Fungal-Based Biopesticide Formulations to Control Nymphs and Adults of the Desert Locust, Schistocerca gregaria Forskål (Orthoptera: Acrididae): A Laboratory and Field Cage Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Collection and Rearing
2.2. Entomopathogenic Fungi and Their Culturing
2.3. Bioassay against 3rd- and 5th-Instar Nymphs and Adults of S. gregaria
2.4. Effect of a Sublethal Dose on the Reproduction and Development of S. gregaria
2.5. Effects of a Sublethal Dose on Diet Consumption, Weight Gain, and Frass Production of S. gregaria
2.6. Greenhouse Trial
2.7. Field Trial
2.8. Statistical Analysis
3. Results
3.1. Bioassay against 3rd- and 5th-Instar Nymphs and Adults of S. gregaria
3.2. Effects of Sublethal Doses on the Reproduction and Development of S. gregaria
3.3. Effects of a Sublethal Dose on Diet Consumption, Weight Gain, and Frass Production of S. gregaria
3.4. Greenhouse Trial
3.5. Field Trial
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millist, N.; Abdalla, A. Benefit-cost analysis of Australian plague locust control operations for 2010–11. In ABARES Report Prepared for the Australian Plague Locust Commission; Australian Bureau of Agricultural and Resource Economics and Sciences: Canberra, Australia, 2011; p. 22. [Google Scholar]
- Latchininsky, A.V. Locusts and remote sensing: A review. J. Appl. Rem. Sens. 2013, 7, 075099. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Hunter, D.M. Management of locusts and grasshoppers in China. J. Orthop. Res. 2017, 26, 155–159. [Google Scholar] [CrossRef]
- Steedman, A. The Locust Handbook; Overseas Development National Resources Institute: London, UK, 1988. [Google Scholar]
- Showler, A.T. Desert locust, Schistocerca gregaria (Forskål) (Orthoptera: Acrididae), campaign in Tunisia, 1988. Agricul. Syst. 1993, 42, 311–325. [Google Scholar] [CrossRef]
- Zhang, L.; Lecoq, M.; Latchininsky, A.; Hunter, D. Locust and grasshopper management. Ann. Rev. Entomol. 2019, 64, 15–34. [Google Scholar] [CrossRef]
- Anonymous. Locust alarm, scientific rigour and a debate over risky disease experiments. Nature 2020, 577, 602–603. [Google Scholar] [CrossRef]
- Sharmila, D. Locust swarms in east Africa could be “a catastrophe”. Lancet 2020, 395, 547. [Google Scholar]
- Peng, W.; Ma, N.L.; Zhang, D.; Zhou, Q.; Shing, X.Y.; Khoo, C.; Yang, H.; Guan, R.; Chen, H.; Zhang, X.; et al. A review of historical and recent locust outbreaks: Links to global warming, food security and mitigation strategies. Environ. Res. 2020, 191, 110046. [Google Scholar] [CrossRef] [PubMed]
- Le Gall, M.; Overson, R.; Cease, A. A global review on locusts (Orthoptera: Acrididae) and their interactions with livestock grazing practices. Front. Ecol. Evo. 2019, 7, 263. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, S.; Thakur, G.; Gautam, J.; Acharya, N.; Pandey, M.; Shrestha, J. Desert locust and its management in Nepal: A review. J. Agricul. Nat. Res. 2021, 4, 1–28. [Google Scholar]
- Symmons, P.M.; Cressman, K. Desert Locust Guidelines: Biology and Behaviour. Food and Agriculture Organization of the United Nations: Rome, Italy, 2001; pp. 1–25. Available online: http://www.fao.org/ag/locusts/oldsite/PDFs/DLG1e.pdf (accessed on 16 August 2021).
- FAO. Weather and Desert Locusts WMO-No. 1175; World Meteorological Organization and Food and Agriculture Organization of the United Nations: Rome, Italy, 2016; pp. 1–48. Available online: http://www.fao.org/3/i6152en/i6152en.pdf (accessed on 22 August 2021).
- FAO. Desert Locust Bulletin No. 484; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; Available online: http://www.fao.org/ag/locusts/common/ecg/2462/en/DL484e.pdf (accessed on 20 August 2021).
