Growth and Morphological Responses of Kentucky Bluegrass to Homogeneous and Heterogeneous Soil Water Availabilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Plant Materials
2.3. Experimental Conditions
2.4. Measurements of Growth and Physiological Indices
2.5. Scanning Electron Microscope Observation on Rhizomes and Leaves
2.6. Data Analysis
3. Results
3.1. Clonal Growth Patterns of Kentucky Bluegrass
3.2. Growth Indices of Kentucky Bluegrass Clonal Ramets
3.3. Leaf RWCs of Clonal Ramets
3.4. Anatomical Structures of Rhizomes and Leaves
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Nutrient soils | NS |
Relative water content | RWC |
Fresh weight | FW |
Turgid weight | TW |
Dry weight | DW |
Scanning electron microscope | SEM |
Vascular bundle | VB |
Central parenchyma | PT |
Epidermis | E |
Motor cell | MC |
Pitted vessel | PV |
Spiral vessel | SV |
Phloem | P |
Xylem | X |
Small vascular bundle | B |
Vessel | V |
Sieve element | SE |
References
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Brodersen, C.R.; Roddy, A.B.; Wason, J.W.; McElrone, A.J. Functional status of xylem through time. Annu. Rev. Plant Biol. 2019, 70, 407–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinheiro, C.; Chaves, M.M. Photosynthesis and drought: Can we make metabolic connections from available data? J. Exp. Bot. 2011, 62, 869–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Descamps, C.; Quinet, M.; Jacquemart, A.L. The effects of drought on plant–pollinator interactions: What to expect? Environ. Exp. Bot. 2021, 182, 104297. [Google Scholar] [CrossRef]
- Yin, J.; Gentine, P.; Zhou, S.; Sullivan, S.C.; Wang, R.; Zhang, Y.; Guo, S. Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat. Commun. 2018, 9, 4389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Huntingford, C.; Wiltshire, A.; Sitch, S.; Mercado, L. Compensatory climate effects link trends in global runoff to rising atmospheric CO2 concentration. Environ. Res. Lett. 2019, 14, 124075. [Google Scholar] [CrossRef]
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The physiology of plant responses to drought. Science 2010, 368, 266–269. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Chrysargyris, A.; Aziz, A. Adaptive response of a native mediterranean grapevine cultivar upon short-term exposure to drought and heat stress in the context of climate change. Agronomy 2020, 10, 249. [Google Scholar] [CrossRef] [Green Version]
- de Kroon, H.; van der Zalm, E.; van Rheenen, J.W.A.; van Dijk, A.; Kreulen, R. The interaction between water and nitrogen translocation in a rhizomatous sedge (Carex flacca). Oecologia 1998, 116, 38–49. [Google Scholar] [CrossRef]
- James, S.E.; Pärtel, M.; Wilson, S.D.; Peltzer, D.A. Temporal heterogeneity of soil moisture in grassland and forest. J. Ecol. 2003, 91, 234–239. [Google Scholar] [CrossRef]
- Roiloa, S.R.; Hutchings, M.J. The effects of rooting frequency and position of rooted ramets on plasticity and yield in a clonal species: An experimental study with Glechoma hederacea. Ecol. Res. 2012, 27, 145–152. [Google Scholar] [CrossRef]
- Touchette, B.W.; Moody, J.W.G.; Byrne, C.M.; Marcus, S.E. Water integration in the clonal emergent hydrophyte, Justicia americana: Benefits of acropetal water transfer from mother to daughter ramets. Hydrobiologia 2013, 702, 83–94. [Google Scholar] [CrossRef]
