Development and Validation of Alternative Palm-Derived Substrates for Seedling Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Analytical Methods
2.3. Statistical Methods
3. Results and Discussion
3.1. Physico-Chemical and Physical Characteristics of the Growing Media
3.2. Chemical Characteristics of the Growing Media
3.3. Germination and Morphological Parameters of the Lettuce Seedlings
3.4. Chemometric Analyses: Random Forest (RF) and Hierarchical Cluster Analysis (HCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Vico, A.; Pérez-Murcia, M.D.; Bustamante, M.A.; Agulló, E.; Marhuenda-Egea, F.C.; Sáez, J.A.; Paredes, C.; Pérez-Espinosa, A.; Moral, R. Valorization of date palm (Phoenix dactylifera L.) pruning biomass by co-composting with urban and agri-food sludge. J. Environ. Manag. 2018, 226, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Zaid, A.; Arias-Jimenez, E.J. Date palm cultivation. In FAO Plant Production and Protection Paper; 156 Rev.1; FAO: Rome, Italy, 2002. [Google Scholar]
- Agoudjil, B.; Benchabane, A.; Boudenne, A.; Ibos, L.; Fois, M. Renewable materials to reduce building heat loss: Characterization of date palm wood. Energy Build. 2011, 43, 491–497. [Google Scholar] [CrossRef]
- Abid, W.; Magdich, S.; Mahmoud, I.B.; Medhioub, K.; Ammar, E. Date palm wastes co-composted product: An efficient substrate for tomato (Solanum lycopercicum L.) seedling production. Waste Biomass Valor. 2018, 9, 45–55. [Google Scholar] [CrossRef]
- Moral, R.; Paredes, C.; Perez-Murcia, M.D.; Perez-Espinosa, A.; Bustamante, M.A. Challenges of composting for growing media purposes in Spain and Mediterranean area. Acta Hortic. 2013, 1013, 25–40. [Google Scholar] [CrossRef]
- Rinaldi, S.; De Lucia, B.; Salvati, L.; Rea, E. Understanding complexity in the response of ornamental rosemary to different substrates: A multivariate analysis. Sci. Hortic. 2011, 176, 218–224. [Google Scholar] [CrossRef]
- Ceglie, F.G.; Bustamante, M.A.; Amara, M.B.; Tittarelli, F. The challenge of peat substitution in organic seedling production: Optimization of growing media formulation through mixture design and response surface analysis. PLoS ONE 2015, 10, e0128600. [Google Scholar] [CrossRef]
- Carlile, W.R.; Cattivello, C.; Zaccheo, P. Organic growing media: Constituents and properties. Vadose Zone J. 2015, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Moral, R.; Bustamante, M.; Ferrández-García, C.E.; Andreu-Rodríguez, J.; Ferrández-García, M.T.; Garcia-Ortuño, T. New biomass sources to reduce peat dependence in Mediterranean substrates: Validation of Morus alba L., Sorghum vulgare L., and Phoenix canariensis pruning wastes. Commun. Soil Sci. Plant Anal. 2015, 46 (Suppl. 1), 10–19. [Google Scholar] [CrossRef]
- Fornes, F.; Belda, R.M.; Abad, M.; Noguera, P.; Puchades, R.; Maquieira, A.; Noguera, V. The microstructure of coconut coir dusts for use as alternatives to peat in soilless growing media. Aust. J. Exp. Agric. 2003, 43, 1171–1179. [Google Scholar] [CrossRef]
- EN 13038; Determination of Electrical Conductivity. European Committee for Standardization (CEN): Brussels, Belgium, 1999; p. 13.
- EN 13037; European Standards. Determination of pH. Soil Improvers and Growing Media. European Committee for Standardization (CEN): Brussels, Belgium, 1999; p. 11.
- Bustamante, M.A.; Paredes, C.; Moral, R.; Agulló, E.; Pérez-Murcia, M.D.; Abad, M. Composts from distillery wastes as peat substitutes for transplant production. Resour. Conserv. Recycl. 2008, 52, 792–799. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- de Lima, M.D.; Barbosa, R. Methods of authentication of food grown in organic and conventional systems using chemometrics and data mining algorithms: A review. Food Anal. Methods 2019, 12, 887–901. [Google Scholar] [CrossRef]
- Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 2018, 72, 83–90. [Google Scholar] [CrossRef]
- Gil, M.V.; Calvo, L.F.; Blanco, D.; Sánchez, M.E. Assessing the agronomic and environmental effects of the application of cattle manure compost on soil by multivariate methods. Bioresour. Technol. 2008, 99, 5763–5772. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing (4.0.5) [Computer Software]; R Foundation for Statistical Computing: Vienna, Austria, 2012. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Paluszynska, A.; Biecek, P.; Jiang, Y.; Jiang, M.Y. Package ‘randomForestExplainer’. Explaining and Visualizing Random Forests in Terms of Variable Importance. R Package Version 0.9. 2017. Available online: https://cran.r-project.org/web/packages/randomForestExplainer/randomForestExplainer.pdf (accessed on 29 May 2022).