- Mullié, W.C.; Cheke, R.A.; Young, S.; Ibrahim, A.B.; Murk, A.J. Increased and sex-selective avian predation of desert locusts Schistocerca gregaria treated with Metarhizium acridum. PLoS ONE 2021, 16, e0244733. [Google Scholar] [CrossRef]
- Abdelatti, Z.A.S.; Hartbauer, M. Plant oil mixtures as a novel botanical pesticide to control gregarious locusts. J. Pest. Sci. 2020, 93, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Arthurs, S. Grasshoppers and locusts as agricultural pests. In Encyclopedia of Entomology; Capinera, J.L., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 1690–1694. [Google Scholar]
- Lecoq, M. Integrated pest management for locusts and grasshoppers: Are alternatives to chemical pesticides credible? J. Orthop. Res. 2010, 19, 131–132. [Google Scholar] [CrossRef] [Green Version]
- Alavanja, M.C.R.; Bonner, M.R. Occupational pesticide exposures and cancer risk: A review. J. Toxicol. Environ. Health 2012, 15, 238–263. [Google Scholar] [CrossRef]
- Köhler, H.R.; Triebskorn, R. Wildlife ecotoxicology of pesticides: Can we track effects to the population level and beyond? Science 2013, 341, 759–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 2016, 4, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roussi, A. The battle to contain gigantic locust swarms. Nature 2020, 579, 330. [Google Scholar] [CrossRef] [Green Version]
- Lacey, L.A.; Shapiro-Ilan, D.I. Microbial control of insect pests in temperate orchard systems: Potential for incorporation into IPM. Annu. Rev. Entomol. 2008, 53, 121–144. [Google Scholar] [CrossRef] [Green Version]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect pathogens as biological control agents: Back to the future. J. Invertebra. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goettel, M.S.; Eilenberg, J.; Glare, T.R. Entomopathogenic fungi and their role in regulation of insect populations. In Comprehensive Molecular Insect Science; Gilbert, L.I., Iatrou, K., Gill, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 6, pp. 361–406. [Google Scholar]
- Atheimine, M.; Bashir, M.; Ely, S.; Kane, C.; Mohamed, S.; Babah, M.; Benchekroun, M. Efficacy and persistence of Metarhizium acridum (Hypocreales: Clavicipitaceae) used against desert locust larvae, Schistocerca gregaria (Orthoptera: Acrididae), under different vegetation cover types. Inter. J. Trop. Insect Sci. 2014, 34, 106–114. [Google Scholar] [CrossRef]
- Blanford, S.; Thomas, M.B. Adult survival, maturation, and reproduction of the desert locust Schistocerca gregaria infected with the fungus Metarhizium anisopliae var acridum. J. Invertebra. Pathol. 2001, 78, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tounou, A.-K.; Kooyman, C.; Douro-Kpindou, O.-K.; Poehling, H.-M. Interaction between Paranosema locustae and Metarhizium anisopliae var. acridum, two pathogens of the desert locust, Schistocerca gregaria under laboratory conditions. J. Invertebra. Pathol. 2008, 97, 203–210. [Google Scholar] [CrossRef]
- Milat-Bissaad, F.Z.; Bounaceur, F.; Halouane, F.; Behidj, N.; Chebouti, N.; Doumandji-Mitiche, B. Effect of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae var acridum on the haemolymph of the desert locust Schistocerca gregaria. Tunis. J. Plant Protect. 2011, 6, 127–132. [Google Scholar]
