Biotribological Characteristic of Peanut Harvesting Impact-Friction Contact under Different Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens of Peanut and Pin
2.2. Peanut-Picking Impact-Friction Tester
2.3. Test Conditions and Methods
2.4. Surface Contact Analysis of Impact-Friction
3. Results and Discussion
3.1. Single-Factor Experimental Evaluation
3.1.1. Materials of Pin
3.1.2. Contact Linear Velocity
3.1.3. Contact Invasion Depth
3.1.4. Moisture Content of Peanut
3.2. Evaluation of Multifactor Orthogonal Tests
3.2.1. Establishment of Regression Model and Significance Test
3.2.2. Analysis of the Influence of Interaction Factors on the Coefficient of Friction
3.2.3. Analysis of the Influence of Interaction Factors on Wear Loss
3.2.4. Characterization of Impact-Friction Damage on Peanut Pod
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anco, D. Peanut Money-Maker 2021 Production Guide; South Carolina State Library: Columbia, SC, USA, 2021. [Google Scholar]
- Fletcher, S.M.; Revoredo, C.L. World Peanut Market: An Overview of the Past 30 Years; University of Georgia: Athens, GA, USA, 2009. [Google Scholar]
- Shang, S.Q.; Liu, S.G.; Wang, F.Y.; Jang, Y.Z.; Hua, W.J.Y.H. Current situation and development of peanut production machinery. Trans. Chin. Soc. Agric. Mach. 2005, 36, 143–146. [Google Scholar]
- Chen, Y.; Hu, Z.; Wang, H. Restrictive factors and development countermeasure for peanut mechanized harvesting in China. China Agric. Mech. 2012, 4, 14–17. [Google Scholar]
- Gao, L.; Chen, Z.; Charles, C. Development course of peanut harvest mechanization technology of the United States and enlightenment to China. T CSAE 2017, 33, 1–9. [Google Scholar]
- Chen, Z.; Gao, L.; Chen, C.; Butts, C.L. Analysis on technology status and development of peanut harvest mechanization of China and the United States. Trans. Chin. Soc. Agric. Mach. 2017, 48, 1–21. [Google Scholar]
- Hou, J.; Bai, J.; He, T.; Li, J. Damage mechanism of collision contact and applied study progress in typical agricultural materials. J. Jilin Agric. Univ. 2020, 42, 103–112. [Google Scholar]
- Azmoodeh, M.A.; Abdollahpoor, S.; Navid, H.; Moghaddam, V.M. Comparing of Peanut Harvesting Loss in Mechanical and Manual Methods. Int. J. Adv. Biol& Biomendi Res. 2014, 5, 1475–1483. [Google Scholar]
- Stamatov, S.; Ishpekov, S.; Dallev, M. Losses at mechanized harvesting of Bulgarian peanut varieties. Series à Agronomy. AgroLife Sci. J. 2020, 26, 210–213. [Google Scholar]
- Cao, M.; Hu, Z.; Zhang, P.; Yu, Z.; Ye, J.; Wang, S. Key technology of full-feeding peanut picking by tangential flow method. Int. Agric. Eng. J. 2019, 28, 43–49. [Google Scholar]
- Hu, Z.; Wang, B.; Yu, Z.; Peng, B.; Zhang, Y.; Tan, L. Design and test of semi-feeding test-bed for peanut pod picking. T CSAE 2017, 33, 42–50. [Google Scholar]
- Wang, B.; Hu, Z.; Peng, B.; Zhang, Y.; Gu, F.; Shi, L.; Gao, X. Structure operation parameter optimization for elastic steel pole oscillating screen of semi-feeding four rows peanut combine harvester. T CSAE 2017, 33, 20–28. [Google Scholar]
- Lü, X.L.; Hu, Z.C.; Peng, B.L. Analysis and Research on the Picking Roller of the Half-Feed Peanut Combine Harvester. Appl. Mech. Mater. 2014, 597, 502–506. [Google Scholar] [CrossRef]
