agricultural environment. Expert Syst. Appl. 2016, 54, 364–378. [Google Scholar] [CrossRef]
- Jin, J.; Tang, L. Optimal coverage path planning for arable farming on 2D surfaces. Trans. ASABE. 2010, 53, 283–295. [Google Scholar] [CrossRef]
- Oksanen, T.; Visala, A. Coverage Path Planning Algorithms for Agricultural Field Machines. J. Field Robot. 2009, 26, 651–668. [Google Scholar] [CrossRef]
- Zhou, K.; Jensen, A.L.; Sørensen, C.G.; Busato, P.; Bothtis, D.D. Agricultural operations planning in fields with multiple obstacle areas. Comput. Electron. Agric. 2014, 109, 12–22. [Google Scholar] [CrossRef]
- Hameed, I.A. Intelligent Coverage Path Planning for Agricultural Robots and Autonomous Machines on Three-Dimensional Terrain. J. Intell. Robot. Syst. 2014, 74, 965–983. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Tang, L. Coverage Path Planning on Three-Dimensional Terrain for Arable Farming. J. Field Robot. 2011, 28, 424–440. [Google Scholar] [CrossRef]
- Reznik, T.; Herman, L.; Klocova, M.; Leitner, F.; Pavelka, T.; Leitgeb, S.; Trojanova, K.; Stampach, R.; Moshou, D.; Mouazen, A.M.; et al. Towards the Development and Verification of a 3D-Based Advanced Optimized Farm Machinery Trajectory Algorithm. Sensors 2021, 21, 2980. [Google Scholar] [CrossRef]
- Bochtis, D.D.; Sørensen, C.G.; Green, O. A DSS for planning of soil-sensitive field operations. Decis. Support Syst. 2012, 53, 66–75. [Google Scholar] [CrossRef]
- Villa-Henriksen, A.; Skou-Nielsen, N.; Munkholm, L.J.; Sørensen, C.A.G.; Green, O.; Edwards, G.T.C. Infield optimized route planning in harvesting operations for risk of soil compaction reduction. Soil Use Manag. 2021, 37, 810–821. [Google Scholar] [CrossRef]
- Spekken, M.; de Bruin, S. Optimized routing on agricultural fields by minimizing maneuvering and servicing time. Precis. Agric. 2013, 14, 224–244. [Google Scholar] [CrossRef]
- Grisso, R.; Jasa, P.; Rolofson, D. Analysis of traffic patterns and yield monitor data for field efficiency determination. Appl. Eng. Agric. 2002, 18, 171–178. [Google Scholar] [CrossRef]
- Isaac, N.; Quick, G.; Birrell, S.; Edwards, W.; Coers, B. Combine harvester econometric model with forward speed optimization. Appl. Eng. Agric. 2006, 22, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Bochtis, D.D.; Sørensen, C.G.; Green, O.; Moshou, D.; Olesen, J. Effect of controlled traffic on field efficiency. Biosyst. Eng. 2010, 106, 14–25. [Google Scholar] [CrossRef]
- Taylor, R.; Schrock, M.; Staggenborg, S. Extracting Machinery Management Information from GPS Data. In ASAE Meeting Paper No.: 02-1008, Proceedings of the ASAE Annual International Meeting, Chicago, IL, USA, 28–31 July 2002; ASAE: St. Joseph, MI, USA, 2002. [Google Scholar] [CrossRef]
- Jensen, M.F.; Nørremark, M.; Busato, P.; Sørensen, C.G.; Bochtis, D.D. Coverage planning for capacitated field operations, Part I: Task decomposition. Biosyst. Eng. 2015, 139, 136–148. [Google Scholar] [CrossRef]
- De Bruin, S.; Lerink, P.; La Riviere, I.J.; Vanmeulebrouk, B. Systematic planning and cultivation of agricultural fields using a geo-spatial arable field optimization service: Opportunities and obstacles. Biosyst. Eng. 2014, 120, 15–24. [Google Scholar] [CrossRef]
- Seyyedhasani, H.; Dvorak, J.S. Reducing field work time using fleet routing optimization. Biosyst. Eng. 2018, 169, 1–10. [Google Scholar] [CrossRef]