- Bashir, E.M.; El Shafie, H.A. Laboratory evaluation of the effects of neem (Azadirachta indica) oil and Metarhizium anisopliae against some immature stages of the desert locust Schistocerca gregaria (Forskal) (Orthoptera: Acrididae). J. Agricul. Vet. Sci. 2014, 18, 116–126. [Google Scholar]
- Youssef, N.A. Effect of certain entomopathogenic fungi and nematode on the desert locust Schistocerca gregaria (Forskal). Ann. Agricul. Sci. 2014, 59, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Arthurs, S.; Thomas, M.B. Effects of a mycoinsecticide on feeding and fecundity of the brown locust Locustana pardalina. Biocontrol Sci. Technol. 2000, 10, 321–329. [Google Scholar] [CrossRef]
- Roy, H.E.; Steinkraus, D.C.; Eilenberg, J.; Hajek, A.E.; Pell, J.K. Bizarre interactions and endgames: Entomopathogenic fungi and their arthropod hosts. Annu. Rev. Entomol. 2006, 51, 331–357. [Google Scholar] [CrossRef] [Green Version]
- Mohammadbeigi, A.; Port, G. Effect of infection by Beauveria bassiana and Metarhizium anisopliae on the feeding of Uvarovistia zebra. J. Insect. Sci. 2015, 15, 88. [Google Scholar] [CrossRef] [Green Version]
- Moore, D.; Reed, M.; Le Patourel, G.; Abraham, Y.J.; Prior, C. Reduction of feeding by the desert locust, Schistocerca gregaria, after infection with Metarhizium flavoviride. J. Invertebr. Pathol. 1992, 60, 304–307. [Google Scholar] [CrossRef]
- Schmidt, F.G.V.; Conceição, P.J.; Benito, N.P.; Lopes, R.B. Susceptibility of three orthopteran species to infection by Metarhizium acridum (Hypocreales: Clavicipitaceae). Int. J. Trop. Insect Sci. 2018, 38, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Seyoum, E.; Moore, D.; Charnley, A.K. Reduction in flight activity and food consumption by the desert locust, Schistocerca gregaria Forskål (Orth., Cyrtacanthacrinae), after infection with Metarhizium flavoviride. J. Appl. Entomol. 1994, 118, 310–315. [Google Scholar] [CrossRef]
- Thomas, M.B.; Blanford, S.; Lomer, C.J. Reduction of feeding by the variegated grasshopper, Zonocerus variegatus, following infection by the fungal pathogen, Metarhizium flavoviride. Biocontrol Sci. Technol. 1997, 7, 327–334. [Google Scholar] [CrossRef]
- El-Maghraby, M.M.A.; Gomaa, E.A.; Metaweh, H.H.; Abdelatef, G.M. Susceptibility of Schistocerca gregaria (Forskål) and Euprepocnemis plorans (Charpentier) to Metarhizium anisopliae var acridum (Metchnikoff) Soroken, Beauveria bassiana (Bals.) Vuill. and Nosema locustae Canning. Egypt. J. Biol. Pest. Control. 2009, 19, 55–61. [Google Scholar]
- Pelizza, S.A.; Mariottini, Y.; Russo, M.L.; Cabello, M.N.; Lange, C.E. Survival and fecundity of Dichroplus maculipennis and Ronderosia bergi (Orthoptera: Acrididae: Melanoplinae) following infection by Beauveria bassiana (Ascomycota: Hypocreales) under laboratory conditions. Biocontrol Sci. Technol. 2013, 23, 701–710. [Google Scholar] [CrossRef]
- Blanford, S.; Shi, W.; Christian, R.; Marden, J.H.; Koekemoer, L.L.; Brooke, B.D.; Coetzee, M.; Read, A.F.; Thomas, M.B. Lethal and pre-lethal effects of a fungal biopesticide contribute to substantial and rapid control of malaria vectors. PLoS ONE 2011, 6, e23591. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.D.; Blanford, S.; Thomas, M.B. House flies delay fungal infection by fevering: At a cost. Ecol. Entomol. 2013, 38, 1–10. [Google Scholar] [CrossRef]
