Genetic Divergence and Spatial Configuration Influence the Weed Spectrum, Herbage Yield and Nutritive Quality of Temperate Cowpea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meteorological Features and Physico-Chemical Description of Experimental Locality
2.2. Details of Treatments and Experiment’s Execution
2.3. Response Variables Recordings
Plot area (m2)
2.4. Statistical Analyses
3. Results and Discussion
3.1. Weeds Density and Biomass
3.2. Yield Attributes
3.3. Plant Fresh and Dry Weights, Green Herbage Yield and Dry Matter Biomass
3.4. Nutritional Quality Attributes
3.5. Correlation among Yield Attributes, Seed Yield and Biological Yield
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
WD | weeds density |
PH | plant height |
GH | green herbage yield |
DM | dry matter biomass |
R × R | row to row spacing |
RCBD | randomized complete block design |
DAP | di-ammonium phosphate |
DAS | days after sowing |
ANOVA | analysis of variance |
CP | crude protein |
References
- Faville, M.J.; Cao, M.; Schmidt, J.; Ryan, D.L.; Ganesh, S.; Jahufer, M.Z.Z.; Hong, S.W.; George, R.; Barrett, B.A. Divergent Genomic Selection for Herbage Accumulation and Days-To-Heading in Perennial Ryegrass. Agronomy 2020, 10, 340. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.A.; Asif, I.; Akbar, N.; Khan, H.Z.; Abbas, R.N. A study on feed stuffs role in enhancing the productivity of milch animals in Pakistan-Existing scenario and future prospect. Glob. Vet. 2015, 14, 23–33. [Google Scholar]
- Iqbal, M.A.; Hamid, A.; Siddiqui, M.H.; Hussain, I.; Ahmad, T.; Ishaq, T.; Ali, A. A meta-analysis of the impact of foliar feeding of micronutrients on productivity and revenue generation of forage crops. Planta Daninha 2019, 37, e019189237. [Google Scholar] [CrossRef] [Green Version]
- El-Taher, A.M.; Abd El-Raouf, H.S.; Osman, N.A.; Azoz, S.N.; Omar, M.A.; Elkelish, A.; Abd El-Hady, M.A.M. Effect of Salt Stress and Foliar Application of Salicylic Acid on Morphological, Biochemical, Anatomical, and Productivity Characteristics of Cowpea (Vigna unguiculata L.) Plants. Plants 2022, 11, 115. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.A.; Imtiaz, H.; Abdul, H.; Bilal, A.; Saira, I.; Ayman, S.; Celaleddin, B.; Rana, D.K.; Imran, M. Soybean herbage yield, nutritional value and profitability under integrated manures management. Anais Acad. Brasil. Cienc. 2021, 93, e20181384. [Google Scholar] [CrossRef]
- Ehlers, J.D.; Hall, A.E. Cowpea (Vigna unguiculata L. Walp.). Field Crop. Res. 1997, 53, 187–204. [Google Scholar] [CrossRef]
- Huynh, B.L.; Ehlers, J.D.; Huang, B.E.; Muñoz-Amatriaín, M.; Lonardi, S.; Santos, J.R.; Roberts, P.A. A Multi-Parent Advanced Generation Inter-Cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.). Plant J. 2018, 93, 1129–1142. [Google Scholar] [CrossRef] [Green Version]
- Raina, A.; Laskar, R.A.; Tantray, Y.R.; Khursheed, S.; Wani, M.R.; Khan, S. Characterization of Induced High Yielding Cowpea Mutant Lines Using Physiological, Biochemical and Molecular Markers. Sci. Rep. 2020, 10, 3687. [Google Scholar] [CrossRef] [Green Version]
