Biomass Quality Variations over Different Harvesting Regimes and Dynamics of Heavy Metal Change in Miscanthus lutarioriparius around Dongting Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Strategy
2.2. Chemical Analysis of Soils and Plants
2.3. Data Analysis
3. Results
3.1. Variation in Soil Chemical Properties and HM Concentrations across 11 Sampling Sites within the Dongting Lake Region
3.2. Seasonal Changes in HM Concentrations in Different Plant Organs
3.3. Adsorption and Translocation Characteristics of HM Elements in Different Organs
3.4. Factors Contributing to the Variation in HM Absorption and Translocation Capabilities of M. lutarioriparius
4. Discussion
4.1. Factors Affecting the Seasonal Dynamics of HM Concentrations in M. lutarioriparius Biomass
4.2. Recommendations for the Utilization of M. lutarioriparius Biomass Based on the Seasonal Dynamics of HM Concentrations
4.3. Potential Ecological Risks Posed by the Unharvested M. lutarioriparius Biomass around the Dongting Lake
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Wu, S.; Huang, F.; Huang, H.; Yi, Z.; Xue, S. Biomodification of feedstock for quality-improved biochar: A green method to enhance the Cd sorption capacity of Miscanthus lutarioriparius-derived biochar. J. Clean. Prod. 2022, 350, 131241. [Google Scholar] [CrossRef]
- Xue, S.; Kalinina, O.; Lewandowski, I. Present and future options for Miscanthus propagation and establishment. Renew. Sustain. Energy Rev. 2015, 49, 1233–1246. [Google Scholar] [CrossRef]
- Yao, X.; Niu, Y.; Li, Y.; Zou, D.; Ding, X.; Bian, H. Heavy metal bioaccumulation by Miscanthus sacchariflorus and its potential for removing metals from the Dongting Lake wetlands, China. Environ. Sci. Pollut. Res. 2018, 25, 20003–20011. [Google Scholar] [CrossRef]
- Xue, S.; Yi, Z.; Huang, H.; Yang, S. Development of the Dongting Lake grown Miscanthus lutarioriparius derived bio-industries: Problems and solutions. Environ. Ecol. 2022, 4, 33–38. [Google Scholar]
- Xue, S.; Lewandowski, I.; Wang, X.; Yi, Z. Assessment of the production potentials of Miscanthus on marginal land in China. Renew. Sustain. Energy. Rev. 2016, 54, 932–943. [Google Scholar] [CrossRef]
- Liao, X.; Long, Q.; Wang, H.; Yi, Z.; Xue, S. Interaction effects of Miscanthus lutarioriparius-derived biochar and cadmium passivators on rice cadmium content and yield. J. Agro-Environ. Sci. 2018, 37, 1818–1826. [Google Scholar]
- Xue, S.; Guo, M.; Iqbal, Y.; Liao, J.; Yang, S.; Xiao, L.; Yi, Z. Mapping current distribution and genetic diversity of the native Miscanthus lutarioriparius across China. Renew. Sustain. Energy. Rev. 2020, 134, 110386. [Google Scholar] [CrossRef]
- Zheng, C.; Iqbal, Y.; Labonte, N.; Sun, G.; Feng, H.; Yi, Z.; Xiao, L. Performance of switchgrass and Miscanthus genotypes on marginal land in the Yellow River Delta. Ind. Crops Prod. 2019, 141, 111773. [Google Scholar] [CrossRef]