- Abad, M.; Noguera, P.; Bures, S. National inventory of organic wastes for use as growing media for ornamental potted plant production: Case study in Spain. Bioresour. Technol. 2001, 77, 197–200. [Google Scholar] [CrossRef]
- Noguera, P.; Abad, M.; Puchades, R.; Maquieira, A.; Noguera, V. Influence of particle size on physical and chemical properties of coconut coir dust as a container medium. Commun. Soil Sci. Plant Anal. 2003, 34, 593–605. [Google Scholar] [CrossRef]
- Tittarelli, F.; Rea, E.; Verrastro, V.; Pascual, J.A.; Canali, S.; Ceglie, F.G.; Trinchera, A.; Rivera, C.M. Compost-based nursery substrates: Effect of peat substitution on organic melon seedlings. Compost Sci. Util. 2009, 17, 220–228. [Google Scholar] [CrossRef]
- Ceglie, F.G.; Elshafie, H.; Verrastro, V.; Tittarelli, F. Evaluation of olive pomace and green waste composts as peat substitutes for organic tomato seedling production. Compost Sci. Util. 2011, 19, 293–300. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Gomis, M.P.; Pérez-Murcia, M.D.; Gangi, D.; Ceglie, F.G.; Paredes, C.; Pérez-Espinosa, A.; Bernal, M.P.; Moral, R. Use of livestock waste composts as nursery growing media: Effect of a washing pre-treatment. Sci. Hortic. 2021, 281, 109954. [Google Scholar] [CrossRef]
- Abad, M.; Martínez, P.F.; Martínez, M.D.; Martínez, J. Evaluación agronómica de los sustratos de cultivo. Actas Hortic. 1992, 11, 141–154. [Google Scholar]
- Medina, E.; Paredes, C.; Pérez-Murcia, M.D.; Bustamante, M.A.; Moral, R. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants. Bioresour. Technol. 2009, 100, 4227–4232. [Google Scholar] [CrossRef] [PubMed]
- Sáez, J.A.; Belda, R.M.; Bernal, M.P.; Fornes, F. Biochar improves agro-environmental aspects of pig slurry compost as a substrate for crops with energy and remediation uses. Ind. Crops Prod. 2016, 94, 97–106. [Google Scholar] [CrossRef]
Parameter | Coir Fibre | PL | PT | LC | TC |
---|---|---|---|---|---|
Bulk density (g cm−3) | 0.072 | 0.057 | 0.195 | 0.306 | 0.200 |
pH | 6.7 | 6.3 | 7.3 | 6.8 | 6.1 |
EC (dS m−1) | 0.33 | 1.21 | 2.61 | 6.51 | 5.57 |
OM (%) | 93.3 | 91.9 | 85.2 | 46.3 | 60.1 |
TOC (%) | 43.4 | 43.9 | 32.4 | 18.8 | 26.4 |
TN (%) | 0.76 | 1.34 | 1.27 | 1.87 | 3.35 |
C/N ratio | 57.1 | 32.8 | 25.5 | 10.1 | 7.88 |
WSK (mg L−1) | 357 | 1347 | 2694 | 3046 | 3575 |
WSNa (mg L−1) | 268 | 397 | 818 | 1636 | 1649 |
NO3− (mg L−1) | 5.2 | 4.6 | 201 | 6730 | 13,718 |
SO42− (mg L−1) | 199 | 1057 | 2387 | 4011 | 2898 |
Cl− (mg L−1) | 60.4 | 236 | 1074 | 3781 | 3765 |
pH | EC (dS m−1) | TPS (% Vol) | BD (g cm3) | TWHC (mL L−1) | Shrinkage (% Vol) | AC (% Vol) | |
---|---|---|---|---|---|---|---|