- Jayathilake, C.; Visvanathan, R.; Deen, A.; Bangamuwage, R.; Jayawardana, B.C.; Nammi, S.; Liyanage, R. Cowpea: An overview on its nutritional facts and health benefits. J. Sci. Food Agric. 2018, 98, 4793–4806. [Google Scholar] [CrossRef]
- Baker, C.; Modi, A.T.; Nciizah, A.D. Weeding Frequency Effects on Growth and Yield of Dry Bean Intercropped with Sweet Sorghum and Cowpea under a Dryland Area. Sustainability 2021, 13, 12328. [Google Scholar] [CrossRef]
- Iqbal, M.A. Improving germination and seedling vigour of cowpea (Vigna unguiculata L.) with different priming techniques. Am.-Eur. J. Agric. Environ. Sci. 2015, 15, 265–270. [Google Scholar]
- Iqbal, M.A. Evaluation of forage cowpea and hey as a feed resource for ruminant production: A mini-review. Glob. Vet. 2015, 14, 747–751. [Google Scholar]
- Choudhary, V.K.; Kumar, P.S. Weed suppression, nutrient leaching, water use and yield of turmeric (Curcuma longa L.) under different land configurations and mulches. J. Clean. Prod. 2018, 210, 795–803. [Google Scholar] [CrossRef]
- Arce, G.D.; Pedersen, P.; Hartzler, R.G. Soybean seeding rate effects on weed management. Weed Technol. 2009, 23, 17–22. [Google Scholar] [CrossRef]
- Kolb, L.N.; Gallandt, E.R.; Mallory, E.B. Impact of spring wheat planting density, row spacing, and mechanical weed control on yield, grain protein, and economic return in Maine. Weed Sci. 2012, 60, 244–253. [Google Scholar] [CrossRef]
- Mennan, H.; Ngouajio, M.; Isık, D.; Kaya, E. Effects of alternative management systems on weed populations in hazelnut (Corylus avellana L.). Crop Prot. 2006, 25, 835–841. [Google Scholar] [CrossRef]
- Rajcan, I.; Swanton, C.J. Understanding maize-weed competition: Resource competition, light quality and the whole plant. Field Crop Res. 2001, 71, 139–150. [Google Scholar] [CrossRef]
- Ryan, M.R.; Mirsky, S.B.; Mortensen, D.A.; Teasdale, J.R.; Curran, W.S. Potential synergistic effects of cereal rye biomass and soybean planting density on weed suppression. Weed Sci. 2011, 59, 238–246. [Google Scholar] [CrossRef]
- Stephenson, D.O.; Barry, J.; Brecke, B.J. Weed management in single- vs. twin-row cotton (Gossypium hirsutum). Weed Technol. 2010, 24, 275–280. [Google Scholar] [CrossRef]
- Abudulai, M.; Kusi, F.; Seini, S.S.; Seidu, A.; Nboyine, J.A.; Larbi, A. Effects of planting date, cultivar and insecticide spray application for the management of insect pests of cowpea in northern Ghana. Crop Prot. 2017, 100, 168–176. [Google Scholar] [CrossRef]
- Adigun, J.; Osipitan, A.O.; Lagoke, S.T.; Adeyemi, R.O.; Afolami, S.O. Growth and yield performance of cowpea (Vigna unguiculata (L.) Walp) as influenced by row-spacing and period of weed interference in South-West Nigeria. J. Agric. Sci. 2014, 6, 188. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.A.; Iqbal, A.; Abbas, R.N. Spatio-temporal reconciliation to lessen losses in yield and quality of forage soybean (Glycine max L.) in soybean-sorghum intercropping systems. Bragantia 2018, 77, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.A. Comparative performance of forage cluster bean accessions as companion crops with sorghum under varied harvesting times. Bragantia 2018, 77, 476–484. [Google Scholar] [CrossRef]
