Combined Organic and Inorganic Fertilization Can Enhance Dry Direct-Seeded Rice Yield by Improving Soil Fungal Community and Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Soil Sampling and Rice Yield and Yield Components Measurements
2.4. Soil DNA Extraction and Illumina HiSeq Sequencing
2.5. Bioinformatics and Statistical Analyses
3. Results
3.1. Paddy Soils Sequencing Throughput
3.2. Effect of Organic-Inorganic Fertilizers on the Alpha Diversity of the Soil Fungal Community
3.3. Effect of Combined Organic-Inorganic Fertilizers on Soil Fungal OTUs
3.4. Effect of Organic-Inorganic Fertilizers on Soil Fungal Community at Phyla and Class Levels
3.5. Ecological Function of Soil Fungi
3.6. Yield and Yield Components under Different Fertilizer Treatments in Dry Direct-Seeded Rice
3.7. Yield and Dominant Fungal Taxa in Paddy Soil: Correlation Analysis
4. Discussion
4.1. Effect of Organic-Inorganic Fertilizers on Dry Direct-Seeded Paddy Soil Fungal Diversity
4.2. Effect of Organic-Inorganic Fertilizers on Dry Direct-Seeded Paddy Soil Fungal Structure and Function
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Birla, D.S.; Malik, K.; Sainger, M.; Chaudhary, D.; Jaiwal, R.; Jaiwal, P.K. Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.). Crit. Rev. Food Sci. 2017, 57, 2455–2781. [Google Scholar] [CrossRef]
- Tao, Y.; Chen, Q.; Peng, S.B.; Wang, W.Q.; Nie, L.X. Lower global warming potential and higher yield of wet direct-seeded rice in Central China. Agron. Sustain. Dev. 2016, 36, 24. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.M.; Wu, K.; Liu, W.Q.; Wei, G.L.; Lu, X.; Li, Z.L.; Wei, S.Q.; Liang, H.; Jiang, L.G. Effects of partial substitution of seaweed fertilizers and microbial inoculant for chemical fertilizer on rice yield and its components. Crops 2022, 1, 161–166. (In Chinese) [Google Scholar] [CrossRef]
- Farooq, M.; Siddique, K.H.M.; Rehman, H.; Aziz, T.; Lee, D.J.; Wahid, A. Rice direct seeding: Experiences, challenges and opportunities. Soil Till. Res. 2011, 111, 87–98. [Google Scholar] [CrossRef]
- Ya, Z.J.; Lu, S.C.; Hou, K. Development status, problems and application prospects of dry direct seeding rice. Crops 2020, 2, 9–15. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Q.C.; Wang, G.H. Optimal nitrogen application for direct-seeding early rice. Chin. J. Rice Sci. 2002, 16, 346–350. (In Chinese) [Google Scholar] [CrossRef]
- Liu, H.Y.; Won, P.L.P.; Banayo, N.P.M.; Nie, L.X.; Peng, S.B.; Kato, Y. Late-season nitrogen applications improve grain yield. and fertilizer-use efficiency of dry direct-seeded rice in the tropics. Field Crops Res. 2019, 233, 114–120. [Google Scholar] [CrossRef]
- Dhillon, B.S.; Kaur, R.; Khanna, R.; Dhillon, B.S.; Mangat, G.S.; Gewaily, E.E.; Ghoneim, A.M.; Osman, M.A.; Kumar, P.; Choudhary, S.K.; et al. Response of rice genotypes to nitrogen fertilizer under dry direct seeding in North-Western India. Agric. Res. J. 2021, 58, 532–534. [Google Scholar] [CrossRef]
- Yang, A.Z.; Tang, H.Y.; Nie, Y.C.; Zhang, X. Responses of cotton growth, yield, and biomass to nitrogen split application ratio. Eur. J. Agron. 2011, 35, 164–170. [Google Scholar] [CrossRef]