- Pidlisnyuk, V.; Stefanovska, T.; Lewis, E.E.; Erickson, L.E.; Davis, L.C. Miscanthus as a productive biofuel crop for phytoremediation. Crit. Rev. Plant Sci. 2014, 33, 1–19. [Google Scholar] [CrossRef]
- Alexopoulou, E. Perennial Grasses for Bioenergy and Bioproducts: Production, Uses, Sustainability and Markets for Giant Reed, Miscanthus, Switchgrass, Reed Canary Grass and Bamboo; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Liu, J.; Liang, J.; Yuan, X.; Zeng, G.; Yuan, Y.; Wu, H.; Huang, X.; Liu, J.; Hua, S.; Li, F.; et al. An integrated model for assessing heavy metal exposure risk to migratory birds in wetland ecosystem: A case study in Dongting Lake Wetland, China. Chemosphere 2015, 135, 14–19. [Google Scholar] [CrossRef]
- Wang, C.; Kong, Y.; Hu, R.; Zhou, G. Miscanthus: A fast-growing crop for environmental remediation and biofuel production. GCB Bioenergy 2021, 13, 58–69. [Google Scholar] [CrossRef]
- Yang, S. Research on Genetic Diversity and Cultivation Techniques for High Biomass of Miscanthus lutarioriparius. Doctoral Dissertation, Hunan Agricultural University: Changsha, China, 2019. [Google Scholar]
- Bao, S.D. Soil Agrochemical Analysis, 3rd ed.; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, G.; Vymazal, J.; Cirelli, G.L. Translocation, accumulation and bioindication of trace elements in wetland plants. Sci. Total Environ. 2018, 631–632, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, G.; Cirelli, G.L. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia. Ecotoxicol. Environ. Saf. 2017, 143, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Ghori, Z.; Iftikhar, H.; Bhatti, M.F.; Nasarum, M.; Sharma, I.; Kazi, A.G.; Ahmad, P. Chapter 15—Phytoextraction: The Use of Plants to Remove Heavy Metals from Soil. In Plant Metal Interaction; Ahmad, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 385–409. [Google Scholar]
- Krzesłowska, M. The cell wall in plant cell response to trace metals: Polysaccharide remodeling and its role in defense strategy. Acta Physiol. Plant. 2011, 33, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Adamczyk-Szabela, D.; Markiewicz, J.; Wolf, W.M. Heavy metal uptake by herbs. IV. influence of soil pH on the content of heavy metals in Valeriana officinalis L. Water Air Soil Pollut. 2015, 226, 106. [Google Scholar] [CrossRef] [Green Version]
- Antonkiewicz, J.; Kołodziej, B.; Bielińska, E.J. The use of reed canary grass and giant miscanthus in the phytoremediation of municipal sewage sludge. Environ. Sci. Pollut. Res. 2016, 23, 9505–9517. [Google Scholar] [CrossRef]
- van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 2013, 362, 319–334. [Google Scholar] [CrossRef]
- Li, F.; Huang, J.; Zeng, G.; Yuan, X.; Li, X.; Liang, J.; Wang, X.; Tang, X.; Bai, B. Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J. Geochem. Explor. 2013, 132, 75–83. [Google Scholar] [CrossRef]
- Liang, J.; Liu, J.; Yuan, X.; Zeng, G.; Lai, X.; Li, X.; Wu, H.; Yuan, Y.; Li, F. Spatial and temporal variation of heavy metal risk and source in sediments of Dongting Lake wetland, mid-south China. J. Environ. Sci. Health A 2015, 50, 100–108. [Google Scholar] [CrossRef]