- Bakhtiari, A.; Navid, H.; Mehri, J.; Berruto, R.; Bochtis, D.D. Operations planning for agricultural harvesters using ant colony optimization. Span. J. Agric. Res. 2013, 11, 652–660. [Google Scholar] [CrossRef]
- Bochtis, D.D.; Sørensen, C.G.; Jorgensen, R.N.; Green, O. Modelling of material handling operations using controlled traffic. Biosyst. Eng. 2009, 103, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.T.; Pitla, S.K.; Luck, J.D.; Kocher, M. Row crop grain harvester path optimization in headland patterns. Comput. Electron. Agric. 2020, 171, 105295. [Google Scholar] [CrossRef]
- Ali, O.; Verlinden, B.; Van Oudheusden, D. Infield logistics planning for crop-harvesting operations. Eng. Optim. 2009, 41, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Bochtis, D.D.; Sørensen, C.G.; Busato, P.; Berruto, R. Benefits from optimal route planning based on B-patterns. Biosyst. Eng. 2013, 115, 389–395. [Google Scholar] [CrossRef]
- Bochtis, D.D.; Sørensen, C.G. The vehicle routing problem in field logistics: Part I. Biosyst. Eng. 2009, 104, 447–457. [Google Scholar] [CrossRef]
- Bochtis, D.D.; Sørensen, C.G.; Vougioukas, S.G. Path planning for in-field navigation-aiding of service units. Comput. Electron. Agric. 2010, 74, 80–90. [Google Scholar] [CrossRef]
- Nilsson, R.S.; Zhou, K. Decision Support Tool for Operational Planning of Field Operations. Agronomy 2020, 10, 229. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, R.S.; Zhou, K. Method and bench-marking framework for coverage path planning in arable farming. Biosyst. Eng. 2020, 198, 248–265. [Google Scholar] [CrossRef]
- Dubins, L.E. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 1957, 79, 497–516. [Google Scholar] [CrossRef]
- Dijkstra, E. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Szeto, W.Y.; Wu, Y.; Ho, S.C. An artificial bee colony algorithm for the capacitated vehicle routing problem. Eur. J. Oper. Res. 2011, 215, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Lacomme, P.; Prins, C.; Ramdane-Sherif, W. Competitive memetic algorithms for arc routing problems. Ann. Oper. Res. 2004, 131, 159–185. [Google Scholar] [CrossRef] [Green Version]
- Santos, L.; Coutinho-Rodrigues, J.; Current, J.R. An improved ant colony optimization based algorithm for the capacitated arc routing problem. Transport Res. B Meth. 2010, 44, 246–266. [Google Scholar] [CrossRef]
- The Danish Meteorological Institute. The Danish Meteorological Institute’s (DMI) Open Data API Provides Free and Open Access to Weather Stations in Denmark and Greenland. Available online: https://confluence.govcloud.dk/display/FDAPI/Danish+Meteorological+Institute+-+Open+Data (accessed on 28 April 2022).
- Luck, J.D.; Zandonadi, R.S.; Shearer, S.A. A case study to evaluate field shape factors for estimating overlap errors with manual and automatic section control. Trans. ASABE 2011, 54, 1237–1243. [Google Scholar] [CrossRef]
- The Danish Agricultural Agency. Field Polygons for the Growing Season 2015. Available online: https://landbrugsgeodata.fvm.dk/ (accessed on 25 April 2022).
- AGCO Corporation. AgCommand Telemetry System. Available online: http://myagcommand.com/AgcommandPortal/agcommand/fleet.html (accessed on 25 September 2017).
- KMStrans2—A Danish Coordinate Conversion Tool. Available online: https://sdfe.dk/saadan-arbejder-vi-med-data/geodaesi-og-referencenet/koordinattransformation/ (accessed on 30 June 2017).
- QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation Project: Chicago, IL, USA, 2016. [Google Scholar]
- DLG-Prüfstelle für Landmaschinen. John Deere 6920 S AutoQuad. In OECD-Test Nr. 07/2002; Deutsche Landwirtschafts-Gesellschaft–German Agricultural Society (DLG): Frankfurt, Germany, 2002; Volume 2, Available online: https://pruefberichte.dlg.org/filestorage/JDEERE_6620_AutoQuad_Nr7-2002.pdf (accessed on 25 April 2022).
- DLG-Testzentrum Technik und Betriebsmittel. Fendt 930 Vario TMS. In DLG-profi Test Heft Nr. 04/2004; Deutsche Landwirtschafts-Gesellschaft–German Agricultural Society (DLG): Frankfurt, Germany, 2004; Volume 4, Available online: https://pruefberichte.dlg.org/filestorage/pbdocs/traktoren/Fendt930VarioTMS_2004.pdf (accessed on 25 April 2022).
- Standard ASAE D497.7; Agricultural Machinery Management Data. American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2015.
- Standard ASAE EP496.3; Agricultural Machinery Management. American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2015.
- United Nations. Regulation No. 147-00. Mechanical Coupling Components of Combinations of Agricultural Vehicles; ECE/TRANS/WP.29/2018/69; United Nations: Rome, Italy, 2019. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Antille, D.L.; Peets, S.; Galambošová, J.; Botta, G.F.; Rataj, V.; Macak, M.; Tullberg, J.N.; Chamen, W.C.T.; White, D.R.; Misiewicz, P.A.; et al. Review: Soil compaction and controlled traffic farming in arable and grass cropping systems. Agron. Res. 2019, 17, 653–682. [Google Scholar] [CrossRef]
- Rataj, V.; Kumhalova, J.; Macak, M.; Barat, M.; Galambosova, J.; Chyba, J.; Kumhala, F. Long-Term Monitoring of Different Field Traffic Management Practices in Cereals Production with Support of Satellite Images and Yield Data in Context of Climate Change. Agronomy 2022, 12, 128. [Google Scholar] [CrossRef]
- Ten Damme, L.; Schjønning, P.; Munkholm, L.J.; Green, O.; Nielsen, S.K.; Lamande, M. Soil structure response to field traffic: Effects of traction and repeated wheeling. Soil Tillage Res. 2021, 213, 105128. [Google Scholar] [CrossRef]
- Augustin, K.; Kuhwald, M.; Brunotte, J.; Duttmann, R. Wheel Load and Wheel Pass Frequency as Indicators for Soil Compaction Risk: A Four-Year Analysis of Traffic Intensity at Field Scale. Geosciences 2020, 10, 292. [Google Scholar] [CrossRef]
- Pulido-Moncada, M.; Munkholm, L.J.; Schjonning, P. Wheel load, repeated wheeling, and traction effects on subsoil compaction in northern Europe. Soil Tillage Res. 2019, 186, 300–309. [Google Scholar] [CrossRef]
- Chyba, J.; Kroulik, M.; Krištof, K.; Misiewicz, P. The influence of agricultural traffic on soil infiltration rates. Agron. Res. 2017, 15, 664–673. Available online: http://agronomy.emu.ee/index.php/category/volume-15-2017/number-3-volume-15-2017/?aid=5390&sa=0#abstract-5453 (accessed on 11 April 2022).