- Staggenborg, S.A.; Fjell, D.L.; Devlin, D.L.; Gordon, W.B.; Marsh, B.H. Grain sorghum response to row spacings and seeding rates in Kansas. J. Prod. Agric. 1999, 12, 390–395. [Google Scholar] [CrossRef]
- Bandaru, V.; Stewart, B.A.; Baumhardt, R.L.; Ambati, S.; Robinson, C.A.; Schlegel, A. Growing dryland grain sorghum in clumps to reduce vegetative growth and increase yield. Agron. J. 2006, 98, 1109–1120. [Google Scholar] [CrossRef] [Green Version]
- M’Khaitir, Y.O.; Vanderlip, R.L. Grain sorghum and pearl millet response to date and rate of planting. Agron. J. 1992, 84, 579–582. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Rahim, J.; Naeem, W.; Hassan, S.; Khattab, Y.; Sabagh, A. Rainfed winter wheat (Triticum aestivum L.) cultivars respond differently to integrated fertilization in Pakistan. Fresen. Environ. Bull. 2021, 30, 3115–3121. [Google Scholar]
- Black, C.A. Methods of Soil Analysis, Part II; American Society of Agronomy: Madison, WI, USA, 1965. [Google Scholar]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Leoppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, G.T.; Sumner, M.E. Methods of Soil Analysis; Soil Science Society of America: Madison, WI, USA, 1996. [Google Scholar]
- Naresh, R.K.; Tomar, S.S.; Kumar, D.; Samsher, P.; Singh, S.; Dwivedi, P.; Kumar, A. Experiences with rice grown on permanent raised beds: Effect of crop establishment techniques on water use, productivity, profitability and soil physical properties. Rice Sci. 2014, 21, 170–180. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VI, USA, 2003. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1962. [Google Scholar]
- Piper, C.S. Soil and Plant Analysis; Press Adelaide: Adelaide, Australia, 1950. [Google Scholar]
- Ryan, J.; Estefan, G.; Rashid, A. Soil and Plant Analysis Laboratory Manual, 2nd ed.; International Center for Agricultural Research in the Dry Areas (ICARDA): Aleppo, Syria; National Agriculture Research Center (NARC): Islamabad, Pakistan, 2001. [Google Scholar]
- Iqbal, M.A.; Raza, R.Z.; Zafar, M.; Ali, O.M.; Ahmed, R.; Rahim, J.; Ijaz, R.; Ahmad, Z.; Bethune, B.J. Integrated Fertilizers Synergistically Bolster Temperate Soybean Growth, Yield, and Oil Content. Sustainability 2022, 14, 2433. [Google Scholar] [CrossRef]
- Jabbar, A.; Iqbal, A.; Iqbal, M.A.; Sheikh, U.A.A.; Rahim, J.; Khalid, S.; Hafez, R.M.; Shah, A.-u.-H.; Khan, A.A.; Bazmi, M.S.A.; et al. Egyptian Clover Genotypic Divergence and Last Cutting Management Augment Nutritive Quality, Seed Yield and Milk Productivity. Sustainability 2022, 14, 5833. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D. Principles and Procedures of Statistics: A Biometrical Approach; McGraw Hill Book Co., Inc.: New York, NY, USA, 1997; pp. 172–177. [Google Scholar]
- SAS Institute. The SAS System for Windows: Version 8.02; SAS Institute Inc.: Cary, NC, USA, 2003. [Google Scholar]
- Abbas, R.N.; Arshad, M.A.; Iqbal, A.; Iqbal, M.A.; Imran, M.; Raza, A.; Chen, J.-T.; Alyemeni, M.N.; Hefft, D.I. Weeds Spectrum, Productivity and Land-Use Efficiency in Maize-Gram Intercropping Systems under Semi-Arid Environment. Agronomy 2021, 11, 1615. [Google Scholar] [CrossRef]