- Peng, D.; Liu, Z.; Su, X.; Xiao, Y.; Wang, Y.; Middleton, B.A.; Lei, T. Spatial distribution of heavy metals in the West Dongting Lake floodplain, China. Environ. Sci.-Proc. Impacts 2020, 22, 1256–1265. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J. Study on Flavonoids and Analyse on Ingredients of Triarrhena lutarioriparia L. Liu in the Dongting Lake. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2016. [Google Scholar]
- Liao, X.; Zhou, X.; Cai, D.; Wang, H.; Yi, Z.; Xue, S. Effects of application of Miscanthus lutarioriparius-derived biochar based-soil conditioner on photosynthetic characteristics and yield of rice (Oryza sativa L.). J. Agric. Sci. Technol. 2019, 21, 132–139. [Google Scholar]
- Ab Rhaman, S.M.; Naher, L.; Siddiquee, S. Mushroom quality related with various substrates’ bioaccumulation and translocation of heavy metals. J. Fungi 2022, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Geng, M.; Wang, K.; Yang, N.; Li, F.; Zou, Y.; Chen, X.; Deng, Z.; Xie, Y. Evaluation and variation trends analysis of water quality in response to water regime changes in a typical river-connected lake (Dongting Lake), China. Environ. Pollut. 2021, 268, 115761. [Google Scholar] [CrossRef]
- Kayranli, B.; Scholz, M.; Mustafa, A.; Hedmark, Å. Carbon storage and fluxes within freshwater wetlands: A critical review. Wetlands 2010, 30, 111–124. [Google Scholar] [CrossRef]
- Carmichael, M.J.; Helton, A.M.; White, J.C.; Smith, W.K. Standing dead trees are a conduit for the atmospheric flux of CH4 and CO2 from wetlands. Wetlands 2018, 38, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Geng, M.; Zhang, W.; Hu, T.; Wang, R.; Cheng, X.; Wang, J. Eutrophication causes microbial community homogenization via modulating generalist species. Water Res. 2022, 210, 118003. [Google Scholar] [CrossRef]
Parameter a | Location b | Statistic | Sources of Variance in ANOVA (p-Value) | |||||
---|---|---|---|---|---|---|---|---|
Southern Dongting | Eastern Dongting | Mean | Variation Coefficient (%) | Month | Site | Month × Site | ||
Chemical properties | pH | 7.34 | 7.62 | 7.47 | 10.68 | 0.106 | 0.350 | 0.131 |
EC (μs cm−1) | 425.83 | 367.89 | 399.49 | 36.63 | 0.961 | 0.487 | 0.994 | |
TN (%) | 0.10A | 0.06B | 0.08 | 37.70 | 0.984 | 0.001 | 0.997 | |
TP (%) | 0.07a | 0.06b | 0.06 | 28.45 | 0.668 | 0.047 | 0.378 | |
TK (%) | 1.12 | 1.05 | 1.09 | 34.24 | 0.397 | 0.435 | 0.826 | |
AP (mg kg−1) | 26.67a | 16.99b | 22.27 | 69.82 | 0.993 | 0.026 | 0.680 | |
AK (mg kg−1) | 172.55a | 112.17b | 145.11 | 61.03 | 0.341 | 0.023 | 0.340 | |
SOM (%) | 2.72a | 2.11b | 2.44 | 32.85 | 0.339 | 0.016 | 0.094 | |
Heavy metal concentration (mg kg−1) | Cu | 32.14 | 29.94 | 31.14 | 36.58 | 0.995 | 0.346 | 0.995 |
Mn | 368.38A | 226.65B | 303.96 | 37.89 | 0.998 | 0.001 | 0.997 | |
Zn | 190.77A | 141.44B | 168.35 | 22.18 | 0.882 | <0.001 | 0.867 | |