- de Kroon, H.; Fransen, B.; van Rheenen, J.W.A.; van Dijk, A.; Kreulen, R. High levels of inter-ramet water translocation in two rhizomatous Carex species, as quantified by deuterium labelling. Oecologia 1996, 106, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Price, E.A.C.; Marshall, C. Clonal plants and environmental heterogeneity. Plant Ecol. 1999, 141, 3–7. [Google Scholar] [CrossRef]
- Maurer, D.A.; Zedler, J.B. Differential invasion of a wetland grass explained by tests of nutrients and light availability on establishment and clonal growth. Oecologia 2002, 131, 279–288. [Google Scholar] [CrossRef]
- You, W.; Yu, D.; Liu, C.; Xie, D.; Xiong, W. Clonal integration facilitates invasiveness of the alien aquatic plant Myriophyllum aquaticum L. under heterogeneous water availability. Hydrobiologia 2013, 718, 27–39. [Google Scholar] [CrossRef]
- You, W.H.; Han, C.M.; Liu, C.H.; Yu, D. Effects of clonal integration on the invasive clonal plant Alternanthera philoxeroides under heterogeneous and homogeneous water availability. Sci. Rep. 2016, 6, 29767. [Google Scholar] [CrossRef] [Green Version]
- Roiloa, S.R.; Retuerto, R. Small-scale heterogeneity in soil quality influences photosynthetic efficiency and habitat selection in a clonal plant. Ann. Bot. 2006, 98, 1043–1052. [Google Scholar] [CrossRef]
- Xu, C.Y.; Schooler, S.S.; van Klinken, R.D. Effects of clonal integration and light availability on the growth and physiology of two invasive herbs. J. Ecol. 2010, 98, 833–844. [Google Scholar] [CrossRef] [Green Version]
- Amombo, E.; Hu, L.; Fan, J.; Hu, Z.; Fu, J. Physiological integration ameliorates negative effects of water stress in salt-sensitive ‘C198’ common bermudagrass. J. Amer. Soc. Hort. Sci. 2015, 140, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.J.; Bai, Y.F.; Zeng, S.Q.; Yao, B.; Wang, W.; Luo, F.L. Heterogeneous water supply affects growth and benefits of clonal integration between co-existing invasive and native Hydrocotyle species. Sci. Rep. 2016, 6, 29420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saud, S.; Fahad, S.; Yajun, C.; Ihsan, M.Z.; Hammad, H.M.; Nasim, W.; Amanullah, Jr.; Arif, M.; Alharby, H. Effects of nitrogen supply on water stress and recovery mechanisms in Kentucky Bluegrass plants. Front. Plant Sci. 2017, 8, 983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eaton, T.D.; Curley, J.; Wiliamson, R.C.; Jung, G. Determination of the level of variation in polyploidy among Kentucky bluegrass cultivars by means of flow cytometry. Crop Sci. 2004, 4, 2168–2174. [Google Scholar] [CrossRef]
- Sytsma, M.D.; Anderson, L.W.J. Transpiration by an emergent macrophyte: Source of water and implications for nutrient supply. Hydrobiologia 1993, 271, 97–108. [Google Scholar] [CrossRef]
- Lambers, H.; Chapin, F.S., III; Pons, T.L. Plant Physiological Ecology, 2nd ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Parry, M.A.J.; Flexas, J.; Medrano, H. Prospects for crop production under drought: Research priorities and future directions. Ann. Appl. Biol. 2005, 147, 211–226. [Google Scholar] [CrossRef]
- Guo, Z.W.; Hu, J.J.; Chen, S.L.; Li, Y.C.; Yang, Q.P.; Cai, H.J. Nitrogen addition and clonal integration alleviate water stress of dependent ramets of Indocalamus decorus under heterogeneous soil water environment. Sci. Rep. 2017, 7, 44524. [Google Scholar] [CrossRef]