- Shilpashree, N.; Devi, S.N.; Manjunathagowda, D.C.; Muddappa, A.; Abdelmohsen, S.A.M.; Tamam, N.; Elansary, H.O.; El-Abedin, T.K.Z.; Abdelbacki, A.M.M.; Janhavi, V. Morphological Characterization, Variability and Diversity among Vegetable Soybean (Glycine max L.) Genotypes. Plants 2021, 10, 671. [Google Scholar] [CrossRef] [PubMed]
- Manoj, K.N.; Shekara, B.G.; Sridhara, S.; Jha, P.K.; Prasad, P.V.V. Biomass Quantity and Quality from Different Year-Round Cereal–Legume Cropping Systems as Forage or Fodder for Livestock. Sustainability 2021, 13, 9414. [Google Scholar] [CrossRef]
- Osipitan, O.A.; Fields, J.S.; Lo, S.; Cuvaca, I. Production Systems and Prospects of Cowpea (Vigna unguiculata (L.) Walp.) in the United States. Agronomy 2021, 11, 2312. [Google Scholar] [CrossRef]
- Jayawardhane, J.; Goyali, J.C.; Zafari, S.; Igamberdiev, A.U. The Response of Cowpea (Vigna unguiculata) Plants to Three Abiotic Stresses Applied with Increasing Intensity: Hypoxia, Salinity, and Water Deficit. Metabolites 2022, 12, 38. [Google Scholar] [CrossRef]
- Salama, H.S.A.; Nawar, A.I.; Khalil, H.E. Intercropping Pattern and N Fertilizer Schedule Affect the Performance of Additively Intercropped Maize and Forage Cowpea in the Mediterranean Region. Agronomy 2022, 12, 107. [Google Scholar] [CrossRef]
- Amaral, J.B.C.; Lopes, F.B.; Magalhães, A.C.M.d.; Kujawa, S.; Taniguchi, C.A.K.; Teixeira, A.d.S.; Lacerda, C.F.d.; Queiroz, T.R.G.; Andrade, E.M.d.; Araújo, I.C.d.S.; et al. Quantifying Nutrient Content in the Leaves of Cowpea Using Remote Sensing. Appl. Sci. 2022, 12, 458. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Bethune, B.J.; Iqbal, A.; Abbas, R.N.; Aslam, Z.; Khan, H.Z.; Ahmad, B. Agro-botanical response of forage sorghum-soybean intercropping systems under atypical spatio-temporal patterns. Pak. J. Bot. 2017, 49, 987–994. [Google Scholar]
- Iqbal, M.A.; Hamid, A.; Hussain, I.; Siddiqui, M.H.; Ahmad, T.; Khaliq, A.; Ahmad, Z. Competitive indices in cereal and legume mixtures in a South Asian environment. Agron. J. 2019, 111, 242–249. [Google Scholar] [CrossRef]
- Rudra, S.G.; Shruti, S.; Jha, S.K.; Rajeev, K. Physico-chemical and functional properties of cowpea protein isolateas affected by the dehydration technique. Leg. Res. 2016, 39, 370–378. [Google Scholar]
- Bange, M.P.; Carberry, B.S.; Marshall, J.; Milroy, S.P. Row configuration as a tool for managing rain-fed cotton systems: Review and simulation analysis. Aust. J. Exp. Agric. 2005, 45, 65–77. [Google Scholar] [CrossRef]
- Hakan, G.; Avcioglu, R.; Soya, H.; Kir, B. Intercropping of corn with cowpea and bean: Biomass yield and silage quality. Afr. J. Biotech. 2008, 22, 4100–4104. [Google Scholar]
- Rahman, A.N.; Larbi, A.; Kotu, B.; Marthy Tetteh, F.; Hoeschle-Zeledon, I. Does Nitrogen Matter for Legumes? Starter Nitrogen Effects on Biological and Economic Benefits of Cowpea (Vigna unguiculata L.) in Guinea and Sudan Savanna of West Africa. Agronomy 2018, 8, 120. [Google Scholar] [CrossRef] [Green Version]
- Zaheer, S.; Arif, M.; Akhtar, K.; Khan, A.; Khan, A.; Bibi, S.; Muhammad Aslam, M.; Ali, S.; Munsif, F.; Jalal, F.; et al. Grazing and Cutting under Different Nitrogen Rates, Application Methods and Planting Density Strongly Influence Qualitative Traits and Yield of Canola Crop. Agronomy 2020, 10, 404. [Google Scholar] [CrossRef] [Green Version]
