Assessing the Contribution of ECa and NDVI in the Delineation of Management Zones in a Vineyard
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Remote Measurements
2.2.1. ECa
2.2.2. NDVI
2.3. Experimental Design
2.4. Soil Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Soil Particle Size
3.2. Soil pH, EC, SOC, N, and P
3.2.1. Soil pH
3.2.2. Soil EC1:2
3.2.3. Soil Organic Carbon (SOC)
3.2.4. Soil Total Nitrogen (Ntot) and Extractable Phosphorus (P)
3.3. Cation Exchange Complex
3.3.1. Exchangeable Cations
3.3.2. Exchangeable Acidity (EA) and Effective Cation Exchange Capacity (ECEC)
3.4. Ratios within the Cation Exchange Complex
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van Alphen, B.J.; Stoorvogel, J.J. A methodology for precision nitrogen fertilization in high-input farming systems. Precis. Agric. 2000, 2, 319–332. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Van Der Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision agriculture technologies positively contributing to ghg emissions mitigation, farm productivity and economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef] [Green Version]
- Bramley, R.G.V.; Lamb, D.W. Making sense of vineyard variability in Australia. In Precision Viticulture, Proceedings of an International Symposium Held as Part of the IX Congreso Latinoamericano de Viticultura y Enologia, Chile; Ortega, R., Esser, A., Eds.; Centro de Agricultura de Precisión, Facultad de Agronomía e Ingenería Forestal, Pontificia Universidad Católica de Chile: Santiago, Chile, 2003; pp. 35–54. [Google Scholar]
- Du, Q.; Chang, N.B.; Yang, C.; Srilakshmi, K.R. Combination of multispectral remote sensing, variable rate technology and environmental modeling for citrus pest management. J. Environ. Manag. 2008, 86, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Leroux, C.; Tisseyre, B. How to measure and report within-field variability: A review of common indicators and their sensitivity. Precis. Agric. 2019, 20, 562–590. [Google Scholar] [CrossRef]
- Brevik, E.C.; Fenton, T.E.; Lazari, A. Soil electrical conductivity as a function of soil water content and implications for soil mapping. Precis. Agric. 2006, 7, 393–404. [Google Scholar] [CrossRef]
- Carroll, Z.L.; Oliver, M.A. Exploring the spatial relations between soil physical properties and apparent electrical conductivity. Geoderma 2005, 128, 354–374. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Kitchen, N.R.; Wiebold, W.J.; Batchelor, W.D.; Bollero, G.A.; Bullock, D.G.; Clay, D.E.; Palm, H.L.; Pierce, F.J.; Schuler, R.T.; et al. Relating apparent electrical conductivity to soil properties across the north-central USA. Comput. Electron. Agric. 2005, 46, 263–283. [Google Scholar] [CrossRef]
- Jung, W.K.; Kitchen, N.R.; Sudduth, K.A.; Kremer, R.J.; Motavalli, P.P. Relationship of Apparent Soil Electrical Conductivity to Claypan Soil Properties. Soil Sci. Soc. Am. J. 2005, 69, 883–892. [Google Scholar] [CrossRef] [Green Version]
- Stepień, M.; Samborski, S.; Gozdowski, D.; Dobers, E.S.; Chormański, J.; Szatylowicz, J. Assessment of soil texture class on agricultural fields using ECa, Amber NDVI, and topographic properties. J. Plant Nutr. Soil Sci. 2015, 178, 523–536. [Google Scholar] [CrossRef]
- Domsch, H.; Giebel, A. Estimation of Soil Textural Features from Soil Electrical Conductivity Recorded Using the EM38. Precis. Agric. 2004, 5, 389–409. [Google Scholar] [CrossRef]
- Dunn, B.W.; Beecher, H.G. Using electro-magnetic induction technology to identify sampling sites for soil acidity assessment and to determine spatial variability of soil acidity in rice fields. Aust. J. Exp. Agric. 2007, 47, 208–214. [Google Scholar] [CrossRef]
- Hedley, C.B.; Yule, I.J.; Eastwood, C.R.; Shepherd, T.G.; Arnold, G. Rapid identification of soil textural and management zones using electromagnetic induction sensing of soils. Soil Res. 2004, 42, 389–400. [Google Scholar] [CrossRef]
- Peralta, N.R.; Costa, J.L. Delineation of management zones with soil apparent electrical conductivity to improve nutrient management. Comput. Electron. Agric. 2013, 99, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Corwin, D.L.; Lesch, S.M. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Ortega-Blu, R.; Molina-Roco, M. Evaluation of vegetation indices and apparent soil electrical conductivity for site-specific vineyard management in Chile. Precis. Agric. 2016, 17, 434–450. [Google Scholar] [CrossRef]
