Soybean Yield Response of Biochar-Regulated Soil Properties and Root Growth Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Soil Property Analysis
2.3. Measurement of Soybean
2.4. Data Analysis
3. Results
3.1. Effects of Biochar on Soil Properties under Soybean Continuous Cropping
3.1.1. Soil Bulk Density
3.1.2. Soil pH and Nutrients
3.2. Regulation of Biochar on Soybean Roots under Continuous Cropping
3.2.1. Effects of Biochar on Soybean Root Morphology
3.2.2. Effect of Biochar on the Physiological Activity of Soybean Roots
3.3. Effects of Biochar on Soybean Growth and Yield under Continuous Cropping
4. Discussion
4.1. Effects of Biochar on Soil Properties under Soybean Continuous Cropping
4.2. Effects of Biochar on Soybean Roots under Continuous Cropping
4.3. Effects of Biochar on Soybean Growth and Yield under Continuous Cropping
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miao, S.-J.; Qiao, Y.-F.; Han, X.-Z. Review of researches on obstacles of continuous cropping of soybean. Chin. J. Eco-Agric. 2007, 3, 203–206. [Google Scholar]
- Liu, J.-J.; Yao, Q.; Li, Y.-S.; Zhang, W.; Mi, G.; Chen, X.-L.; Yu, Z.-H.; Wang, G.-H. Continuous cropping of soybean alters the bulk and rhizospheric soil fungal communities in a Mollisol of Northeast PR China. Land Degrad. Dev. 2019, 30, 1725–1738. [Google Scholar] [CrossRef]
- Wang, L.-G.; Shen, A.-L.; Sun, K.-G.; Wu, J.-C. Reserch advances on obstacles and Modulations of soybean continuous cropping. Soil Fertil. 2001, 5, 3–8. [Google Scholar]
- Gross, M.R.; Vann, R.A.; Woodley, A.L.; Jordan, D. Winter crop effect on soybean production in the Southeast United States. Agron. J. 2022, 114, 662–677. [Google Scholar] [CrossRef]
- Jawameer, R.H.; Dana, W.K.; Gregory, H.L.; Laura, E.H.; Megan, M.P.; Bjarne, W.S. Exposure and Transport of Alkaloids and Phytoestrogens from Soybeans to Agricultural Soils and Streams in the Midwestern United States. J. Environ. Sci. Technol. 2021, 55, 11029–11039. [Google Scholar]
- Seow, Y.X.; Tan, Y.-H.; Mubarak, N.M.; Kansedo, J.; Khalid, M.; Ibrahim, M.L.; Ghasemi, M. A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications. J. Environ. Chem. Eng. 2022, 10, 107017. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Katterer, T.; Roobroeck, D.; Andren, O.; Kimutai, G.; Karltun, E.; Kirchmann, H.; Nyberg, G.; Vanlauwe, B.; de Nowina, K.R. Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya. Field Crops Res. 2019, 235, 18–26. [Google Scholar] [CrossRef]
- Khan, I.; Chen, T.-T.; Farooq, M.; Ce, L.; Qi, W.; Dai, W.-N.; Su, X.; Wang, L.-X. The residual impact of straw mulch and biochar amendments on soil physiochemical properties and yield of maize under rainfed system. Agron. J. 2021, 113, 1102–1120. [Google Scholar] [CrossRef]
