Crop Sequencing to Improve Productivity and Profitability in Irrigated Double Cropping Using Agricultural System Simulation Modelling
Abstract
:1. Introduction
2. Materials and Method
2.1. General Description of the Study Area
2.2. Crops Used in the Study
2.3. Simulation Setup
2.3.1. Weather and Soil Data
2.3.2. Crop Sequences
2.3.3. Soil Water Deficit
2.4. Water Allocation Scenarios
2.5. Gross Margin Analysis
3. Results and Discussion
3.1. Yield of Summer and Winter Crops at Different Soil Moisture Deficit Levels
3.2. Water Productivity of Summer and Winter Crops at Different Soil Moisture Deficit Levels
3.3. Gross Margins for Different Crop Sequences
3.4. Gross Margin under Different Water Price and Soil Water Deficit Scenarios
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ray, D.K.; Foley, J.A. Increasing global crop harvest frequency: Recent trends and future directions. Environ. Res. Lett. 2013, 8, 44041. [Google Scholar] [CrossRef]
- Waha, K.; Dietrich, J.P.; Portmann, F.T.; Siebert, S.; Thornton, P.K.; Bondeau, A.; Herrero, M. Multiple cropping systems of the world and the potential for increasing cropping intensity. Glob. Environ. Chang. 2020, 64, 102131. [Google Scholar] [CrossRef] [PubMed]
- Gaydon, D.; Meinke, H.; Rodriguez, D. The best farm-level irrigation strategy changes seasonally with fluctuating water availability. Agric. Water Manag. 2012, 103, 33–42. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell, T.A. Enhancing Water Use Efficiency in Irrigated Agriculture. Agron. J. 2001, 93, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Lorite, I.; Mateos, L.; Orgaz, F.; Fereres, E. Assessing deficit irrigation strategies at the level of an irrigation district. Agric. Water Manag. 2007, 91, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Holzworth, D.P.; Huth, N.I.; Devoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Sun, H.; Chen, S.; Shao, L. Optimizing the yield of winter wheat by regulating water consumption during vegetative and reproductive stages under limited water supply. Irrig. Sci. 2013, 31, 1103–1112. [Google Scholar] [CrossRef]
- Serafin, L.; Hertel, K.; Moore, N. Summer Crop Management Guide; NSW Department of Primary Industries: Sydney, NSW, Australia, 2019. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0011/1187750/SCMG-web-FINAL-5Nov.pdf (accessed on 18 October 2021).
- Dodig, D.; Kandić, V.; Zorić, M.; Nikolić-Đorić, E.; Nikolić, A.; Mutavdžić, B.; Perović, D.; Šurlan-Momirović, G. Comparative kernel growth and yield components of two- and six-row barley (Hordeum vulgare) under terminal drought simulated by defoliation. Crop Pasture Sci. 2018, 69, 1215–1224. [Google Scholar] [CrossRef]
- Felton, W.L.; Marcellos, H.; Alston, C.; Martin, R.J.; Backhouse, D.; Burgess, L.W.; Herridge, D.F. Chickpea in wheat-based cropping systems of northern New South Wales. II. Influence on biomass, grain yield, and crown rot in the following crop. Aust. J. Agric. Res. 1998, 49, 401–407. [Google Scholar] [CrossRef]
- Matthews, P.; McCaffery, D.; Jenkins, L. Winter Crop Variety Sowing Guide 2017; NSW Department of Primary Industries: Sydney, NSW, Australia, 2017. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0017/1302173/nsw-dpi-wcvsg-2021-web.pdf (accessed on 24 September 2021).
- Kirkegaard, J.A.; Hunt, J.R. Increasing productivity by matching farming system management and genotype in water-limited environments. J. Exp. Bot. 2010, 61, 4129–4143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sissons, M.; Ovenden, B.; Adorada, D.; Milgate, A. Durum wheat quality in high-input irrigation systems in south-eastern Australia. Crop Pasture Sci. 2014, 65, 411–422. [Google Scholar] [CrossRef]
- Jeffrey, S.J.; Carter, J.O.; Moodie, K.B.; Beswick, A.R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 2001, 16, 309–330. [Google Scholar] [CrossRef]
- ApSoil. A Database of Soil Characteristics. 2013. Available online: http://www.apsim.info/Products/APSoil.aspx (accessed on 24 August 2021).