- Verhulst, N.; Govaerts, B.; Sayre, K.D.; Deckers, J.; François, I.M.; Dendooven, L. Using NDVI and soil quality analysis to assess influence of agronomic management on within-plot spatial variability and factors limiting production. Plant Soil 2009, 317, 41–59. [Google Scholar] [CrossRef]
- Aldakheel, Y.Y. Assessing NDVI Spatial Pattern as Related to Irrigation and Soil Salinity Management in Al-Hassa Oasis, Saudi Arabia. J. Indian Soc. Remote Sens. 2011, 39, 171–180. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Z.; Wu, C.F.; Li, H.Y.; Li, F. Determination of potential management zones from soil electrical conductivity, yield and crop data. J. Zhejiang Univ. Sci. B 2008, 9, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Andrenelli, M.C.; Magini, S.; Pellegrini, S.; Perria, R.; Vignozzi, N.; Costantini, E.A.C. The use of the ARP© system to reduce the costs of soil survey for precision viticulture. J. Appl. Geophys. 2013, 99, 24–34. [Google Scholar] [CrossRef]
- Bonilla, I.; De Toda, F.M.; Martínez-Casasnovas, J.A. Vineyard zonal management for grape quality assessment by combining airborne remote sensed imagery and soil sensors. Remote Sens. Agric. Ecosyst. Hydrol. XVI 2014, 9239, 92390S. [Google Scholar] [CrossRef]
- Botelho, M.; Cruz, A.; Mourato, C.; Castelo-Branco, J.; Ricardo-da-Silva, J.; Castro, R.; Ribeiro, H.; Braga, R. Variable-rate mechanical pruning: A new way to prune vines. Acta Hortic. 2021, 1314, 307–312. [Google Scholar] [CrossRef]
- Tagarakis, A.; Liakos, V.; Fountas, S.; Koundouras, S.; Gemtos, T.A. Management zones delineation using fuzzy clustering techniques in grapevines. Precis. Agric. 2013, 14, 18–39. [Google Scholar] [CrossRef]
- Serrano, J.; Da Silva, J.M.; Shahidian, S.; Silva, L.L.; Sousa, A.; Baptista, F. Differential vineyard fertilizer management based on nutrient’s spatio-temporal variability. J. Soil Sci. Plant Nutr. 2017, 17, 46–61. [Google Scholar]
- Hubbard, S.S.; Schmutz, M.; Balde, A.; Falco, N.; Peruzzo, L.; Dafflon, B.; Léger, E.; Wu, Y. Estimation of soil classes and their relationship to grapevine vigor in a Bordeaux vineyard: Advancing the practical joint use of electromagnetic induction (EMI) and NDVI datasets for precision viticulture. Precis. Agric. 2021, 22, 1353–1376. [Google Scholar] [CrossRef]
- Sams, B.; Bramley, R.G.V.; Sanchez, L.; Dokoozlian, N.; Ford, C.; Pagay, V. Remote Sensing, Yield, Physical Characteristics, and Fruit Composition Variability in Cabernet Sauvignon Vineyards. Am. J. Enol. Vitic. 2022, 73, 93–105. [Google Scholar] [CrossRef]
- von Hebel, C.; Reynaert, S.; Pauly, K.; Janssens, P.; Piccard, I.; Vanderborght, J.; van der Kruk, J.; Vereecken, H.; Garré, S. Toward high-resolution agronomic soil information and management zones delineated by ground-based electromagnetic induction and aerial drone data. Vadose Zone J. 2021, 20, 1539–1663. [Google Scholar] [CrossRef]
- Uribeetxebarria, A.; Martínez-Casasnovas, J.A.; Escolà, A.; Rosell-Polo, J.R.; Arnó, J. Stratified sampling in fruit orchards using cluster-based ancillary information maps: A comparative analysis to improve yield and quality estimates. Precis. Agric. 2019, 20, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Millán, S.; Moral, F.J.; Prieto, M.H.; Pérez-Rodríguez, J.M.; Campillo, C. Mapping soil properties and delineating management zones based on electrical conductivity in a hedgerow olive grove. Trans. ASABE 2019, 62, 749–760. [Google Scholar] [CrossRef]
- Esteves, C.; Fangueiro, D.; Ribeiro, H.; Braga, R. Remote sensing (NDVI) and Apparent soil electrical conductivity (ECap) to delineate different zones in a vineyard. Biol. Life Sci. Forum 2021, 3, 42. [Google Scholar] [CrossRef]
- WRB-IUSS. World Reference Base for Soil Resources. World Soil Resources Reports 106. World Soil Resources Reports; No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Instituto Português da Atmosfera e do Mar. Available online: https://www.ipma.pt/pt/oclima/normais.clima/ (accessed on 27 March 2021).