- Wan, L.J.; He, M.; Tian, Y.; Zheng, Y.Q.; Lv, Q.; Xie, R.J.; Ma, Y.Y.; Deng, L.; Yi, S.L.; Li, J. Effects of partial substitution of chemical fertilizer with organic fertilizer on Ponkan growth and yield and soil biological properties. J. Plant Nutr. Fertil. 2022, 28, 675–687. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Y.M.; Xiao, H.J.; Zhao, H.; Qin, S.; Gou, J.L.; Zhao, T.F.; Hu, G.; Zhao, L.X.; He, C.X.; Zhang, M.; et al. Effects of commercial organic fertilizer as substitution of chemical fertilizer on growth, yield of spring maize and soil fertility. Southwest China J. Agric. Sci. 2022, 35, 148–152. (In Chinese) [Google Scholar] [CrossRef]
- Klaubauf, S.; Inselsbacher, E.; Zechmeister-Boltenstern, S.; Wanek, W.; Gottsberger, R.; Strauss, J.; Gorfer, M. Molecular diversity of fungal communities in agricultural soils from Lower Austria. Fungal Divers. 2010, 44, 65–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheteiwy, M.S.; Ali, D.F.S.; Xiong, Y.C.; Brestic, M.; Skalicky, M.; Hamoud, Y.A.; Ulhassan, Z.; Shaghaleh, H.; AbdElgawad, H.; Farooq, M.; et al. Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biol. 2021, 21, 195. [Google Scholar] [CrossRef] [PubMed]
- Sheteiwy, M.S.; Elgawad, H.A.; Xiong, Y.C.; Macovei, A.; Brestic, M.; Skalicky, M.; Shaghaleh, H.; Hamoud, Y.A.; El-Sawah, A.M. Inoculation with Bacillus amyloliquefaciens and mycorrhiza confers tolerance to drought stress and improve seed yield and quality of soybean plant. Physiol. Plant. 2021, 172, 2153–2169. [Google Scholar] [CrossRef]
- Zhu, Y.Z.; Li, Y.Y.; Han, J.G.; Yao, H.Y. Effects of changes in water status on soil microbes and their response mechanism a review. Chin. J. Appl. Ecol. 2019, 30, 4323–4332. (In Chinese) [Google Scholar] [CrossRef]
- Vries, F.T.D.; Liiri, M.E.; Bjørnlund, L.; Bowker, M.A.; Christensen, S.; Setälä, H.M.; Bardgett, R.D. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Change 2012, 2, 276–280. [Google Scholar] [CrossRef]
- Barnard, R.L.; Osborne, C.A.; Firestone, M.K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J. 2013, 7, 2229–2241. [Google Scholar] [CrossRef]
- Chen, D.M.; Chen, X.M.; Liang, Y.J.; Huo, X.J.; Zhang, C.H.; Duan, Y.Q.; Yuan, L. Influence of crop rotation on soil nutrients, microbial activities and bacterial community structures. Acta Pratacult. Sin. 2015, 24, 56–65. (In Chinese) [Google Scholar] [CrossRef]
- Babu, A.G.; Reddy, M.S. Diversity of arbuscular mycorrhizal fungi associated with plants growing in fly ash pond and their potential role in ecological restoration. Curr. Microbiol. 2011, 63, 273–280. [Google Scholar] [CrossRef]
- Thormann, M.N. Diversity and function of fungi in peatlands: A carbon cycling perspective. Can. J. Soil Sci. 2006, 86, 281–293. [Google Scholar] [CrossRef]
- Cai, Y.; Hao, M.D.; Zang, Y.F.; He, X.Y.; Zhang, L.Q. Effect of long-term fertilization on microbial diversity of black loessial soil based on 454 Sequencing technology. J. Nucl. Agric. Sci. 2015, 29, 344–350. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Cao, Z.P.; Yang, H.F. Effects of long-term fertilization on soil fungi. Chin. J. Eco-Agric. 2014, 22, 1267–1273. (In Chinese) [Google Scholar] [CrossRef]