- Arshad, M.S.; Farooq, M.; Asch, F.; Krishna, J.S.; Prasad, P.V.; Siddique, K.H. Thermal stress impacts reproductive development and grain yield in rice. Plant Physiol. Biochem. 2017, 115, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, Y.; Ding, L. Contacting Mechanics Analysis during Impact Process between Rice and Threshing Component. T CSAE 2008, 24, 146–7149. [Google Scholar]
- Stropek, Z.; Gołacki, K. A new method for measuring impact related bruises in fruits. Postharvest Biol. Technol. 2015, 110, 131–139. [Google Scholar] [CrossRef]
- Güzel, E.; Akçali, I.; Mutlu, H.; Ince, A. Research on the fatigue behavior for peanut shelling. J. Food Eng. 2005, 67, 373–378. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Ma, Z.; Zhao, Z.; Wang, C. Theoretical analysis and finite element simulation of a rice kernel obliquely impacted by a threshing tooth. Biosyst. Eng. 2013, 114, 146–156. [Google Scholar] [CrossRef]
- Szwed, G.; Lukaszuk, J. Effect of rapeseed and wheat kernel moisture on impact damage. Int. Agrophys. 2007, 21, 299–304. [Google Scholar]
- Wojtkowski, M.; Pecen, J.; Horabik, J.; Molenda, M. Rapeseed impact against a flat surface: Physical testing and DEM simulation with two contact models. Powder Technol. 2010, 198, 61–68. [Google Scholar] [CrossRef]
- Horabik, J.; Beczek, M.; Mazur, R.; Parafiniuk, P.; Ryżak, M.; Molenda, M. Determination of the restitution coefficient of seeds and coefficients of visco-elastic Hertz contact models for DEM simulations. Biosyst. Eng. 2017, 161, 106–119. [Google Scholar] [CrossRef]
- Dintwa, E.; Van Zeebroeck, M.; Ramon, H.; Tijskens, E. Finite element analysis of the dynamic collision of apple fruit. Postharvest Biol. Technol. 2008, 49, 260–276. [Google Scholar] [CrossRef]
- Lu, Y.G.; Wu, N.; Wang, B. Measurement and analysis of peanuts’ restitution coefficient in point-to-plate collision mode. J. China Agric. Univ. 2016, 21, 111–118. [Google Scholar]
- Yang, R.; Xu, Y.; Shang, S.; Sun, T.; Li, G. Tests and analyses of mechanical properties of peanut root, stem and nut node in mechanical harvest. Trans. Chin. Soc. Agric. Eng. 2009, 25, 127–132. [Google Scholar]
- Akcali, D.; Ince, A.; Guzel, E. Selected physical properties of peanuts. Int. J. Food Prop. 2006, 9, 25–37. [Google Scholar] [CrossRef]
- Gojiya, D.; Dobariya, U.; Pandya, P.; Gojiya, K. Studies on Physical Properties of Peanut Seed. Acta Sci. Agric. 2020, 4, 1–5. [Google Scholar] [CrossRef]
- Yan, J.; Xie, H.; Wei, H.; Wu, H.; You, Z. Optimizing the drying parameters of a fixed bed with reversing ventilation for peanut using computer simulation. Int. J. Agric. Biol. Eng. 2021, 14, 255–266. [Google Scholar] [CrossRef]
- Moisture Measurement—Peanuts. American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2020.
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; et al. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef]
- Knothe, K. Contact Mechanics and Friction: Physical Principles and Applications; SAGE Publications Sage: London, UK, 2011. [Google Scholar]
- Yang, X.; Qian, S.; Chu, Y.; Liu, S. The calculation method of Hertzian and non-Hertzian contact theory. J. Huangshan Univ. 2017, 19, 13–18. [Google Scholar]
- Cooper, D.H. Hertzian Contact-Stress Deformation Coefficients. J. Appl. Mech. 1969, 36, 296–303. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Contact linear velocity (m/s) | 5/10/15 |