- Basaran, U.; Ayan, I.; Acar, Z.; Mut, H.; Asci, O.O. Seed yield and agronomic parameters of cowpea (Vigna unguiculata L.) genotypes grown in the Black Sea region of Turkey. Afr. J. Biotechnol. 2011, 10, 13461. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Iqbal, A.; Ahmad, Z.; Raza, A.; Rahim, J.; Imran, M.; Sheikh, U.A.A.; Maqsood, Q.; Soufan, W.; Sahloul, N.M.A.; et al. Cowpea [Vigna unguiculata (L.) Walp] herbage yield and nutritional quality in cowpea-sorghum mixed strip intercropping systems. Rev. Mex. Cienc. Pec. 2021, 12, 402–418. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Siddiqui, M.H.; Afzal, S.; Ahmad, Z.; Maqsood, Q.; Khan, R.D. Forage productivity of cowpea [Vigna unguiculata (L.) Walp] cultivars improves by optimization of spatial arrangements. Rev. Mex. Cien. Pec. 2018, 9, 203–219. [Google Scholar] [CrossRef] [Green Version]
- Adams, P.D.; Weaver, D.B. Brachytic stem trait, row spacing, and plant population effects on soybean yield. Crop Sci. 1998, 38, 750–755. [Google Scholar] [CrossRef]
- Kwapata, M.B.; Hall, A.E. Response of contrasting vegetable-cowpea cultivars to plant density and harvesting of young green pods. I. Pod production. Field Crops Res. 1990, 24, 1–10. [Google Scholar] [CrossRef]
- Kerby, T.A.; Cassman, K.G.; Keeley, M. Genotypes and plant densities for narrow-row cotton systems. 1. Height, nodes, earliness, and location of yield. Crop Sci. 1990, 30, 644–649. [Google Scholar] [CrossRef]
- Xue, W.; Lindner, S.; Nay-Htoon, B.; Dubbert, M.; Otieno, D.; Ko, J.; Muraoka, H.; Werner, C.; Tenhunen, J.; Harley, P. Nutritional and developmental influences on components of rice crop light use efficiency. Agric. For. Meteorol. 2016, 223, 1–16. [Google Scholar] [CrossRef]
- Zhang, L.; van der Werf, W.; Bastiaans, L.; Zhang, S.; Li, B.; Spiertz, J.H.J. Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Res. 2008, 107, 29–42. [Google Scholar] [CrossRef]
- Liu, X.; Rahman, T.; Yang, F.; Song, C.; Yong, T.; Liu, J.; Zhang, C.; Yang, W. PAR interception and utilization in different maize and soybean intercropping patterns. PLoS ONE 2017, 12, e0169218. [Google Scholar] [CrossRef]
- Mattera, J.; Romero, L.A.; Cuatrín, A.L.; Cornaglia, P.S.; Grimoldi, A.A. Yield components, light interception and radiation use efficiency of lucerne (Medicago sativa L.) in response to row spacing. Eur. J. Agron. 2013, 45, 87–95. [Google Scholar] [CrossRef]
- Raza, M.A.; Feng, L.Y.; van der Werf, W.; Cai, G.R.; Khalid, M.H.B.; Iqbal, N.; Hassan, M.J.; Meraj, T.A.; Naeem, M.; Khan, I.; et al. Narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay- intercropping system. Food Energy Secur. 2019, 8, e170. [Google Scholar] [CrossRef]
- Lithourgidis, A.S.; Vasilakoglou, I.B.; Dhima, K.V.; Dordas, C.A.; Yiakoulaki, M.D. Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crops Res. 2006, 99, 106–113. [Google Scholar] [CrossRef]
- Ismail, A.M.; Hall, A.E. Semi-dwarf and standard-height cowpea responses to row spacing in different environments. Crop Sci. 2001, 40, 1618–1623. [Google Scholar] [CrossRef]
Treatments | Plant Height (cm) | Stem Girth (cm) | Branches Number per Plant | Leaf Number per Plant | Leaf Area per Plant (cm2) at 56 DAS | Leaf Area per Plant (cm2) at 70 DAS |