- Kamaa, M.; Mburu, H.; Blanchart, E.; Chibole, L.; Chotte, J.L.; Kibunja, C.; Lesueur, D. Effects of organic and inorganic fertilization on soil bacterial and fungal microbial diversity in the Kabete long-term trial, Kenya. Biol. Fertil. Soils 2011, 47, 315–321. [Google Scholar] [CrossRef]
- Yang, H.; Jin, F.R.; Guan, T.W.; Xu, H.X.; Hu, X.P.; Xie, Q. Short-term effect of partial substitution of inorganic fertilizer with organic fertilizer on soil fertility and fungal communities in greenhouse. Acta Agric. Boreali-Occident. Sin. 2021, 30, 422–430. (In Chinese) [Google Scholar] [CrossRef]
- Lang, J.J.; Hu, J.; Ran, W.; Xu, Y.C.; Shen, Q.R. Control of cotton Verticillium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer. Biol. Fertil. Soils 2012, 48, 191–203. [Google Scholar] [CrossRef]
- Tao, C.Y.; Li, R.; Xiong, W.; Shen, Z.Z.; Liu, S.S.; Wang, B.B.; Ruan, Y.Z.; Kowalchuk, G.A. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome 2020, 8, 137. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; Sahl, J.W.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Zhong, W.H.; Gu, T.; Wang, W.; Zhang, B.; Lin, X.G.; Huang, Q.R.; Shen, W.S. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 2010, 326, 511–522. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Wu, M.; Jiang, C.Y.; Chen, X.F.; Cai, Z.J.; Li, Z.P. Soil pH rather than nutrients drive changes in microbial community following long-term fertilization in acidic Ultisols of southern China. J. Soil Sediments 2018, 18, 1853–1864. [Google Scholar] [CrossRef]
- Sun, R.; Chen, Y.; Han, W.X.; Dong, W.X.; Zhang, Y.M.; Hu, C.S.; Liu, B.B.; Wang, F.H. Different contribution of species sorting and exogenous species immigration from manure to soil fungal diversity and community assemblage under long-term fertilization. Soil Biol. Biochem. 2020, 151, 108049. [Google Scholar] [CrossRef]
- Ji, L.F.; Ni, K.; Ma, L.F.; Chen, Z.J.; Zhao, Y.Y.; Ruan, J.Y.; Guo, S.W. Effect of different fertilizer regimes on the fungal community of acidic tea-garden soil. Acta Ecol. Sin. 2018, 38, 8158–8166. (In Chinese) [Google Scholar] [CrossRef]
- Chen, C.; Zhang, J.N.; Lu, M.; Qin, C.; Chen, Y.H.; Yang, L.; Shen, Q.R. Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers. Biol. Fertil. Soils 2016, 52, 455–467. [Google Scholar] [CrossRef]
- Luo, P.Y.; Han, X.R.; Wang, Y.; Han, M.; Shi, H.; Liu, N.; Bai, H.Z. Influence of long-term fertilization on soil microbial biomass, dehydrogenase activity, and bacterial and fungal community structure in a brown soil of northeast China. Ann. Microbiol. 2015, 65, 533–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.J.; Liu, J.J.; Wei, D.; Zhu, P.; Cui, X.A.; Zhou, B.K.; Wang, G.H. Effects of over 30-year of different fertilization regimes on fungal community compositions in the black soils of northeast China. Agric. Ecosyst. Environ. 2017, 248, 113–122. [Google Scholar] [CrossRef]