- Singh, G.; Williard, K.W.J.; Schoonover, J.E. Spatial relation of apparent soil electrical conductivity with crop yields and soil properties at different topographic positions in a small agricultural watershed. Agronomy 2016, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Geonics Limited. Available online: http://www.geonics.com/html/em38.html (accessed on 27 March 2021).
- Heil, K.; Schmidhalter, U. Comparison of the EM38 and EM38-MK2 electromagnetic induction-based sensors for spatial soil analysis at field scale. Comput. Electron. Agric. 2015, 110, 267–280. [Google Scholar] [CrossRef]
- Heil, K.; Schmidhalter, U. The application of EM38: Determination of soil parameters, selection of soil sampling points and use in agriculture and archaeology. Sensors 2017, 17, 2540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- QGIS Version 3.16.15. QGIS Geographic Information System. QGIS Association. Available online: http://www.qgis.org (accessed on 21 March 2022).
- Bhunia, G.S.; Shit, P.K.; Pourghasemi, H.R. Soil organic carbon mapping using remote sensing techniques and multivariate regression model. Geocarto Int. 2017, 34, 215–226. [Google Scholar] [CrossRef]
- Copernicus Sentinel-2. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 15 April 2021).
- DataFarming. Data Farming-High Resolution Images Available Now. DataFarming. Available online: https://www.datafarming.com.au/ (accessed on 21 March 2022).
- Sonmez, S.; Buyuktas, D.; Okturen, F.; Citak, S. Assessment of different soil to water ratios (1:1, 1:2.5, 1:5) in soil salinity studies. Geoderma 2008, 144, 361–369. [Google Scholar] [CrossRef]
- Fotyma, M.; Jadczyszyn, T.; Jozefaciuk, G. Hundredth molar calcium chloride extraction procedure. Part II: Calibration with conventional soil testing methods for pH. Commun. Soil Sci. Plant Anal. 1998, 29, 1625–1632. [Google Scholar] [CrossRef]
- Egnér, H.; Riehm, H.; Domingo, W.R. Investigations on chemical soil analysis as a basis for assessing the nutrient status of soils. II. Chemical Extraction Methods for Phosphorus and Potassium Determination. K. Lantbr. Ann. 1960, 26, 199–215. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties 9.2.2, 2nd ed.; The American Society of Agronomy, Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 1996; Chapter 29. [Google Scholar] [CrossRef]
- Bremner, J.M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Amacher, M.C.; Henderson, R.E.; Breithaupt, M.D.; Seale, C.L.; LaBauve, J.M. Unbuffered and Buffered Salt Methods for Exchangeable Cations and Effective Cation-Exchange Capacity. Soil Sci. Soc. Am. J. 1990, 54, 1036–1042. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-size Analysis. In Methods of Soil Analysis: Part I—Physical and Mineralogical Methods; Campbell, G.S., Jackson, R.D., Mortland, M.M., Nielsen, D.R., Klute, A., Eds.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Statistix Program Version 9.0; Analytical Software, Tallahassee, FL, USA. Free Trial. Available online: https://www.statistix.com/ (accessed on 27 March 2021).
- Stevens, R.M.; Douglas, T. Distribution of grapevine roots and salt under drip and full-ground cover microjet irrigation systems. Irrig. Sci. 1994, 15, 147–152. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, J.R.; Plant, R.E.; Lambert, J.J.; Smart, D.R. Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay content. Precis. Agric. 2011, 12, 775–794. [Google Scholar] [CrossRef] [Green Version]
- Serrano, J.; da Silva, J.; Shahidian, S.; Silva, L.; Sousa, A.; Baptista, F. Spatial variability of soil phosphorus, potassium and pH: Evaluation of the potential for improving vineyard fertilizer management. In Precision Agriculture’15; Stafford, J.V., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 495–502. [Google Scholar] [CrossRef]
- Kissel, D.E.; Sonon, L.; Vendrell, P.F.; Isaac, R.A. Salt concentration and measurement of soil pH. Commun. Soil Sci. Plant Anal. 2009, 40, 179–187. [Google Scholar] [CrossRef]
- Lanyon, D.M.; Cass, A.; Hasen, D. The Effect of Soil Properties on Vine Performance. 2004. Available online: https://www.researchgate.net/publication/228433458 (accessed on 27 March 2022).