- Wei, Q.; Li, Q.; Jin, Y.; Li, K.; Lei, N.; Chen, J. Effects of clonal integration on photochemical activity and growth performance of stoloniferous herb Centella asiatica suffering from heterogeneous water availability. Flora 2019, 256, 36–42. [Google Scholar] [CrossRef]
- Qian, Y.Q.; Luo, D.; Gong, G.; Han, L.; Ju, G.S.; Sun, Z.Y. Effects of spatial scale of soil heterogeneity on the growth of a clonal plant producing both spreading and clumping ramets. J. Plant Growth Regul. 2014, 33, 214–221. [Google Scholar] [CrossRef]
- Luo, D.; Qian, Y.Q.; Han, L.; Liu, J.X.; Sun, Z.Y. Phenotypic responses of a stoloniferous clonal plant Buchloe dactyloides to scale-dependent nutrient heterogeneity. PLoS ONE 2013, 8, e67396. [Google Scholar] [CrossRef] [Green Version]
- Morris, K.N. National Kentucky Bluegrass Test 1995–Medium High Maintenance; Final Report; NTEP no. 01-12; National Turfgrass Evaluation Program; USDA-ARSL: Beltsville, MD, USA, 2001. [Google Scholar]
- Brede, A.D. Registration of ‘Arcadia’ Kentucky Bluegrass. Crop Sci. 2003, 43, 1564–1565. [Google Scholar] [CrossRef]
- Ying, Y.; Yue, Y.; Huang, X.; Wang, H.; Mei, L.; Yu, W.; Zheng, B.; Wu, J. Salicylic acid induces physiological and biochemical changes in three red bayberry (Myric rubra) genotypes under water stress. Plant Growth Regul. 2013, 71, 181–189. [Google Scholar] [CrossRef]
- Adame-González, A.B.; Muñíz-DL, M.E.; Valencia, S.A. Comparative leaf morphology and anatomy of six Selaginella species (Selaginellaceae, subgen. Rupestrae) with notes on xerophytic adaptations. Flora 2019, 260, 151482. [Google Scholar] [CrossRef]
- Xu, D.; Zhao, F.; He, B.; Li, T.; Duan, Z.; Li, G. Response of clonal growth pattern of Hippophae rhamniodes L. subsp. sinensis to different irrigation intensities. J. Northeast Forestry Univ. 2008, 36, 31–33, (In Chinese with English abstract). [Google Scholar]
- Yue, C.; He, Q.; Wang, K.; Weng, P. Growth of Phyllostachys praecox cv. Prevernalis clone in different conditions of soil moisture. J. Zhejiang Forestry Sci. Technol. 2002, 22, 25–27, (In Chinese with English abstract). [Google Scholar]
- Ye, X.H.; Yu, F.H.; Dong, M. A trade-off between guerrilla and phalanx growth forms in Leymus secalinus under different nutrient supplies. Ann. Bot. 2006, 98, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Qain, Y.; Liu, J.; Han, L.; Li, W.; Sun, Z. Phenotypic responses of a clonal plant (Buchlo edactyloides) to nutrient heterogeneity. Acta Pratacult. Sin. 2014, 23, 104–109, (In Chinese with English abstract). [Google Scholar]
- Boughalleb, F.; Abdellaoui, R.; Ben-Brahim, N.; Neffati, M. Anatomical adaptations of Astragalus gombiformis Pomel. under drought stress. Cent. Eur. J. Biol. 2014, 9, 1215–1225. [Google Scholar] [CrossRef]
- Boughalleb, F.; Abdellaoui, R.; Hadded, Z.; Neffati, M. Anatomical adaptations of the desert species Stipa lagascae against drought stress. Biologia 2015, 70, 1042–1052. [Google Scholar] [CrossRef]
- Thangthong, N.; Joglo, S.; Punjansing, T.; Kvien, C.K.; Kesmala, T.; Vorasoot, N. Changes in root anatomy of peanut (Arachis hypogaea L.) under different durations of early season drought. Agronomy 2019, 9, 215. [Google Scholar] [CrossRef] [Green Version]
- Knipfer, T.; Barrios-Masias, F.H.; Cuneo, I.F.; Bouda, M.; Albuquerque, C.P.; Brodersen, C.R.; Kluepfel, D.A.; McElrone, A.J. Variations in xylem embolism susceptibility under drought between intact saplings of three walnut species. Tree Physiol. 2018, 38, 1180–1192. [Google Scholar] [CrossRef] [Green Version]
