The Effects of Catch Crops on Properties of Continuous Cropping Soil and Growth of Vegetables in Greenhouse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experiment Design
2.2. Determination Index and Method
2.3. Statistical Analysis
3. Results
3.1. Soil Physical and Chemical Properties
3.2. Soil Enzyme Activities
3.3. The Amounts of Soil Cultivable Bacteria, Actinomycetes and Fungi
3.4. The Growth and Yield of the Vegetables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, B.; Kang, L.; Ren, T.; Li, J.; Chen, Q.; Wang, J. The impact of exogenous N supply on soluble organic nitrogen dynamics and nitrogen balance in a greenhouse vegetable system. J. Environ. Manag. 2015, 154, 351–357. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2016. [Google Scholar]
- Li, X.; Wang, Z.; Zhang, G. The problems caused by monoculture and the solutions in protected vegetables cultivation. Chin. J. Hebei Agric. Sci. 2006, 10, 106–108. (In Chinese) [Google Scholar]
- Guo, R.; Qin, W.; Jiang, C.; Kang, L.; Nendel, C.; Chen, Q. Sweet corn significantly increases nitrogen retention and reduces nitrogen leaching as summer catch crop in protected vegetable production systems. Soil Tillage Res. 2018, 180, 148–153. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, K.; Zhang, L.; Ji, Y.; Qin, W. Exploring optimal catch crops for reducing nitrate leaching in vegetable greenhouse in North China. Agric. Water Manag. 2018, 212, 273–282. [Google Scholar] [CrossRef]
- Ozlu, E.; Kumar, S. Response of surface GHG fluxes to long-term manure and inorganic fertilizer application in corn and soybean rotation. Sci. Total Environ. 2018, 626, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Ozlu, E.; Sandhu, S.S.; Kumar, S.; Arriaga, F.J. Soil health indicators impacted by long-term cattle manure and inorganic fertilizer application in a corn-soybean rotation of South Dakota. Sci. Rep. 2019, 9, 11776. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020, 10, 177. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Fang, Z.; Tian, Z.; Dong, J.; Gao, L. Effects of cover crops usage on growth and yield of pepper seedlings. J. Northeast Agric. Univ. 2022, 53, 8–15. (In Chinese) [Google Scholar]
- Almendro-Candel, M.; Gómez, L.; Navarro-Pedreño, J.; Zorpas, A. Physical properties of soils affected by the use of agricul-tural waste. Agric. Waste Residues 2018, 2, 9. [Google Scholar]
- Hubbard, R.K.; Strickland, T.C.; Phatak, S. Effects of cover crop systems on soil physical properties and carbon/nitrogen relationships in the coastal plain of southeastern USA. Soil Tillage Res. 2013, 126, 276–283. [Google Scholar] [CrossRef]
- Irmak, S.; Sharma, V.; Mohammed, A.; Djaman, K. Impacts of Cover Crops on Soil Physical Properties: Field Capacity, Permanent Wilting Point, Soil-Water Holding Capacity, Bulk Density, Hydraulic Conductivity, and Infiltration. Trans. ASABE 2018, 61, 1307–1321. [Google Scholar] [CrossRef]
- Harasim, E.; Antonkiewicz, J.; Kwiatkowski, C.A. The Effects of Catch Crops and Tillage Systems on Selected Physical Properties and Enzymatic Activity of Loess Soil in a Spring Wheat Monoculture. Agronomy 2020, 10, 334. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.S.; Angle, J.S.; Chaney, R.L.; Delorme, T.A.; McIntosh, M. Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biol. Biochem. 2006, 38, 1451–1461. [Google Scholar] [CrossRef]
- Kwiatkowski, C.; Harasim, E.; Wesołowski, M. Effects of catch crops and tillage system on weed infestation and health of spring wheat. J. Agric. Sci. Technol. 2016, 18, 999–1012. [Google Scholar]
- Li, S.; Gao, D.; Guo, X.; Zhou, X.; Wu, F. Effects of different summer cover crops and residue management on plant growth and soil microbial community. Int. J. Agric. Biol. 2017, 19, 1350–1356. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.A.; Bardgett, R.D.; Van Straalen, N.M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef]
- Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 2017, 15, 579–589. [Google Scholar] [CrossRef]
- Weil, R.; Kremen, A. Thinking across and beyond disciplines to make cover crops pay. J. Sci. Food Agric. 2006, 87, 551–557. [Google Scholar] [CrossRef]