- Obour, P.B.; Ugarte, C.M. A meta-analysis of the impact of traffic-induced compaction on soil physical properties and grain yield. Soil Tillage Res. 2021, 211. [Google Scholar] [CrossRef]
Field No. | Crop | Area [ha] | P/A [m−1] | Contour |
---|---|---|---|---|
2 | Spring barley (Hordeum vulgare) | 14.01 | 0.0132 | |
4 | Spring barley (Hordeum vulgare) | 6.43 | 0.0169 | |
7 | Winter wheat (Triticum aestivum) | 21.41 | 0.0093 | |
8 | Spring barley (Hordeum vulgare) | 4.95 | 0.0221 | |
10 | Spring barley (Hordeum vulgare) | 11.87 | 0.0154 | |
12 | Winter wheat (Triticum aestivum) | 26.47 | 0.0084 | |
13 | Winter wheat (Triticum aestivum) | 16.82 | 0.0139 |
Field | PU Unload | Total in-Field Distance, Service Units | Total Distance, Service Units | Area with Traffic in Percent of Total Field Area | No. of SU Transports | No. of Full Load Transports 1 | Average SU Load Level | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Opt. | Rec. | Opt. | Rec. | Opt. | Rec. | Opt. | Rec. | Opt. | Rec. | Opt. | Rec. | Opt. | Rec. | |
[] | [] | [m] | [m] | [m] | [m] | [%] | [%] | [] | [] | [] | [] | [kg] | [kg] | |
2 | 12 (1) | 12 (1) | 9307 | 6224 | 14,424 | 12,315 | 12.9 | 10.5 | 7 | 9 | 6 | 0 | 13,072 | 10,651 |
4 2 | 7 (1) | 8 (1) | 5537 | 4806 | 18,721 | 18,249 | 17.4 | 17.7 | 4 | 4 | 2 | 2 | 12,852 | 12,135 |
7 | 27 (2) | 31 (3) | 20,494 | 23,590 | 82,470 | 95,315 | 15.9 | 21.7 | 15 | 17 | 14 | 7 | 17,005 | 15,139 |
8 | 5 (0) | 5 (0) | 3281 | 3848 | 11,045 | 11,782 | 17.3 | 15.7 | 3 | 3 | 2 | 2 | 13,755 | 12,957 |
10 | 13 (1) | 13 (1) | 13,608 | 10,223 | 19,082 | 16,677 | 17.8 | 18.0 | 7 | 7 | 6 | 2 | 13,061 | 12,583 |
12 | 33 (2) | 42 (5) | 25,555 | 22,779 | 99,724 | 117,838 | 17.2 | 19.3 | 18 | 23 | 17 | 4 | 17,110 | 13,737 |
13 3 | 16 (2) | 22 (4) | 16,365 | 18,582 | 110,441 | 123,892 | 16.6 | 22.1 | 9 | 10 | 7 | 3 | 17,298 | 15,388 |
Field | Fuel Consumption, Service Unit A | Fuel Consumption, Service Unit B | Total Grain Yield | |||
---|---|---|---|---|---|---|
Opt. | Rec. | Opt. | Rec. | Opt. | Rec. | |
[L] | [L] | [L] | [L] | [Tons] | [Tons] | |
2 | 9.5 | 7.9 | 91.5 | 95.9 | ||
4 | 11.0 | 10.6 | 50.4 | 48.5 | ||
7 | 25.8 | 27.1 | 26.2 | 30.0 | 255.1 | 257.4 |
8 | 6.8 | 7.3 | 41.3 | 38.9 | ||
10 | 12.9 | 10.9 | 91.2 | 88.1 | ||
12 | 33.1 | 35.8 | 30.8 | 32.9 | 310.0 | 315.9 |
13 | 39.3 | 35.6 | 31.1 | 38.6 | 155.7 | 153.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nørremark, M.; Nilsson, R.S.; Sørensen, C.A.G. In-Field Route Planning Optimisation and Performance Indicators of Grain Harvest Operations. Agronomy 2022, 12, 1151. https://doi.org/10.3390/agronomy12051151
Nørremark M, Nilsson RS, Sørensen CAG. In-Field Route Planning Optimisation and Performance Indicators of Grain Harvest Operations. Agronomy. 2022; 12(5):1151. https://doi.org/10.3390/agronomy12051151
Chicago/Turabian StyleNørremark, Michael, René Søndergaard Nilsson, and Claus Aage Grøn Sørensen. 2022. "In-Field Route Planning Optimisation and Performance Indicators of Grain Harvest Operations" Agronomy 12, no. 5: 1151. https://doi.org/10.3390/agronomy12051151
APA StyleNørremark, M., Nilsson, R. S., & Sørensen, C. A. G. (2022). In-Field Route Planning Optimisation and Performance Indicators of Grain Harvest Operations. Agronomy, 12(5), 1151. https://doi.org/10.3390/agronomy12051151