- Knipfer, T.; Brodersen, C.R.; Amr, Z.; Kuepfel, D.A.; McElrone, A.J. Patterns of drought-induced embolism formation and spread in living walnut saplings visualized using X-ray microtomography. Tree Physiol. 2015, 35, 744–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, T.N.; Taylor, E.L.; Krings, M. 7-Introduction to Vascular Plant Morphology and Anatomy. In Paleobotany: The Biology and Evolution of Fossil Plants, 2nd ed.; Taylor, T.N., Taylor, E.L., Krings, M., Eds.; Academic Press: Boston, MA, USA, 2009; pp. 201–222. [Google Scholar]
Treatment | Simulation Equation | Coefficient of Determination (R2) |
---|---|---|
NS+NS+ | y = 0.0107x2 + 0.1399x + 20.185 | 0.9959 |
NS+NS− | y = 0.0041x2 + 0.1770x + 12.425 | 0.9867 |
NS−NS− | y = 0.0012x2 + 0.1000x + 2.917 | 0.9933 |
Ramet | Treatment | Leaf Length (cm) | Leaf Width (mm) | Ramet Height (cm) | Length of Internode (cm) |
---|---|---|---|---|---|
Mother ramet | NS+NS+ | 17.97 ± 1.22 a | 4.37 ± 0.20 a | 15.29 ± 1.09 a | - |
NS+NS− | 14.41 ± 0.95 ab | 4.29 ± 0.16 a | 14.75 ± 0.73 a | - | |
NS−NS− | 13.38 ± 1.47 b | 3.85 ± 0.17 a | 11.58 ± 0.68 b | - | |
Daughter ramet | Homogeneous NS+ | 13.33 ± 0.83 a | 4.19 ± 0.15 a | 7.01 ± 0.69 a | 2.73 ± 0.51 b |
Heterogeneous NS+ | 11.44 ± 0.61 ab | 4.14 ± 0.11 a | 5.27 ± 0.58 ab | 3.00 ± 0.32 b | |
Heterogeneous NS− | 11.21 ± 0.71 ab | 3.97 ± 0.29 a | 6.17 ± 0.93 a | 3.12 ± 0.37 ab | |
Homogeneous NS− | 9.68 ± 0.31 b | 3.29 ± 0.07 b | 3.52 ± 0.52 b | 4.51 ± 0.26 a |
Treatment | Diameter of Vascular Bundles (μm) | Pore Diameter of Central Parenchyma in the Rhizome (μm) |
---|---|---|
Homogeneous NS+ patch | 98.13 ± 3.84 a | 35.27 ± 2.86 b |
Heterogeneous NS+ patch | 97.45 ± 3.26 a | 36.45 ± 2.37 b |
Heterogeneous NS− patch | 83.25 ± 4.12 b | 50.89 ± 2.25 a |
Homogeneous NS− patch | 72.80 ± 4.31 c | 49.75 ± 3.48 a |
Treatment | Diameter of Vessel in Xylem (μm) | Percentage of Xylem Area in Vascular Bundles (%) | Diameter of Sieve Element in Phloem (μm) |
---|---|---|---|
Homogeneous NS+ patch | 13.48 ± 0.33 a | 52.82 ± 5.63 a | 2.34 ± 0.13 b |
Heterogeneous NS+ patch | 13.25 ± 0.41 a | 52.57 ± 6.28 a | 2.45 ± 0.14 b |
Heterogeneous NS− patch | 12.89 ± 0.38 a | 50.15 ± 8.22 a | 2.78 ± 0.13 ab |
Homogeneous NS− patch | 12.04 ± 0.32 b | 46.95 ± 4.52 b | 3.22 ± 0.19 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Xie, F.; Chen, Y.; Cui, G. Growth and Morphological Responses of Kentucky Bluegrass to Homogeneous and Heterogeneous Soil Water Availabilities. Agronomy 2022, 12, 1265. https://doi.org/10.3390/agronomy12061265
Liu W, Xie F, Chen Y, Cui G. Growth and Morphological Responses of Kentucky Bluegrass to Homogeneous and Heterogeneous Soil Water Availabilities. Agronomy. 2022; 12(6):1265. https://doi.org/10.3390/agronomy12061265
Chicago/Turabian StyleLiu, Wei, Fuchun Xie, Yajun Chen, and Guowen Cui. 2022. "Growth and Morphological Responses of Kentucky Bluegrass to Homogeneous and Heterogeneous Soil Water Availabilities" Agronomy 12, no. 6: 1265. https://doi.org/10.3390/agronomy12061265
APA StyleLiu, W., Xie, F., Chen, Y., & Cui, G. (2022). Growth and Morphological Responses of Kentucky Bluegrass to Homogeneous and Heterogeneous Soil Water Availabilities. Agronomy, 12(6), 1265. https://doi.org/10.3390/agronomy12061265