- Peoples, M.B.; Herridge, D.; Ladha, J. Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production? Plant Soil 1995, 174, 3–28. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Barbercheck, M.; Douglas, M.R.; Finney, D.M.; Haider, K.; Kaye, J.P.; Kemanian, A.R.; Mortensen, D.A.; Ryan, M.R.; Tooker, J.; et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 2014, 125, 12–22. [Google Scholar] [CrossRef]
- Wiggins, B.E.; Kinkel, L.L. Green Manures and Crop Sequences Influence Potato Diseases and Pathogen Inhibitory Activity of Indigenous Streptomycetes. Phytopathology 2005, 95, 178–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsao, S.-M.; Yin, M.-C. In-vitro antimicrobial activity of four diallyl sulphides occurring naturally in garlic and Chinese leek oils. J. Med Microbiol. 2001, 50, 646–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, N.; Tan, G.; Wang, H.; Gai, X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 2016, 74, 1–8. [Google Scholar] [CrossRef]
- Bao, S.D. Analysis Method of Soil and Agricultural Chemistry; China Agricultural Press: Beijing, China, 2000; pp. 25–308. [Google Scholar]
- Guan, S. Methodology of soil enzyme measurement. In Methods of Soil Enzymology; Guan, Y., Ed.; China Agricultural Press: Beijing, China, 1986; pp. 201–314. [Google Scholar]
- Taylor, J.P.; Wilson, B.; Mills, M.S.; Burns, R.G. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol. Biochem. 2002, 34, 387–401. [Google Scholar] [CrossRef]
- Yao, K.; Huang, Y. Soil Microbial Ecology and Its Experimental Techniques; Science Press Beijing: Beijing, China, 2006; pp. 2–180. [Google Scholar]
- Bielińska, E.; Mocek-Płóciniak, A. Impact of the Tillage System on the Soil Enzymatic Activity. Arch. Environ. Prot. 2012, 38, 75–82. [Google Scholar] [CrossRef]
- Ozlu, E.; Kumar, S. Response of soil organic carbon, pH, electrical conductivity, and water stable aggregates to long-term annual manure and inorganic fertilizer. Soil Sci. Soc. Am. J. 2018, 82, 1243–1251. [Google Scholar] [CrossRef]
- Wallenstein, M.D.; Haddix, M.L.; Lee, D.D.; Conant, R.T.; Paul, E.A. A litter-slurry technique elucidates the key role of enzyme production and microbial dynamics in temperature sensitivity of organic matter decomposition. Soil Biol. Biochem. 2012, 47, 18–26. [Google Scholar] [CrossRef]
- Qian, H.; Yang, B.; Huang, G.; Yan, Y.; Fan, Z.; Fang, Y. Effects of returning rice straw to fields with fertilizers and microorganism liquids on soil enzyme activities and microorganisms in paddy fields. Ecol. Environ. Sci. 2012, 21, 440–445. (In Chinese) [Google Scholar] [CrossRef]
- Beckers, B.; Op De Beeck, M.; Weyens, N.; Boerjan, W.; Vangronsveld, J. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome 2017, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Blagodatskaya, E.; Kuzyakov, Y. Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biol. Biochem. 2013, 67, 192–211. [Google Scholar] [CrossRef]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhang, X.; Liu, J.; Chen, Q.; Gao, L. Microbial properties of rhizosphere soils as affected by rotation, grafting, and soil sterilization in intensive vegetable production systems. Sci. Hortic. 2009, 123, 139–147. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, L.; Wu, P.; Gao, Y.; Li, J. Changes of soil nutrients and microbial community diversity in responses to different growth environments and cultivation practices in 30 years. J. Plant Nutr. Fertil. 2015, 21, 1581–1589. (In Chinese) [Google Scholar] [CrossRef]
- Snapp, S.S.; Swinton, S.M.; Labarta, R.; Mutch, D.; Black, J.R.; Leep, R.; Nyiraneza, J.; O′Neil, K. Evaluating Cover Crops for Benefits, Costs and Performance within Cropping System Niches. Agron. J. 2005, 97, 322–332. [Google Scholar] [CrossRef]