Cd | 4.06A | 1.37B | 2.83 | 95.17 | 0.715 | <0.001 | 0.903 | |
Cr | 78.00A | 57.89B | 68.86 | 23.56 | 0.997 | <0.001 | 0.999 | |
Pb | 78.87A | 51.21B | 66.30 | 45.10 | 0.245 | <0.001 | 0.730 |
Sampling Sites | April (mg kg−1) | December (mg kg−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu | Mn | Zn | Cd | Cr | Pb | Cu | Mn | Zn | Cd | Cr | Pb | |
S1 | 7.64 | 28.36 | 37.09 | 0.13 | 1.20 | 1.13 | 4.02 | 38.15 | 33.58 | 0.26 | 1.45 | 3.34 |
S2 | 7.82 | 92.72 | 45.80 | 0.12 | 0.84 | 0.95 | 3.55 | 56.29 | 31.87 | 0.17 | 1.53 | 3.43 |
S3 | 10.96 | 76.75 | 62.50 | 0.31 | 1.46 | 1.02 | 3.80 | 42.13 | 26.72 | 0.36 | 4.77 | 2.93 |
S4 | 11.13 | 42.29 | 46.74 | 0.07 | 0.91 | 0.91 | 4.62 | 13.13 | 15.33 | 0.12 | 1.71 | 2.48 |
S5 | 10.84 | 29.28 | 49.88 | 0.05 | 1.14 | 0.86 | 3.87 | 43.66 | 19.66 | 0.12 | 1.52 | 2.49 |
S6 | 10.95 | 42.70 | 50.36 | 0.09 | 1.49 | 1.20 | 4.85 | 51.02 | 34.17 | 0.33 | 1.94 | 4.58 |
S7 | n/a | n/a | n/a | n/a | n/a | n/a | 4.59 | 35.33 | 17.35 | n/a | n/a | n/a |
S8 | 12.25 | 50.12 | 54.58 | 0.09 | 1.29 | 1.85 | 5.15 | 46.10 | 33.10 | 0.12 | 1.73 | 2.89 |
S9 | 7.69 | 60.44 | 26.37 | 0.04 | 1.25 | 1.38 | 5.05 | 22.07 | 14.99 | 0.14 | 7.85 | 2.81 |
S10 | 13.06 | 22.85 | 44.61 | 0.13 | 1.78 | 1.65 | 5.06 | 31.15 | 20.95 | 0.19 | 1.95 | 3.55 |
S11 | 14.13 | 51.08 | 60.86 | 0.08 | 1.17 | 1.03 | 8.78 | 24.92 | 58.08 | 0.38 | 1.74 | 3.38 |
Southern Dongting | 9.89 | 52.02 | 48.73 | 0.13 | 1.17 | 1.01 | 4.12 | 40.73 | 26.89 | 0.22 | 2.15 | 3.21 |
Eastern Dongting | 11.78 | 46.12 | 46.61 | 0.09 | 1.37 | 1.48 | 5.73 | 31.91 | 28.89 | 0.20 | 3.32 | 3.16 |
Overall mean | 10.65 | 49.66 | 47.88 | 0.11 | 1.25 | 1.20 | 4.92 | 36.32 | 27.89 | 0.21 | 2.74 | 3.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, X.; Wu, Y.; Fu, T.; Iqbal, Y.; Yang, S.; Li, M.; Yi, Z.; Xue, S. Biomass Quality Variations over Different Harvesting Regimes and Dynamics of Heavy Metal Change in Miscanthus lutarioriparius around Dongting Lake. Agronomy 2022, 12, 1188. https://doi.org/10.3390/agronomy12051188
Liao X, Wu Y, Fu T, Iqbal Y, Yang S, Li M, Yi Z, Xue S. Biomass Quality Variations over Different Harvesting Regimes and Dynamics of Heavy Metal Change in Miscanthus lutarioriparius around Dongting Lake. Agronomy. 2022; 12(5):1188. https://doi.org/10.3390/agronomy12051188
Chicago/Turabian StyleLiao, Xionghui, Yini Wu, Tongcheng Fu, Yasir Iqbal, Sai Yang, Meng Li, Zili Yi, and Shuai Xue. 2022. "Biomass Quality Variations over Different Harvesting Regimes and Dynamics of Heavy Metal Change in Miscanthus lutarioriparius around Dongting Lake" Agronomy 12, no. 5: 1188. https://doi.org/10.3390/agronomy12051188
APA StyleLiao, X., Wu, Y., Fu, T., Iqbal, Y., Yang, S., Li, M., Yi, Z., & Xue, S. (2022). Biomass Quality Variations over Different Harvesting Regimes and Dynamics of Heavy Metal Change in Miscanthus lutarioriparius around Dongting Lake. Agronomy, 12(5), 1188. https://doi.org/10.3390/agronomy12051188