Optimal Values 1 | 5.3–6.5 | ≤0.5 | >85 | ≤0.4 | 550–800 | <30 | 20–30 |
Component type | |||||||
Coir fiber | 6.71b ± 0.16 | 0.33a ± 0.03 | 95.2c ± 0.6 | 0.072a ± 0.001 | 520c ± 9 | 14.3b ± 0.4 | 43.2b ± 0.9 |
PL | 6.20a ± 0.20 | 1.03b ± 0.22 | 95.2c ± 0.9 | 0.072a ± 0.012 | 299a ± 101 | 9.9a ± 3.2 | 65.2d ± 10.8 |
PT | 7.30c ± 0.23 | 1.82c ± 0.61 | 90.6b ± 2.3 | 0.146b ± 0.036 | 434b ± 34 | 10.4a ± 2.0 | 47.2c ± 1.4 |
LC | 6.16a ± 0.20 | 4.67c ± 1.57 | 91.1b ± 2.0 | 0.153c ± 0.037 | 427b ± 19 | 17.8c ± 0.9 | 48.5c ± 0.5 |
TC | 6.75b ± 0.20 | 4.42c ± 1.67 | 88.1a ± 3.3 | 0.221d ± 0.070 | 597d ± 67 | 20.6d ± 3.6 | 28.4a ± 10.0 |
ANOVA | *** | *** | *** | *** | *** | *** | *** |
Component proportion | |||||||
0% | 6.71a ± 0.16 | 0.33a ± 0.03 | 95.2f ± 0.6 | 0.072a ± 0.001 | 520d ± 9 | 14.3a ± 0.4 | 43.2a ± 0.9 |
20% | 6.67a ± 0.59 | 1.55b ± 0.77 | 93.6e ± 0.8 | 0.102b ± 0.015 | 463c ± 28 | 15.9a ± 2.3 | 47.3b ± 3.3 |
40% | 6.57a ± 0.52 | 2.29c ± 1.22 | 92.5d ± 1.9 | 0.123c ± 0.036 | 457c ± 70 | 14.2a ± 3.5 | 46.8b ± 8.8 |
60% | 6.58a ± 0.50 | 3.15d ± 1.76 | 91.0c ± 2.7 | 0.151d ± 0.054 | 444b ± 113 | 14.4a ± 5.3 | 46.7b ± 13.8 |
80% | 6.58a ± 0.49 | 3.96e ± 2.34 | 89.9b ± 3.7 | 0.175e ± 0.078 | 433b ± 151 | 14.6a ± 6.4 | 46.7b ± 18.7 |
100% | 6.61a ± 0.51 | 3.98e ± 2.29 | 89.1a ± 4.7 | 0.189f ± 0.092 | 399a ± 190 | 14.2a ± 7.9 | 49.3c ± 23.5 |
ANOVA | n.s. | *** | *** | *** | *** | n.s. | *** |
OM (%) | TN (%) | WSK (mg L−1) | WSNa (mg L−1) | NO3−-N (mg L−1) | SO42− (mg L−1) | Cl− (mg L−1) | |
---|---|---|---|---|---|---|---|
Optimum Values 1 | 150–249 | <115 | 100–199 | 960 | <180 | ||
Component type | |||||||
Coir fiber | 93.3d ± 0.5 | 0.76a ± 0.01 | 357a ± 19 | 268a ± 16 | 1.17a ± 0.18 | 60.4a ± 2.1 | 199a ± 14 |
PL | 93.2d ± 0.9 | 1.06c ± 0.19 | 1239b ± 372 | 464b ± 95 | 1.23a ± 0.34 | 209b ± 28.5 | 790b ± 196 |
PT | 86.4c ± 2.2 | 0.99b ± 0.18 | 1986c ± 639 | 697c ± 142 | 22.8a ± 17.9 | 661c ± 302 | 1416c ± 686 |
LC | 66.0b ± 7.1 | 3.05e ± 0.45 | 2412d ± 869 | 1024d ± 409 | 1920c ± 984 | 3322e ± 714 | 2034d ± 828 |
TC | 54.6a ± 8.2 | 1.75d ± 0.17 | 2825e ± 858 | 1644e ± 362 | 1017b ± 653 | 2792d ± 892 | 2110d ± 1255 |
ANOVA | *** | *** | *** | *** | *** | *** | *** |
Component proportion | |||||||
0% | 93.3e ± 0.5 | 0.76a ± 0.01 | 357a ± 19 | 268a ± 16 | 1.17a ± 0.18 | 60.4a ± 2.1 | 199a ± 14 |
20% | 81.8d ± 10.9 | 1.35b ± 0.69 | 1190b ± 376 | 717b ± 461 | 216b ± 129 | 1003b ± 831 | 667b ± 193 |
40% | 77.7c ± 14.7 | 1.56c ± 0.74 | 1671c ± 549 | 809bc ± 344 | 457c ± 435 | 1687c ± 1489 | 1124c ± 311 |
60% | 73.7b ± 16.5 | 1.79d ± 0.97 | 2237d ± 606 | 916c ± 412 | 698d ± 494 | 1818c ± 1500 | 1492d ± 566 |