---|---|---|---|---|---|---|
C1P1 | 68.3 ± 0.28 d | 5.16 ± 0.13 e | 9.3 ± 0.04 g | 24.3 ± 0.09 f | 75.9 ± 0.24 g | 91.1 ± 0.51 h |
C1P2 | 77.7 ± 0.19 a | 6.01 ± 0.55 d | 12.6 ± 0.51 d | 27.6 ± 0.50 d | 88.6 ± 0.39 e | 109.4 ± 0.32 e |
C1P3 | 74.8 ± 0.81 b | 5.13 ± 0.92 e | 11.1 ± 0.63 e | 26.3 ± 0.15 e | 79.3 ± 0.63 f | 100.9 ± 0.18 f |
C1P4 | 58.3 ± 0.64 c | 4.66 ± 0.28 f | 10.7 ± 0.45 f | 24.3 ± 0.45 f | 76.3 ± 0.45 g | 94.7 ± 0.29 g |
C2P1 | 53.3 ± 0.37 g | 6.03 ± 0.35 d | 14.0 ± 0.07 c | 40.3 ± 0.27 c | 93.3 ± 0.17 d | 115.0 ± 0.11 d |
C2P2 | 54.7 ± 0.19 f | 6.65 ± 0.41 b | 15.5 ± 1.01 b | 44.6 ± 0.11 b | 107.6 ± 0.53 b | 126.6 ± 0.65 b |
C2P3 | 55.8 ± 0.41 e | 7.07 ± 0.22 a | 16.7 ± 0.50 a | 46.1 ± 0.50 a | 116.7 ± 0.21 a | 137.1 ± 0.29 a |
C2P4 | 53.1 ± 0.34 g | 6.10 ± 0.19 c | 15.3 ± 0.83 b | 41.3 ± 0.33 c | 100.3 ± 0.32 c | 121.5 ± 0.32 c |
Treatments | Plant Fresh Weight (g) at 60 DAS | Plant Fresh Weight (g) at 80 DAS | Plant Dry Weight (g) at 60 DAS | Plant Dry Weight (g) at 80 DAS | Green Herbage Yield (t ha−1) | Dry Matter Yield (t ha−1) |
---|---|---|---|---|---|---|
C1P1 | 86.2 ± 0.35 f | 100.6 ± 0.61 f | 28.1 ± 0.11 f | 34.0 ± 0.28 e | 12.3 ± 0.24 f | 2.9. ± 0.23 g |
C1P2 | 92.1 ± 0.17 d | 104.2 ± 0.28 d | 30.9 ± 0.42 d | 37.7 ± 0.07 d | 15.2 ± 0.51 c | 3.4 ± 0.50 e |
C1P3 | 88.6 ± 0.63 e | 102.9 ± 0.19 e | 29.8 ± 0.29 e | 37.2 ± 0.23 d | 14.1 ± 0.16 d | 3.1 ± 0.83 f |
C1P4 | 88.1 ± 0.55 ef | 102.1 ± 0.26 e | 29.1 ± 0.09 e | 35.1 ± 0.41 de | 13.0 ± 0.45 e | 3.0 ± 0.45 d |
C2P1 | 101.2 ± 0.13 c | 116.9 ± 0.41 bc | 34.7 ± 0.47 c | 41.9 ± 0.38 cd | 14.3 ± 0.37 d | 3.9 ± 0.37 c |
C2P2 | 102.1 ± 0.42 b | 117.9 ± 0.55 b | 35.1 ± 0.461 b | 43.1 ± 0.23 b | 15.6 ± 0.11 b | 4.4 ± 0.16 b |
C2P3 | 107.9 ± 0.69 a | 123.8 ± 0.12 a | 38.6 ± 0.25 a | 47.9 ± 0.30 a | 16.7 ± 0.50 a | 4.9 ± 0.51 a |
C2P4 | 101.4 ± 0.29 c | 114.0 ± 0.19 c | 34.6 ± 0.33 c | 42.0 ± 0.14 c | 15.3 ± 0.63 c | 4.0 ± 0.63 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, M.A.; Ahmed, A.; Imran, M.; Ahmed, H.E.; Hafez, R.M.; Hamad, A.A. Genetic Divergence and Spatial Configuration Influence the Weed Spectrum, Herbage Yield and Nutritive Quality of Temperate Cowpea. Agronomy 2022, 12, 1323. https://doi.org/10.3390/agronomy12061323
Iqbal MA, Ahmed A, Imran M, Ahmed HE, Hafez RM, Hamad AA. Genetic Divergence and Spatial Configuration Influence the Weed Spectrum, Herbage Yield and Nutritive Quality of Temperate Cowpea. Agronomy. 2022; 12(6):1323. https://doi.org/10.3390/agronomy12061323
Chicago/Turabian StyleIqbal, Muhammad Aamir, Arslan Ahmed, Muhammad Imran, Hanaa E. Ahmed, Rehab M. Hafez, and Asmaa A. Hamad. 2022. "Genetic Divergence and Spatial Configuration Influence the Weed Spectrum, Herbage Yield and Nutritive Quality of Temperate Cowpea" Agronomy 12, no. 6: 1323. https://doi.org/10.3390/agronomy12061323
APA StyleIqbal, M. A., Ahmed, A., Imran, M., Ahmed, H. E., Hafez, R. M., & Hamad, A. A. (2022). Genetic Divergence and Spatial Configuration Influence the Weed Spectrum, Herbage Yield and Nutritive Quality of Temperate Cowpea. Agronomy, 12(6), 1323. https://doi.org/10.3390/agronomy12061323