- Song, X.-N.; Razavi, B.S.; Ludwig, B.; Zamanian, K.; Zang, H.-D.; Kuzyakov, Y.; Dippold, M.A.; Gunina, A. Combined biochar and nitrogen application stimulates enzyme activity and root plasticity. Sci. Total Environ. 2020, 735, 139393. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Lehmann, J.C.; Thies, J.E.; Burton, S.D.; Engelhard, S.D. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 2006, 37, 1477–1488. [Google Scholar] [CrossRef]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; Macêdo, J.L.M.; Blum, W.E.H.; Zech, W. Long term effects of manure, charcoal, and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef] [Green Version]
- Xiu, L.-Q.; Zhang, W.-M.; Sun, Y.-Y.; Wu, D.; Meng, J.; Chen, W.-F. Effects of biochar and straw returning on the key cultivation limitations of Albic soil and soybean growth over 2 years. Catena 2019, 173, 481–493. [Google Scholar] [CrossRef]
- Han, Y.; Chen, X.-W.; Wang, E.-H.; Xia, X.-Y. Optimum biochar preparations enhance phosphorus availability in amended Mollisols of Northeast China. Chil. J. Agric. Res. 2019, 79, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Sadowska, U.; Domagala-Swiatkiewicz, I.; Zabinski, A. Biochar and its effects on plant-soil Macronutrient cycling during a three-year field trial on sandy soil with peppermint (Mentha piperita L.). Part I: Yield and macro element content in soil and plant biomass. Agronomy 2020, 10, 1950. [Google Scholar] [CrossRef]
- Reyes-Cabrera, J.; Leon, R.G.; Erickson, J.E.; Silveira, M.L.; Rowland, D.L.; Morgan, K.T. Biochar changes shoot growth and root distribution of soybean during early vegetative stages. Crop Sci. 2017, 57, 454–461. [Google Scholar] [CrossRef]
- Zhu, Q.; Kong, L.-J.; Xie, F.-T.; Zhang, H.-J.; Wang, H.-Y.; Ao, X. Effects of biochar on seedling root growth of soybeans. Chil. J. Agric. Res. 2018, 78, 549–558. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-Y.; Alidoust, D.; Yang, X.-L.; Isoda, A. Effects of bamboo biochar on soybean root nodulation in multi-elements contaminated soils. Ecotoxicol. Environ. Saf. 2018, 150, 62–69. [Google Scholar] [CrossRef]
- Rogovska, N.; Laird, D.; Leandro, L.; Aller, D. Biochar effect on severity of soybean root disease caused by Fusarium virguliforme. Plant Soil 2017, 413, 111–126. [Google Scholar] [CrossRef]
- Bao, S.-D. Agricultural Soil Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2010; pp. 39–114. [Google Scholar]
- Xiao, L.-T.; Wang, S.-G. Experimental Techniques of Plant Physiology; China Agriculture Press: Beijing, China, 2005; pp. 65–74. [Google Scholar]
- Hardy, R.W.F.; Burns, R.C.; Holsten, R.D. Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol. Biochem. 1973, 5, 47–81. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Biochar sequestration in terrestrial ecosystems: A review. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.-Y.; Korai, P.K.; Pan, G.-X. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez- Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar]