- Ding, J.L.; Jiang, X.; Guan, D.W.; Zhao, B.S.; Ma, M.C.; Zhou, B.K.; Li, J. Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Appl. Soil Ecol. 2017, 111, 114–122. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.Q.; Shen, F.; Tian, D.; Zeng, Y.M.; Yang, G.; Deng, S.H. Partitioning biochar properties to elucidate their contributions to bacterial and fungal community composition of purple soil. Sci. Total Environ. 2019, 648, 1333–1341. [Google Scholar] [CrossRef]
- Quilliam, R.S.; Glanville, H.C.; Wade, S.C.; Jones, D.L. Life in the ‘charosphere’-Does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biol. Biochem. 2013, 65, 287–293. [Google Scholar] [CrossRef]
- Sizmur, T.; Quilliam, R.; Puga, A.P.; Moreno-Jiménez, E.; Beesley, L.; Gomez-Eyles, J.L. Application of biochar for soil remediation. In: Guo MX, He ZQ, Uchimiya SM. Agricultural and environmental applications of biochar: Advances and barriers. Soil Sci. Soc. Am. Inc. 2015, 63, 295–324. [Google Scholar] [CrossRef]
- Graber, E.R.; Harel, Y.M.; Kolton, M.; Cytryn, E.; Silber, A.; David, D.R.; Elad, Y. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 2010, 337, 481–496. [Google Scholar] [CrossRef]
- Hieu, T.; Slawo, L.; Barry, D. Potential for misidentification of environmentally persistent free radicals as molecular pollutants in particulate matter. Environ. Sci. Technol. 2010, 44, 1933–1939. [Google Scholar] [CrossRef] [Green Version]
- Warnock, D.D.; Mummey, D.L.; McBride, B.; Major, J.; Lehmann, J.; Rillig, M.C. Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: Results from growth-chamber and field experiments. Appl. Soil Ecol. 2010, 46, 450–456. [Google Scholar] [CrossRef]
- Sun, R.; Dsouza, M.; Gilbert, J.A.; Guo, X.S.; Wang, D.Z.; Guo, Z.B.; Chu, H.Y. Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter. Environ. Microbiol. 2016, 18, 5137–5150. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.Q.; Hao, X.H.; Chen, T.; Deng, C.J.; Wu, J.S.; Hu, R.G. Effects of long-term different fertilization on microbial community functional diversity in paddy soil. Acta Ecol. Sin. 2009, 29, 740–748. (In Chinese) [Google Scholar]
- Charles, H.; Dukes, J.S. Impacts of invasive species on ecosystem services. In Biological Invasions; Nentwig, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 217–237. [Google Scholar]
- Li, J.; Yang, X.X.; Yang, W.P.; Li, W.G.; Jing, D.D.; Yang, Z.P.; Gao, Z.Q. Effect of Forage Rape Green Manure Returning to Field on Soil Fungal Community in Winter Wheat Field. Acta Microbiol. Sin. 2021, 61, 2869–2882. (In Chinese) [Google Scholar] [CrossRef]
- Moll, J.; Goldmann, K.; Kramer, S.; Stefan, H.; Ellen, K.; Sven, M.; Francois, B. Resource type and availability regulate fungal communities along arable soil profiles. Microb. Ecol. 2015, 70, 390–399. [Google Scholar] [CrossRef]
- Hanson, C.A.; Allison, S.D.; Bradford, M.A.; Wallenstein, M.D.; Treseder, K.K. Fungal taxa target different carbon sources in forest soil. Ecosystems 2008, 11, 1157–1167. [Google Scholar] [CrossRef]