- Acharya, N.; Rajotte, E.G.; Jenkins, N.E.; Thomas, M.B. Potential for biocontrol of house flies, Musca domestica, using fungal biopesticides. Biocontrol Sci. Technol. 2015, 25, 513–524. [Google Scholar] [CrossRef]
- Roxburgh, L.; Pinshow, B.; Prange, H.D. Temperature regulation by evaporative cooling in a desert grasshopper, Calliptamus barbarous. J. Therm. Biol. 1996, 21, 331–337. [Google Scholar] [CrossRef]
- Ouedraogo, R.M.; Cusson, M.; Goettel, M.S.; Brodeur, J. Inhibition of fungal growth in thermoregulating locusts, Locusta migratoria, infected by the fungus Metarhizium anisopliae var acridum. J. Invertebra. Pathol. 2003, 82, 103–109. [Google Scholar] [CrossRef]
- Ouedraogo, R.M.; Goettel, M.S.; Brodeur, J. Behavioral thermoregulation in the migratory locust: A therapy to overcome fungal infection. Oecologia 2004, 138, 312–319. [Google Scholar] [CrossRef]
- Foster, R.N.; Jaronski, S.; Reuter, K.C.; Black, L.R.; Schlothauer, R.; Harper, J.; Jech, L.E. Simulated aerial sprays for field cage evaluation of Beauveria bassiana and Metarhizium brunneum (Ascomycetes: Hypocreales) against Anabrus simplex (Orthoptera: Tettigoniidae) in Montana. Biocontrol Sci. Technol. 2011, 21, 1331–1350. [Google Scholar] [CrossRef]
- Inglis, G.D.; Enkerli, J.; Goettel, M.S. Laboratory techniques used for entomopathogenic fungi: Hypocreales. In Manual of Techniques in Invertebrate Pathology; Lacey, L.A., Ed.; Academic Press: London, UK, 2012; pp. 189–253. [Google Scholar]
- Usman, M.; Gulzar, S.; Wakil, W.; Wu, S.; Piñero, J.C.; Leskey, T.C.; Nixon, L.J.; Oliveira-Hofman, C.; Toews, M.D.; Shapiro-Ilan, D. Virulence of entomopathogenic fungi to Rhagoletis pomonella (Diptera: Tephritidae) and interactions with entomopathogenic nematodes. J. Econ. Entomol. 2020, 113, 2627–2633. [Google Scholar] [CrossRef]
- Gulzar, S.; Wakil, W.; Shapiro-Ilan, D.I. Combined effect of entomopathegns against Thrips tabaci Lindeman (Thysanoptera: Thripidae): Laboratory, greenhouse and field trials. Insects 2021, 12, 456. [Google Scholar] [CrossRef]
- Pelizza, S.A.; Medina, H.; Ferreri, N.A.; Elíades, L.A.; Pocco, M.A.; Stenglein, S.A.; Lange, C.E. Virulence and enzymatic activity of three new isolates of Beauveria bassiana (Ascomycota: Hypocreales) from the South American locust Schistocerca cancellata (Orthoptera: Acrididae). J. King Saud. Univer. 2020, 32, 44–47. [Google Scholar] [CrossRef]
- Dakhel, W.H.; Latchininsky, A.V.; Jaronski, S.T. Efficacy of two entomopathogenic fungi, Metarhizium brunneum, strain F52 alone and combined with Paranosema locustae against the migratory grasshopper, Melanoplus sanguinipes, under laboratory and greenhouse conditions. Insects 2019, 10, 94. [Google Scholar] [CrossRef] [Green Version]
- Valverde-Garcia, P.; Santiago-Alvarez, C.; Thomas, M.B.; Maranhão, E.A.A.; Garrido-Jurado, I.; Quesada-Moraga, E. Sublethal effects of mixed fungal infections on the Moroccan locust, Dociostaurus maroccanus. J. Invertebra. Pathol. 2019, 161, 61–69. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry; Freeman: New York, NY, USA, 1995. [Google Scholar]
- Minitab. Minitab 17 Statistical Computer Software; Minitab Inc.: State College, PA, USA, 2010. [Google Scholar]
- Kaur, S.; Harminder, P.K.; Kaur, K.; Kaur, A. Effect of different concentrations of Beauveria bassiana on development and reproductive potential of Spodoptera litura (Fabricius). J. Biopest. 2011, 4, 161–168. [Google Scholar]