- Chintala, R.; Schumacher, T.E.; Kumar, S.; Malo, D.D.; Rice, J.A.; Bleakley, B.; Chilom, G.; Clay, D.E.; Julson, J.L.; Papiernik, S.K.; Gu, Z.-R. Molecular characterization of biochars and their influence on microbiological properties of soil. J. Hazard. Mater. 2014, 279, 244–256. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, G.-F. Review of biochar utilization on soil-borne disease control. J. Soil Fertil. Sci. China 2014, 6, 14–20. [Google Scholar]
- Laetitia, H.; Didier, L.; Agnès, R.; Henri, R.; Wanpen, W.; Lambert, B. Impact of biochar application dose on soil microbial communities associated with rubber trees in North East Thailand. Sci. Total Environ. 2019, 689, 970–979. [Google Scholar]
- Alkharanshen, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al-Saif, A.M. Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A Review. Agronomy 2021, 11, 993. [Google Scholar]
- Sun, L. Effect of soybean continuous cropping on the rhizosphere soil nutrition. Chin. Agric. Sci. Bull. 2008, 24, 266–269. [Google Scholar]
- Shi, S.-W.; Lou, Y.-L.; Du, Z.-L.; Wang, Q.; Han, S.; Zhang, Q.-Z. A 10-year field experiment on biochar amendment: effects on soil fertility. J. Soil Fertil. Sci. China 2018, 6, 16–22. [Google Scholar]
- Peng, Q.-C.; Liu, X.-H.; Luo, P.-Y.; Liang, W.-J.; Liu, N.; Yang, J.-N.; Han, X.-R. Dsorption and desorption characteristics of nitrogen, phosphorus and potassium by biochars from different raw materials. J. Plant Nutr. Fertil. 2019, 25, 1763–1772. [Google Scholar]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef]
- Liu, M.; Lai, Y.-C.; Li, W.; Xiao, J.-L.; Bi, Y.-D.; Liu, M.; Li, W. Effect of biochar and nitrogen application rate on growth development and yield of soybean. Soybean Sci. 2015, 34, 88–90. [Google Scholar]
- Farhangi-Abriz, S.; Torabian, S. Biochar improved nodulation and nitrogen metabolism of soybean under salt stress. Symbiosis 2018, 74, 215–223. [Google Scholar] [CrossRef]
- Asfaw, E.; Nebiyu, A.; Bekele, E.; Ahmed, M.; Astatkie, T. Coffee-husk biochar application increased AMF root colonization, P accumulation, N-2 fixation, and yield of soybean grown in a tropical Nitisol, southwest Ethiopia. Soil Sci. Plant Nutr. 2019, 181, 419–428. [Google Scholar] [CrossRef]
- Chen, H.-M.; Ma, J.-Y.; Wei, J.-X.; Gong, X.; Yu, X.-C.; Guo, H.; Zhao, Y.-W. Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates. Sci. Total Environ. 2018, 635, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Kong, L.-J.; Shan, Y.-Z.; Yao, X.-D.; Zhang, H.-J.; Xie, F.-T.; Ao, X. Effect of biochar on grain yield and leaf photosynthetic physiology of soybean cultivars with different phosphorus efficiencies. Integr. Agric. 2019, 18, 2242–2254. [Google Scholar] [CrossRef]