- Cwalina-Ambroziak, B.; Bowszys, T. Changes in fungal communities in organically fertilized soil. Plant Soil Environ. 2009, 64, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.H. Can ectomycorrhizal fungi circumvent the nitrogen mineralization for plant nutrition in temperate forest ecosystems? Soil Biol. Biochem. 2011, 43, 1109–1117. [Google Scholar] [CrossRef]
- Bonanomi, G.; Antignani, V.; Pane, C.; Scala, F. Suppression of soilborne fungal diseases with organic amendments. J. Plant Pathol. 2007, 89, 325–340. [Google Scholar]
- Schönning, C.; Leeming, R.; Stenström, T.A. Faecal contamination of source-separated human urine based on the content of faecal sterols. Water Res. 2002, 36, 1965–1972. [Google Scholar] [CrossRef]
Year | Hydrolyzable Nitrogen (mg kg−1) | Available Phosphorus (mg kg−1) | Available Potassium (mg kg−1) | Organic Matter (g kg−1) | pH |
---|---|---|---|---|---|
2018 | 106.67 | 29.55 | 171.95 | 27.70 | 5.91 |
2019 | 137.40 | 24.40 | 159.90 | 39.00 | 6.70 |
2020 | 128.46 | 25.38 | 163.43 | 40.00 | 6.32 |
Treatment 1 | Raw Reads | Effective Reads | Average Sequence Length | Effectiveness (%) | Coverage |
---|---|---|---|---|---|
F0 | 49,855 | 46,126 | 224 | 92.50 | 0.9989 |
CF | 62,521 | 58,375 | 241 | 93.37 | 0.9991 |
OF1 | 55,992 | 50,557 | 251 | 90.28 | 0.9990 |
OF2 | 56,730 | 50,947 | 248 | 89.80 | 0.9990 |
OF3 | 57,700 | 52,900 | 247 | 91.66 | 0.9991 |
OF4 | 58,259 | 52,598 | 245 | 90.28 | 0.9990 |
Treatment 2 | PPSM | GNPP | SSR (%) | 1000 GW(g) | TY (Mg ha−1) | AY (Mg ha−1) |
---|---|---|---|---|---|---|
F0 | 436.3d | 44.0 c | 74.7 b | 20.88 b | 2992 d | 1924 b |
CF | 590.0bc | 73.9 ab | 89.4 a | 21.37 ab | 8304 c | 7372 a |
OF1 | 557.5c | 71.8 ab | 88.4 a | 22.87 a | 8075 c | 7334 a |
OF2 | 668.3a | 74.4 ab | 92.0 a | 21.61 ab | 9883 ab | 7763 a |
OF3 | 663.8a | 78.9 a | 88.5 a | 22.12 ab | 10,244 a | 8512 a |
OF4 | 646.3ab | 70.6 b | 99.1 a | 21.63 ab | 8890 bc | 7570 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Liu, J.; Xu, L.; Sun, F.; Ma, Y.; Yin, D.; Gao, Q.; Zheng, G.; Lv, Y. Combined Organic and Inorganic Fertilization Can Enhance Dry Direct-Seeded Rice Yield by Improving Soil Fungal Community and Structure. Agronomy 2022, 12, 1213. https://doi.org/10.3390/agronomy12051213
Guo X, Liu J, Xu L, Sun F, Ma Y, Yin D, Gao Q, Zheng G, Lv Y. Combined Organic and Inorganic Fertilization Can Enhance Dry Direct-Seeded Rice Yield by Improving Soil Fungal Community and Structure. Agronomy. 2022; 12(5):1213. https://doi.org/10.3390/agronomy12051213
Chicago/Turabian StyleGuo, Xiaohong, Jiajun Liu, Lingqi Xu, Fujing Sun, Yuehan Ma, Dawei Yin, Qiang Gao, Guiping Zheng, and Yandong Lv. 2022. "Combined Organic and Inorganic Fertilization Can Enhance Dry Direct-Seeded Rice Yield by Improving Soil Fungal Community and Structure" Agronomy 12, no. 5: 1213. https://doi.org/10.3390/agronomy12051213
APA StyleGuo, X., Liu, J., Xu, L., Sun, F., Ma, Y., Yin, D., Gao, Q., Zheng, G., & Lv, Y. (2022). Combined Organic and Inorganic Fertilization Can Enhance Dry Direct-Seeded Rice Yield by Improving Soil Fungal Community and Structure. Agronomy, 12(5), 1213. https://doi.org/10.3390/agronomy12051213