- Hall, A.; Lamb, D.W.; Holzapfel, B.; Louis, J. Optical remote sensing applications in viticulture—A review. Aust. J. Grape Wine Res. 2002, 8, 36–47. [Google Scholar] [CrossRef]
- Peri, P.L.; Rosas, Y.M.; Ladd, B.; Toledo, S.; Lasagno, R.G.; Pastur, G.M. Modeling soil nitrogen content in south Patagonia across a climate gradient, vegetation type, and grazing. Sustainability 2019, 11, 2707. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhuang, Q.; Jin, X.; Yang, Z.; Liu, H. Predicting soil organic carbon and soil nitrogen stocks in topsoil of forest ecosystems in Northeastern China using remote sensing data. Remote Sens. 2020, 12, 1115. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wei, Q.; Xiong, S.; Shi, L.; Ma, X.; Du, P.; Guo, J. A spectral parameter for the estimation of soil total nitrogen and nitrate nitrogen of winter wheat growth period. Soil Use Manag. 2021, 37, 698–711. [Google Scholar] [CrossRef]
- Heiniger, R.W.; Mcbride, R.G.; Clay, D.E. Using Soil Electrical Conductivity to Improve Nutrient Management. Agron. J. 2003, 95, 508–519. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, Y.; Wang, X.; Zhao, D. Changes in pH, CEC and exchangeable acidity of some forest soils in southern China during the last 32–35 years. Water Air Soil Pollut. 1998, 108, 377–390. [Google Scholar] [CrossRef]
- Bennett, J.M.L.; Marchuk, A.; Marchuk, S. An alternative index to the exchangeable sodium percentage for an explanation of dispersion occurring in soils. Soil Res. 2016, 54, 949–957. [Google Scholar] [CrossRef]
- Michael Hannan, J.; Michael, J. Potassium-Magnesium Antagonism in High Magnesium Vineyard Soils Recommended Citation. Master’s Thesis, Iowa State University, Ames, IA, USA, 2011. [Google Scholar]
- Gluhić, D.; Ćustić, M.H.; Petek, M.; Čoga, L.; Slunjski, S.; Sinčić, M. The Content of Mg, K and Ca Ions in Vine Leaf under Foliar Application of Magnesium on Calcareous Soils. Agric. Conspec. Sci. 2009, 74, 81–84. [Google Scholar]
Zone Design | Sand | Silt | Clay |
---|---|---|---|
% | |||
NDVI | |||
N+ | 79.25 a | 7.14 | 13.61 b |
N− | 71.16 b | 6.67 | 22.17 a |
Signif. | * | ns | ** |
ECa | |||
E+ | 72.29 b | 7.62 a | 20.09 a |
E− | 85.06 a | 5.71 b | 9.23 b |
Signif. | *** | * | *** |
NDVI + ECa | |||
N+ E− | 85.06 a | 5.71 b | 9.23 b |
N+ E+ | 73.43 b | 8.58 a | 18.00 a |
N− E+ | 71.16 b | 6.67 b | 22.17 a |
Signif. | *** | *** | ** |
Zone Design | pH | pH | EC1:2 | SOC | Ntot | Extractable P |
---|---|---|---|---|---|---|
(H2O) | (CaCl2) | (µS cm−1) | (%) | (mg kg−1) | (mg kg−1) | |
NDVI | ||||||
N+ | 6.37 | 5.35 b | 72.86 b | 0.42 | 285.64 a | 19.20 a |
N− | 6.51 | 5.70 a | 161.27 a | 0.42 | 179.85 b | 8.83 b |
Signif. | ns | *** | *** | ns | *** | * |
ECa | ||||||
E+ | 6.49 a | 5.52 | 121.19 a | 0.42 | 247.91 | 13.69 |
E− | 6.25 b | 5.36 | 64.60 b | 0.42 | 255.30 | 19.85 |
Signif. | ** | ns | *** | ns | ns | ns |