- Bashagaluke, J.B.; Logah, V.; Sakordie-Addo, J.; Opoku, A. Nutrient uptake and productivity of four tropical cropping systems under biochar amendment. Agron. J. 2020, 112, 2664–2675. [Google Scholar] [CrossRef]
Traits | Year | CK | F | C1 | C2 | C3 |
---|---|---|---|---|---|---|
pH | 2016 | 6.65 ± 0.05 bA | 6.65 ± 0.22 abA | 6.71 ± 0.08 bB | 7.30 ± 0.48 aA | 7.13 ± 0.31 abA |
2017 | 6.56 ± 0.14 cAB | 6.73 ± 0.03 cA | 7.57 ± 0.07 abA | 7.54 ± 0.07 aA | 7.64 ± 0.07 bA | |
2018 | 6.39 ± 0.07 cB | 6.75 ± 0.12 bB | 7.41 ± 0.07 aA | 7.45 ± 0.04 aA | 7.47 ± 0.08 aA | |
TC | 2016 | 12.87 ± 1.00 dA | 12.73 ± 0.38 dA | 14.40 ± 0.17 cA | 18.65 ± 0.15 bA | 24.64 ± 0.28 aA |
2017 | 12.20 ± 0.17 dA | 11.06 ± 0.26 eB | 13.84 ± 0.35 cA | 17.42 ± 0.17 bB | 23.01 ± 0.16 aB | |
2018 | 10.67 ± 0.61 dB | 11.08 ± 0.05 dB | 13.13 ± 0.13 cB | 16.83 ± 0.07 bC | 19.73 ± 1.04 aC | |
TN | 2016 | 1.78 ± 0.05 cA | 1.92 ± 0.08 bA | 1.76 ± 0.04 cA | 1.98 ± 0.04 bA | 2.25 ± 0.06 aA |
2017 | 1.62 ± 0.02 cB | 1.51 ± 0.01 dB | 1.49 ± 0.01 dB | 1.87 ± 0.07 bB | 2.19 ± 0.02 aA | |
2018 | 1.54 ± 0.06 cB | 1.57 ± 0.07 cB | 1.79 ± 0.03 bA | 1.91 ± 0.03 aAB | 1.99 ± 0.03 aB | |
TP | 2016 | 0.56 ± 0.01 cB | 0.65 ± 0.01 bA | 0.63 ± 0.03 bA | 0.66 ± 0.02 bA | 0.80 ± 0.02 aA |
2017 | 0.62 ± 0.02 bA | 0.59 ± 0.03 cB | 0.64 ± 0.01 bA | 0.65 ± 0.01 bA | 0.70 ± 0.01 aB | |
2018 | 0.59 ± 0.01 bAB | 0.59 ± 0.01 bB | 0.64 ± 0.01 aA | 0.65 ± 0.00 aA | 0.65 ± 0.01 aC | |
TK | 2016 | 18.12 ± 0.50 cA | 19.19 ± 0.26 bA | 19.91 ± 0.14 aA | 20.11 ± 0.10 aB | 20.09 ± 0.66 aA |
2017 | 12.70 ± 0.63 cC | 12.63 ± 0.45 cB | 15.07 ± 0.96 bB | 14.46 ± 0.94 bC | 20.67 ± 0.45 aA | |
2018 | 15.56 ± 0.60 dB | 20.35 ± 2.45 cA | 20.83 ± 0.24 bA | 22.30 ± 0.55 aA | 20.57 ± 0.56 bA | |
AN | 2016 | 95.67 ± 4.21 aA | 93.33 ± 3.09 aA | 86.33 ± 6.50 aA | 94.50 ± 4.04 aAB | 87.83 ± 4.06 aA |
2017 | 76.00 ± 1.15 dB | 87.00 ± 1.09 cA | 89.67 ± 1.45 bcA | 100.00 ± 1.40 aA | 92.00 ± 1.15 bA | |
2018 | 76.00 ± 1.15 cB | 75.33 ± 0.88 cB | 75.67 ± 0.88 cA | 87.67 ± 0.88 bB | 96.33 ± 1.45 aA | |
AP | 2016 | 24.41 ± 2.36 aA | 34.96 ± 1.84 aA | 30.57 ± 6.30 aA | 25.15 ± 2.43 aAB | 26.52 ± 1.54 aB |
2017 | 18.63 ± 0.27 dAB | 26.67 ± 0.38 cB | 28.70 ± 0.40 bA | 28.90 ± 0.35 bA | 31.20 ± 0.49 aA | |
2018 | 14.70 ± 0.36 dB | 16.83 ± 0.26 cC | 23.60 ± 0.34 aA | 21.83 ± 0.23 bB | 24.03 ± 0.23 aB | |
AK | 2016 | 106.67 ± 4.41 bA | 110.00 ± 10.41 bA | 120.00 ± 5.77 bA | 125.00 ± 13.23 bA | 160.00 ± 5.77 aA |
2017 | 91.67 ± 0.76 cB | 89.33 ± 0.42 cdA | 87.67 ± 1.99 dB | 127.00 ± 0.55 aA | 123.33 ± 1.33 bB | |
2018 | 88.67 ± 3.18 cA | 109.33 ± 1.45 bA | 102.67 ± 0.88 bA | 122.00 ± 0.58 aA | 127.00 ± 2.89 aA |
Year | Treatment | Plant Hight (cm) | Dry Matter Weight (g) | Pod Number per Plant | Grain Number per Plant | Grain Weight per Plant (g) | 100-Grain Weight (g) |