Moisture content (%) | 15/25/35 |
Materials used for pin specimens | Q235A steel/6061 aluminum alloy/PVC |
Invasion depth (mm) | 1/2/3 |
Initial temperature (°C) | 26 |
Cycle of impact contact | 72,000 |
Variety of peanut | Dabaisha |
No. | Contact Linear Velocity X1 (m/s) | Moisture Content X2 (RH%) | Invasion Depth X3 (mm) | Response Values | |
---|---|---|---|---|---|
Coefficient of Friction Y1 (μ) | Wear Loss Y2 (× 10−5 mm3) | ||||
1 | 10 | 25 | 2 | 0.185 | 85.64 |
2 | 10 | 35 | 1 | 0.168 | 21.42 |
3 | 10 | 25 | 2 | 0.187 | 88.37 |
4 | 15 | 15 | 2 | 0.197 | 98.81 |
5 | 15 | 25 | 1 | 0.174 | 37.79 |
6 | 5 | 35 | 2 | 0.171 | 76.33 |
7 | 10 | 25 | 2 | 0.184 | 89.52 |
8 | 10 | 25 | 2 | 0.182 | 90.13 |
9 | 5 | 15 | 2 | 0.208 | 98.17 |
10 | 5 | 25 | 3 | 0.187 | 198.38 |
11 | 5 | 25 | 1 | 0.170 | 23.64 |
12 | 10 | 35 | 3 | 0.173 | 176.66 |
13 | 10 | 15 | 1 | 0.196 | 31.85 |
14 | 10 | 15 | 3 | 0.217 | 211.22 |
15 | 15 | 25 | 3 | 0.194 | 209.54 |
16 | 15 | 35 | 2 | 0.184 | 80.25 |
17 | 10 | 25 | 2 | 0.187 | 93.21 |
Source | Coefficient of Friction Y1 | Wear Loss Y2 | ||||||
---|---|---|---|---|---|---|---|---|
Sum of Squares | Degree of Freedom | F Value | Significant Level (p) | Sum of Squares | Degree of Freedom | F Value | Significant Level (p) | |
Model | 2.772 × 10−3 | 9 | 20.78 | 0.0003 | 61,882.99 | 9 | 461.23 | <0.0001 |
X1 | 2.113 × 10−5 | 1 | 1.43 | 0.2714 | 111.53 | 1 | 7.48 | 0.0291 |
X2 | 1.860 × 10−3 | 1 | 125.53 | <0.0001 | 911.43 | 1 | 61.14 | 0.0001 |
X3 | 4.961 × 10−4 | 1 | 33.47 | 0.0007 | 57,987.15 | 1 | 3889.74 | <0.0001 |
X1X2 | 1.440 × 10−4 | 1 | 9.72 | 0.0169 | 2.69 | 1 | 0.18 | 0.6838 |
X1X3 | 2.250 × 10−6 | 1 | 0.15 | 0.7084 | 2.24 | 1 | 0.15 | 0.7101 |
X2X3 | 6.400 × 10−5 | 1 | 4.32 | 0.0763 | 145.56 | 1 | 9.76 | 0.0167 |
X12 | 5.329 × 10−6 | 1 | 0.36 | 0.5677 | 38.73 | 1 | 2.60 | 0.1510 |
X22 | 1.580 × 10−4 | 1 | 10.66 | 0.0138 | 67.94 | 1 | 4.56 | 0.0702 |
X32 | 2.901 × 10−5 | 1 | 1.96 | 0.2045 | 2616.97 | 1 | 175.54 | <0.0001 |
Residual | 1.038 × 10−4 | 7 | 104.35 | 7 | ||||
Lack of fit | 8.575 × 10−5 | 3 | 6.35 | 0.0531 | 74.10 | 3 | 3.27 | 0.1415 |
Pure error | 1.800 × 10−5 | 4 | 30.26 | 4 | ||||
Total | 2.876 × 10−3 | 16 | 61,987.34 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Xu, H.; Zhuo, X.; Hu, Z.; Lian, C.; Wang, B. Biotribological Characteristic of Peanut Harvesting Impact-Friction Contact under Different Conditions. Agronomy 2022, 12, 1256. https://doi.org/10.3390/agronomy12061256
Zhang P, Xu H, Zhuo X, Hu Z, Lian C, Wang B. Biotribological Characteristic of Peanut Harvesting Impact-Friction Contact under Different Conditions. Agronomy. 2022; 12(6):1256. https://doi.org/10.3390/agronomy12061256
Chicago/Turabian StyleZhang, Peng, Hongbo Xu, Xiaoru Zhuo, Zhichao Hu, Chenglong Lian, and Bing Wang. 2022. "Biotribological Characteristic of Peanut Harvesting Impact-Friction Contact under Different Conditions" Agronomy 12, no. 6: 1256. https://doi.org/10.3390/agronomy12061256
APA StyleZhang, P., Xu, H., Zhuo, X., Hu, Z., Lian, C., & Wang, B. (2022). Biotribological Characteristic of Peanut Harvesting Impact-Friction Contact under Different Conditions. Agronomy, 12(6), 1256. https://doi.org/10.3390/agronomy12061256