NDVI + ECa | ||||||
N+ E− | 6.25 b | 5.36 b | 64.60 b | 0.42 | 255.30 b | 19.85 |
N+ E+ | 6.48 a | 5.35 b | 81.11 b | 0.42 | 315.98 a | 18.55 |
N− E+ | 6.51 a | 5.70 a | 161.27 a | 0.42 | 179.85 c | 8.83 |
Signif. | ** | *** | *** | ns | *** | ns |
Zone Design | Exchangeable Cations | EA | ECEC | |||
---|---|---|---|---|---|---|
K+ | Ca2+ | Mg2+ | Na+ | |||
(cmol+ kg−1) | ||||||
NDVI | ||||||
N+ | 0.19 b | 1.83 b | 0.76 b | 0.07 b | 0.22 | 3.07 b |
N− | 0.23 a | 3.03 a | 2.96 a | 0.43 a | 0.22 | 6.87 a |
Signif. | * | *** | *** | *** | ns | *** |
ECa | ||||||
E+ | 0.23 a | 2.52 a | 2.01 a | 0.26 a | 0.28 a | 5.31 a |
E− | 0.15 b | 1.66 b | 0.45 b | 0.04 b | 0.11 b | 2.40 b |
Signif. | *** | ** | *** | *** | *** | *** |
NDVI + ECa | ||||||
N+ E− | 0.15 b | 1.66 b | 0.45 c | 0.04 b | 0.11 c | 2.40 c |
N+ E+ | 0.23 a | 2.01 b | 1.07 b | 0.09 b | 0.33 a | 3.74 b |
N− E+ | 0.23 a | 3.03 a | 2.96 a | 0.43 a | 0.22 b | 6.87 a |
Signif. | *** | *** | *** | *** | *** | *** |
Zone Design | Ca2+/Mg2+ | K+/Mg2+ | Ca2+/ECEC | K+/ECEC | Mg2+/ECEC | Na+/ECEC |
---|---|---|---|---|---|---|
% | ||||||
NDVI | ||||||
N+ | 3.18 a | 0.32 a | 61.41 a | 6.41 a | 22.31 b | 2.13 b |
N− | 1.01 b | 0.08 b | 41.99 b | 3.59 b | 44.56 a | 6.22 a |
Signif. | *** | *** | *** | *** | *** | *** |
ECa | ||||||
E+ | 1.62 b | 0.17 b | 48.32 b | 4.95 b | 35.59 a | 4.35 a |
E− | 4.12 a | 0.38 a | 68.17 a | 6.51 a | 18.01 b | 1.78 b |
Signif. | *** | *** | *** | *** | *** | *** |
NDVI + ECa | ||||||
N+ E− | 4.12 a | 0.38 a | 68.17 a | 6.51 a | 18.01 c | 1.78 b |
N+ E+ | 2.24 b | 0.25 b | 54.65 b | 6.31 a | 26.61 b | 2.48 b |
N− E+ | 1.01 c | 0.08 c | 41.99 c | 3.59 b | 44.56 a | 6.22 a |
Signif. | *** | *** | *** | *** | *** | *** |
Reference values according to Lanyon et al. [53] | 2–10 | 0.1–0.4 | 60–80 | 5–10 | 15–30 | <6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteves, C.; Fangueiro, D.; Braga, R.P.; Martins, M.; Botelho, M.; Ribeiro, H. Assessing the Contribution of ECa and NDVI in the Delineation of Management Zones in a Vineyard. Agronomy 2022, 12, 1331. https://doi.org/10.3390/agronomy12061331
Esteves C, Fangueiro D, Braga RP, Martins M, Botelho M, Ribeiro H. Assessing the Contribution of ECa and NDVI in the Delineation of Management Zones in a Vineyard. Agronomy. 2022; 12(6):1331. https://doi.org/10.3390/agronomy12061331
Chicago/Turabian StyleEsteves, Catarina, David Fangueiro, Ricardo P. Braga, Miguel Martins, Manuel Botelho, and Henrique Ribeiro. 2022. "Assessing the Contribution of ECa and NDVI in the Delineation of Management Zones in a Vineyard" Agronomy 12, no. 6: 1331. https://doi.org/10.3390/agronomy12061331
APA StyleEsteves, C., Fangueiro, D., Braga, R. P., Martins, M., Botelho, M., & Ribeiro, H. (2022). Assessing the Contribution of ECa and NDVI in the Delineation of Management Zones in a Vineyard. Agronomy, 12(6), 1331. https://doi.org/10.3390/agronomy12061331