- Inglis, G.D.; Johnson, D.L.; Goettel, M.S. Effects of temperature and thermoregulation on mycosis by Beauveria bassiana in grasshoppers. Biol. Control. 1996, 7, 131–139. [Google Scholar] [CrossRef]
- Wakil, W.; Ghazanfar, M.U.; Riasat, T.; Qayyum, M.A.; Ahmed, S.; Yasin, M. Effects of interactions among Metarhizium anisopliae, Bacillus thuringiensis and chlorantraniliprole on the mortality and pupation of six geographically distinct Helicoverpa armigera field populations. Phytoparasitica 2021, 41, 221–234. [Google Scholar] [CrossRef]
- Wakil, W.; Tahir, M.; Al-Sadi, A.M.; Shapiro-Ilan, D. Interactions between two invertebrate pathogens: An endophytic fungi and externally applied bacterium. Front. Microbiol. 2020, 11, 522368. [Google Scholar] [CrossRef]
- Wakil, W.; Yasin, M.; Shapiro-Ilan, D. Effect of single and combined applications of entomopathogenic fungi and nematodes against Rhynchophorus ferrugineus (Olivier). Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
Treatment | No. of Egg Pods/Female | Eggs/Pod | Egg Hatching (%) | Development Time (days) | |||||
---|---|---|---|---|---|---|---|---|---|
L1 | L2 | L3 | L4 | L5 | Adult | ||||
Green Muscle | 0.76 ± 0.11 c | 23.13 ± 1.75 d | 34.44 ± 4.99 c | 8.63 ± 0.32 a | 7.31 ± 0.17 a | 7.51 ± 0.20 a | 7.90 ± 0.26 a | 10.21 ± 0.42 a | 18.65 ± 1.17 d |
Green Guard | 1.06 ± 0.12 bc | 34.54 ± 1.54 c | 45.33 ± 4.89 bc | 7.96 ± 0.23 ab | 6.86 ± 0.20 ab | 6.96 ± 0.21 ab | 7.48 ± 0.21 ab | 9.64 ± 0.32 ab | 27.30 ± 2.16 cd |
B. bassiana | 1.41 ± 0.11 b | 40.58 ± 1.34 bc | 53.33 ± 3.56 b | 7.22 ± 0.17 bc | 6.20 ± 0.17 bc | 6.71 ± 0.17 b | 7.11 ± 0.20 abc | 9.25 ± 0.27 abc | 33.20 ± 1.81 bc |
M. anisopliae | 2.01 ± 0.16 a | 47.78 ± 2.29 b | 61.11 ± 3.18 b | 6.46 ± 0.19 cd | 5.60 ± 0.16 cd | 5.85 ± 0.15 c | 6.76 ± 0.28 bc | 8.41 ± 0.28 bc | 38.71 ± 2.59 b |
Control | 2.56 ± 0.15 a | 67.36 ± 2.44 a | 85.55 ± 4.00 a | 6.04 ± 0.16 d | 5.08 ± 0.11 d | 5.01 ± 0.13 d | 6.20 ± 0.21 c | 8.06 ± 0.28 c | 55.95 ± 2.75 a |
F | 28.3 | 73.1 | 21.6 | 22.1 | 28.0 | 30.7 | 7.20 | 7.30 | 41.2 |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wakil, W.; Ghazanfar, M.U.; Usman, M.; Hunter, D.; Shi, W. Fungal-Based Biopesticide Formulations to Control Nymphs and Adults of the Desert Locust, Schistocerca gregaria Forskål (Orthoptera: Acrididae): A Laboratory and Field Cage Study. Agronomy 2022, 12, 1160. https://doi.org/10.3390/agronomy12051160
Wakil W, Ghazanfar MU, Usman M, Hunter D, Shi W. Fungal-Based Biopesticide Formulations to Control Nymphs and Adults of the Desert Locust, Schistocerca gregaria Forskål (Orthoptera: Acrididae): A Laboratory and Field Cage Study. Agronomy. 2022; 12(5):1160. https://doi.org/10.3390/agronomy12051160
Chicago/Turabian StyleWakil, Waqas, Muhammad Usman Ghazanfar, Muhammad Usman, David Hunter, and Wangpeng Shi. 2022. "Fungal-Based Biopesticide Formulations to Control Nymphs and Adults of the Desert Locust, Schistocerca gregaria Forskål (Orthoptera: Acrididae): A Laboratory and Field Cage Study" Agronomy 12, no. 5: 1160. https://doi.org/10.3390/agronomy12051160
APA StyleWakil, W., Ghazanfar, M. U., Usman, M., Hunter, D., & Shi, W. (2022). Fungal-Based Biopesticide Formulations to Control Nymphs and Adults of the Desert Locust, Schistocerca gregaria Forskål (Orthoptera: Acrididae): A Laboratory and Field Cage Study. Agronomy, 12(5), 1160. https://doi.org/10.3390/agronomy12051160