80% | 71.2a ± 19.1 | 1.89e ± 1.01 | 2665e ± 938 | 1125d ± 675 | 1048e ± 837 | 2007d ± 1575 | 2067e ± 920 |
100% | 70.9a ± 19.1 | 1.96e ± 0.87 | 2813e ± 862 | 1221d ± 562 | 1282f ± 975 | 2214e ± 1649 | 2588f ± 1128 |
ANOVA | *** | *** | *** | *** | *** | *** | *** |
GI (%) | H (cm) | AFW (g) | ADW (g) | RFW (g) | RDW (g) | |
---|---|---|---|---|---|---|
Component type | ||||||
Coir fiber | 99.5b ± 0.2 | 2.70e ± 0.05 | 0.29c ± 0.01 | 0.029c ± 0.001 | 0.283e ± 0.008 | 0.029e ± 0.000 |
PL | 99.1b ±1.0 | 1.18a ± 0.37 | 0.07a ± 0.03 | 0.006a ± 0.003 | 0.063a ± 0.027 | 0.007a ± 0.002 |
PT | 97.2b ± 3.6 | 1.80b ± 0.37 | 0.24b ± 0.04 | 0.024b ± 0.005 | 0.207b ± 0.041 | 0.023d ± 0.004 |
LC | 78.3a ± 31.1 | 2.59d ± 1.21 | 0.51d ± 0.28 | 0.033d ± 0.018 | 0.266d ± 0.140 | 0.022c ± 0.012 |
TC | 77.4a ± 31.4 | 2.33c ± 0.97 | 0.44c ± 0.22 | 0.029c ± 0.017 | 0.222c ± 0.112 | 0.019b ± 0.009 |
ANOVA | *** | *** | *** | *** | *** | *** |
Component proportion | ||||||
0% | 99.5c ± 0.2 | 2.70e ± 0.05 | 0.29b ± 0.01 | 0.029d ± 0.001 | 0.283e ± 0.008 | 0.029e ± 0.000 |
20% | 99.2c ± 1.1 | 3.01f ± 1.21 | 0.51d ± 0.36 | 0.037e ± 0.205 | 0.280e ± 0.117 | 0.025d ± 0.009 |
40% | 98.9c ± 1.2 | 2.42d ± 0.77 | 0.39c ± 0.24 | 0.031d ± 0.016 | 0.257d ± 0.139 | 0.024d ± 0.012 |
60% | 98.4c ± 1.6 | 1.87c ± 0.54 | 0.31b ± 0.19 | 0.022c ± 0.011 | 0.190c ± 0.091 | 0.018c ± 0.008 |
80% | 84.5b ± 14.8 | 1.42b ± 0.32 | 0.20a ± 0.10 | 0.015b ± 0.007 | 0.134b ± 0.045 | 0.012b ± 0.005 |
100% | 58.9a ± 39.0 | 1.15a ± 0.21 | 0.15a ± 0.07 | 0.011a ± 0-006 | 0.085a ± 0.054 | 0.010a ± 0.007 |
ANOVA | *** | *** | *** | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomis, M.P.; Pérez-Murcia, M.D.; Barber, X.; Martínez-Sabater, E.; Moral, R.; Bustamante, M.Á. Development and Validation of Alternative Palm-Derived Substrates for Seedling Production. Agronomy 2022, 12, 1377. https://doi.org/10.3390/agronomy12061377
Gomis MP, Pérez-Murcia MD, Barber X, Martínez-Sabater E, Moral R, Bustamante MÁ. Development and Validation of Alternative Palm-Derived Substrates for Seedling Production. Agronomy. 2022; 12(6):1377. https://doi.org/10.3390/agronomy12061377
Chicago/Turabian StyleGomis, María Pilar, María Dolores Pérez-Murcia, Xavier Barber, Encarnación Martínez-Sabater, Raúl Moral, and María Ángeles Bustamante. 2022. "Development and Validation of Alternative Palm-Derived Substrates for Seedling Production" Agronomy 12, no. 6: 1377. https://doi.org/10.3390/agronomy12061377
APA StyleGomis, M. P., Pérez-Murcia, M. D., Barber, X., Martínez-Sabater, E., Moral, R., & Bustamante, M. Á. (2022). Development and Validation of Alternative Palm-Derived Substrates for Seedling Production. Agronomy, 12(6), 1377. https://doi.org/10.3390/agronomy12061377