- Guo, R.; Li, X.; Christie, P.; Chen, Q.; Jiang, R.; Zhang, F. Influence of root zone nitrogen management and a summer catch crop on cucumber yield and soil mineral nitrogen dynamics in intensive production systems. Plant Soil 2008, 313, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Du Fall, L.A.; Solomon, P.S. Role of Cereal Secondary Metabolites Involved in Mediating the Outcome of Plant-Pathogen Interactions. Metabolites 2011, 1, 64–78. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Zhang, X.; Liu, J.; Gao, L. Effects of summer cover crop and residue management on cucumber growth in intensive Chinese production systems: Soil nutrients, microbial properties and nematodes. Plant Soil 2010, 339, 299–315. [Google Scholar] [CrossRef]
- Acuña, J.C.M.; Villamil, M.B. Short-Term Effects of Cover Crops and Compaction on Soil Properties and Soybean Production in Illinois. Agron. J. 2014, 106, 860–870. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K.; Nielsen, N.E. Modelling and measuring the effect of nitrogen catch crops on the nitrogen supply for succeeding crops. Plant Soil 1998, 203, 79–89. [Google Scholar] [CrossRef]
pH | Bulk Density g cm−1 | Electric Conductivity mS cm−1 | Organic Matter g kg−1 | Total N g kg−1 | Alkali Hydrolyzed Nitrogen mg kg−1 | Available Phosphorus mg kg−1 | Available Potassium mg kg−1 |
---|---|---|---|---|---|---|---|
8.12 | 1.30 | 1.32 | 18.56 | 1.40 | 158.50 | 109.27 | 169.00 |
Vegetable | Treatment | Plant Height cm | Stem Diameter mm | Leaf Length cm | Leaf Width cm |
---|---|---|---|---|---|
Tomato | CK | 137.46 ± 4.31 b | 9.08 ± 0.74 c | 48.15 ± 2.12 b | 43.30 ± 2.01 b |
Onion | 139.15 ± 3.20 b | 10.24 ± 0.85 b | 49.10 ± 2.01 ab | 43.67 ± 1.87 b | |
Corn | 141.2 ± 1.28 b | 10.31 ± 0.65 ab | 50.25 ± 2.98 a | 44.73 ± 3.45 a | |
Wheat | 158.15 ± 5.71 a | 10.89 ± 0.41 ab | 48.90 ± 3.01ab | 44.85 ± 2.01 a | |
Soy | 122.9 ± 3.04 c | 10.33 ± 0.88 ab | 45.21 ± 1.98 c | 43.13 ± 1.80 b | |
Cabbage | 142.35 ± 1.87 b | 11.24 ± 1.07 a | 45.85 ± 2.07 c | 42.03 ± 2.75 c | |
Melon | CK | 212.12 ± 5.87 b | 10.76 ± 0.65 b | 32.95 ± 1.65 b | 23.50 ± 1.02 ab |
Onion | 215.27 ± 8.71 b | 10.74 ± 0.47 b | 33.04 ± 1.98 b | 24.03 ± 0.87 ab | |
Corn | 226.53 ± 7.12 a | 11.28 ± 0.87 ab | 33.16 ± 1.21 b | 23.37 ± 1.44 ab | |
Wheat | 226.15 ± 4.34 a | 11.75 ± 0.24 a | 34.17 ± 1.74 a | 24.31 ± 2.00 a | |
Soy | 218.50 ± 4.17 ab | 10.89 ± 0.87 ab | 33.36 ± 2.09 b | 23.60 ± 1.81 ab | |
Cabbage | 219.14 ± 4.21 ab | 10.72 ± 0.74 b | 33.86a ± 0.98 b | 22.63 ± 0.87 b | |
Eggplant | CK | 109.12 ± 2.07 b | 15.10 ± 0.89 b | 39.99 ± 2.01 b | 29.97 ± 0.54 c |
Onion | 109.24 ± 3.21 b | 15.03 ± 1.45 b | 39.80 ± 2.34 b | 29.91 ± 1.54 c | |
Corn | 112.08 ± 2.01 a | 15.64 ± 1.89 a | 41.22 ± 2.78 a | 31.02 ± 1.55 a | |
Wheat | 113.19 ± 2.22 a | 15.62 ± 1.98 a | 41.64 ± 1.87 a | 30.97 ± 1.95 a | |
Soy | 109.48 ± 2.14 b | 15.17 ± 1.64 b | 40.11 ± 1.02 b | 30.41 ± 1.74 b | |
Cabbage | 109.01 ± 0.87 b | 14.96 ± 1.44 b | 40.03 ± 1.12 b | 29.89 ± 1.07 c | |
Pumpkin | CK | 195.32 ± 4.54 c | 9.10 ± 0.85 b | 27.06 ± 0.87 c | 25.50 ± 0.87 b |
Onion | 194.11 ± 4.78 c | 9.40 ± 0.65 b | 27.80 ± 1.02 b | 25.37 ± 1.47 b | |
Corn | 212.03 ± 5.67 a | 10.21 ± 0.79 a | 28.22 ± 1.32 a | 26.58 ± 2.07 a | |
Wheat | 210.34 ± 7.43 a | 10.35 ± 1.26 a | 28.34 ± 0.96 a | 26.66 ± 2.14 a | |
Soy | 205.28 ± 4.21 b | 9.12 ± 0.87 b | 27.61 ± 1.01 b | 25.49 ± 1.54 b | |
Cabbage | 197.06 ± 3.23 c | 9.06 ± 0.80 b | 27.08 ± 0.88 c | 25.61 ± 1.12 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Zhou, R.; Nie, L.; Sun, M.; Wu, X.; Jiang, F. The Effects of Catch Crops on Properties of Continuous Cropping Soil and Growth of Vegetables in Greenhouse. Agronomy 2022, 12, 1179. https://doi.org/10.3390/agronomy12051179
Qi Y, Zhou R, Nie L, Sun M, Wu X, Jiang F. The Effects of Catch Crops on Properties of Continuous Cropping Soil and Growth of Vegetables in Greenhouse. Agronomy. 2022; 12(5):1179. https://doi.org/10.3390/agronomy12051179
Chicago/Turabian StyleQi, Yingbin, Rong Zhou, Lanchun Nie, Mintao Sun, Xiaoting Wu, and Fangling Jiang. 2022. "The Effects of Catch Crops on Properties of Continuous Cropping Soil and Growth of Vegetables in Greenhouse" Agronomy 12, no. 5: 1179. https://doi.org/10.3390/agronomy12051179
APA StyleQi, Y., Zhou, R., Nie, L., Sun, M., Wu, X., & Jiang, F. (2022). The Effects of Catch Crops on Properties of Continuous Cropping Soil and Growth of Vegetables in Greenhouse. Agronomy, 12(5), 1179. https://doi.org/10.3390/agronomy12051179