- Lilley, J.M.; Bell, L.W.; Kirkegaard, J. Optimising grain yield and grazing potential of crops across Australia’s high-rainfall zone: A simulation analysis. 2. Canola. Crop Pasture Sci. 2015, 66, 349–364. [Google Scholar] [CrossRef]
- Zeleke, K.; Nendel, C. Analysis of options for increasing wheat (Triticum aestivum L.) yield in south-eastern Australia: The role of irrigation, cultivar choice and time of sowing. Agric. Water Manag. 2016, 166, 139–148. [Google Scholar] [CrossRef]
- Archontoulis, S.V.; Miguez, F.E.; Moore, K.J. A methodology and an optimization tool to calibrate phenology of short-day species included in the APSIM PLANT model: Application to soybean. Environ. Model. Softw. 2014, 62, 465–477. [Google Scholar] [CrossRef]
- Turpin, J.E.; Robertson, M.J.; Haire, C.; Bellotti, W.D.; Moore, A.D.; Rose, I. Simulating fababean development, growth, and yield in Australia. Aust. J. Agric. Res. 2003, 54, 39–52. [Google Scholar] [CrossRef]
- Zeleke, K.; Nendel, C. Growth and yield response of faba bean to soil moisture regimes and sowing dates: Field experiment and modelling study. Agric. Water Manag. 2019, 213, 1063–1077. [Google Scholar] [CrossRef]
- Peake, A.S.; Robertson, M.J.; Bidstrup, R.J. Optimising maize plant population and irrigation strategies on the Darling Downs using the APSIM crop simulation model. Aust. J. Exp. Agric. 2008, 48, 313–325. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Hunt, J.; Angessa, T.T.; Meinke, H.; Li, C.; Tian, X.; Zhou, M. Identifying optimal sowing and flowering periods for barley in Australia: A modelling approach. Agric. For. Meteorol. 2010, 282–283, 107871. [Google Scholar] [CrossRef]
- Robertson, M.J.; Kirkegaard, J.A. Water-use efficiency of dryland canola in an equi-seasonal rainfall environment. Aust. J. Agric. Res. 2005, 56, 1373–1386. [Google Scholar] [CrossRef]
- Zeleke, K.; Luckett, D.; Cowley, R. The influence of soil water conditions on canola yields and production in Southern Australia. Agric. Water Manag. 2014, 144, 20–32. [Google Scholar] [CrossRef]
- Napier, T.; Gaynor, L.; Johnston, D.; Morris, G.; Rollin, M. Crop Sequencing for Irrigated Double Cropping—Murrumbidgee Valley Site. GRDC Update. 2016, pp. 95–99. Available online: https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2016/07/crop-sequencing-for-irrigated-double-cropping-murrumbidgee-valley-site (accessed on 8 September 2021).
- Allen, R.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No 56; FAO: Rome, Italy, 1998; 300p. [Google Scholar]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.-S.P. Response of plants to water stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soothar, R.K.; Singha, A.; Soomro, S.A.; Chachar, A.-U.; Kalhoro, F.; Rahaman, A. Effect of different soil moisture regimes on plant growth and water use efficiency of Sunflower: Experimental study and modeling. Bull. Natl. Res. Cent. 2021, 45, 121. [Google Scholar] [CrossRef]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.-L.; Waskom, R.M.; Niu, Y.; Siddique, K.H. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 2015, 36, 3. [Google Scholar] [CrossRef] [Green Version]
- Perry, C.; Steduto, P.; Allen, R.G.; Burt, C.M. Increasing productivity in irrigated agriculture: Agronomic constraints and hydrological realities. Agric. Water Manag. 2009, 96, 1517–1524. [Google Scholar] [CrossRef] [Green Version]
Soil Depth (cm) | Bulk Density (g cm−3) | Wilting Point (LL15) * (cm3 cm−3) | Field Capacity (DUL) + (cm3 cm−3) | Saturation Moisture Content (cm3 cm−3) | Plant Available Water Capacity, PAWC (mm) |
---|---|---|---|---|---|
0–15 | 1.47 | 0.101 | 0.265 | 0.414 | 24.6 |
15–30 | 1.44 | 0.247 | 0.375 | 0.427 | 19.2 |
30–60 | 1.43 | 0.244 | 0.380 | 0.430 | 40.8 |
60–90 | 1.50 | 0.244 | 0.354 | 0.404 | 32.7 |
90–120 | 1.58 | 0.228 | 0.325 | 0.375 | 29.1 |
120–150 | 1.59 | 0.224 | 0.319 | 0.366 | 26.7 |
150–160 | 1.49 | 0.224 | 0.324 | 0.408 | 17.7 |
Rotation 1—R1 | F-S-F-M-F | Fallow–Soybean–Fallow–Maize–Fallow |
Rotation 2—R2 | F-S-F-S-F | Fallow–Soybean–Fallow–Soybean–Fallow |
Rotation 3—R3 | W-F-Fb-M-F | Wheat–Fallow–Fababean–Maize–Fallow |
Rotation 4—R4 | W-S-W-S-W | Wheat–Soybean–Wheat–Soybean–Wheat |
Rotation 5—R5 | W-F-W-F-W | Wheat–Fallow–Wheat–Fallow–Wheat |
Rotation 6—R6 | B-S-B-S-B | Barley–Soybean–Barley–Soybean–Barley |
Rotation 7—R7 | C-M-Fb-F-C | Canola–Maize–Fababean–Fallow–Canola |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeleke, K.; McCormick, J. Crop Sequencing to Improve Productivity and Profitability in Irrigated Double Cropping Using Agricultural System Simulation Modelling. Agronomy 2022, 12, 1229. https://doi.org/10.3390/agronomy12051229
Zeleke K, McCormick J. Crop Sequencing to Improve Productivity and Profitability in Irrigated Double Cropping Using Agricultural System Simulation Modelling. Agronomy. 2022; 12(5):1229. https://doi.org/10.3390/agronomy12051229
Chicago/Turabian StyleZeleke, Ketema, and Jeff McCormick. 2022. "Crop Sequencing to Improve Productivity and Profitability in Irrigated Double Cropping Using Agricultural System Simulation Modelling" Agronomy 12, no. 5: 1229. https://doi.org/10.3390/agronomy12051229
APA StyleZeleke, K., & McCormick, J. (2022). Crop Sequencing to Improve Productivity and Profitability in Irrigated Double Cropping Using Agricultural System Simulation Modelling. Agronomy, 12(5), 1229. https://doi.org/10.3390/agronomy12051229