---|---|---|---|---|---|---|---|
2016 | CK | 65.17 ± 1.88 bA | 28.77 ± 0.51 cC | 31.00 ± 1.15 bB | 49.33 ± 4.67 cB | 8.37 ± 0.41 bB | 17.11 ± 0.08 bB |
F | 68.83 ± 0.59 aA | 34.13 ± 2.27 aB | 43.67 ± 3.18 aB | 72.67 ± 4.36 abB | 11.70 ± 0.57 abB | 18.72 ± 0.20 aB | |
C1 | 63.83 ± 2.93 bA | 30.33 ± 2.01 bcC | 43.00 ± 5.29 aB | 61.00 ± 10.12 bcC | 11.30 ± 1.17 abC | 19.29 ± 0.40 aB | |
C2 | 69.83 ± 1.38 aA | 32.96 ± 1.10 abC | 44.00 ± 1.53 aB | 77.67 ± 3.38 aB | 12.33 ± 1.22 aB | 18.77 ± 0.15 aB | |
C3 | 70.33 ± 1.90 aA | 32.02 ± 2.35 abcC | 46.67 ± 1.45 aB | 80.67 ± 1.76 aB | 11.67 ± 1.24 abB | 18.57 ± 0.07 aB | |
2017 | CK | 65.63 ± 1.40 bA | 32.42 ± 2.56 aB | 38.00 ± 2.00 bB | 67.330 ± 4.67 aAB | 14.43 ± 0.43 bAB | 17.28 ± 0.54 cB |
F | 72.47 ± 1.01 aA | 36.08 ± 1.12 aB | 45.33 ± 2.85 abB | 77.00 ± 4.36 aB | 15.96 ± 0.74 abB | 19.58 ± 0.59 bB | |
C1 | 66.97 ± 2.79 bA | 32.71 ± 0.99 aB | 56.00 ± 7.81 aAB | 89.00 ± 10.12 aB | 16.29 ± 0.82 abB | 22.14 ± 0.42 aA | |
C2 | 72.43 ± 2.37 aA | 35.54 ± 1.70 aB | 52.33 ± 2.33 abB | 85.67 ± 3.38 aB | 17.50 ± 0.29 aB | 21.26 ± 0.13 aA | |
C3 | 67.27 ± 1.81 bA | 34.56 ± 3.82 aB | 49.67 ± 1.20 abB | 81.67 ± 1.76 aB | 15.51 ± 0.31 bB | 22.18 ± 0.61 aA | |
2018 | CK | 62.00 ± 2.65 bA | 36.09 ± 2.56 aA | 58.00 ± 4.04 dA | 100.67 ± 18.11 bA | 20.51 ± 3.38 bA | 20.11 ± 0.58 bA |
F | 68.67 ± 3.51 aA | 40.42 ± 1.87 aA | 97.33 ± 2.03 aA | 150.00 ± 7.64 aA | 28.37 ± 2.58 aA | 22.21 ± 0.35 aA | |
C1 | 61.67 ± 3.51 bA | 36.71 ± 0.91 bA | 71.67 ± 4.10 cA | 119.67 ± 3.53 abA | 24.10 ± 1.29 abA | 21.26 ± 0.13 abA | |
C2 | 66.33 ± 2.08 abA | 38.21 ± 0.91 abA | 82.33 ± 3.84 bA | 157.33 ± 14.66 aA | 29.53 ± 1.95 aA | 22.14 ± 0.42 aA | |
C3 | 65.00 ± 2.08 abA | 40.34 ± 1.90 aA | 82.00 ± 2.65 bA | 152.67 ± 3.76 aA | 28.48 ± 1.32 aA | 22.18 ± 0.61 aA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Zhang, W.; Xiu, L.; Sun, Y.; Gu, W.; Wang, Y.; Zhang, H.; Chen, W. Soybean Yield Response of Biochar-Regulated Soil Properties and Root Growth Strategy. Agronomy 2022, 12, 1412. https://doi.org/10.3390/agronomy12061412
Wu D, Zhang W, Xiu L, Sun Y, Gu W, Wang Y, Zhang H, Chen W. Soybean Yield Response of Biochar-Regulated Soil Properties and Root Growth Strategy. Agronomy. 2022; 12(6):1412. https://doi.org/10.3390/agronomy12061412
Chicago/Turabian StyleWu, Di, Weiming Zhang, Liqun Xiu, Yuanyuan Sun, Wenqi Gu, Yuning Wang, Honggui Zhang, and Wenfu Chen. 2022. "Soybean Yield Response of Biochar-Regulated Soil Properties and Root Growth Strategy" Agronomy 12, no. 6: 1412. https://doi.org/10.3390/agronomy12061412
APA StyleWu, D., Zhang, W., Xiu, L., Sun, Y., Gu, W., Wang, Y., Zhang, H., & Chen, W. (2022). Soybean Yield Response of Biochar-Regulated Soil Properties and Root Growth Strategy. Agronomy, 12(6), 1412. https://doi.org/10.3390/agronomy12061412