Soil Penetration Resistance Influenced by Eucalypt Straw Management under Mechanized Harvesting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area and Treatments
2.2. Soil Sampling
2.3. Statistical Analyses
3. Results and Discussion
3.1. Soil Moisture Conditions for Penetration Resistance Sampling
3.2. Soil Penetration Resistance in Coppicing Areas
3.3. Soil Penetration Resistance in Stand Renewal Areas
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IBÁ. Relatorio Anual Iba 2021; IBRE Instituto Brasileiro de Economia, Ed.; Indústria Brasileira de Árvores: São Paulo, Brazil, 2021. [Google Scholar]
- Reichert, J.M.; Morales, C.A.S.; de Bastos, F.; Sampietro, J.A.; Cavalli, J.P.; de Araújo, E.F.; Srinivasan, R. Tillage Recommendation for Commercial Forest Production: Should Tillage Be Based on Soil Penetrability, Bulk Density or More Complex, Integrative Properties? Geoderma Reg. 2021, 25, e00381. [Google Scholar] [CrossRef]
- Cambi, M.; Certini, G.; Neri, F.; Marchi, E. Forest Ecology and Management The Impact of Heavy Traffic on Forest Soils. For. Ecol. Manag. 2015, 338, 124–138. [Google Scholar] [CrossRef]
- Nazari, M.; Eteghadipour, M.; Zarebanadkouki, M.; Ghorbani, M.; Dippold, M.A.; Bilyera, N.; Zamanian, K. Impacts of Logging-Associated Compaction on Forest Soils: A Meta-Analysis. Front. For. Glob. Chang. 2021, 4, 780074. [Google Scholar] [CrossRef]
- Hartmann, M.; Niklaus, P.A.; Zimmermann, S.; Schmutz, S.; Kremer, J.; Abarenkov, K.; Lüscher, P.; Widmer, F.; Frey, B. Resistance and Resilience of the Forest Soil Microbiome to Logging-Associated Compaction. ISME J. 2014, 8, 226–244. [Google Scholar] [CrossRef] [PubMed]
- Horn, R.; Vossbrink, J.; Becker, S. Modern Forestry Vehicles and Their Impacts on Soil Physical Properties. Soil Tillage Res. 2004, 79, 207–219. [Google Scholar] [CrossRef]
- Cambi, M.; Hoshika, Y.; Mariotti, B.; Paoletti, E.; Picchio, R.; Venanzi, R.; Marchi, E. Compaction by a Forest Machine Affects Soil Quality and Quercus Robur L. Seedling Performance in an Experimental Field. For. Ecol. Manag. 2017, 384, 406–414. [Google Scholar] [CrossRef]
- Solgi, A.; Najafi, A. The Impacts of Ground-Based Logging Equipment on Forest Soil. J. For. Sci. 2014, 60, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, S.B.; Lopes, E.D.S.; Fiedler, N.C.; Cavalieri, K.M.V.; Stahl, J.; Drinko, C.H.F. Efeito Da Profundidade de Trabalho Na Qualidade Da Operação de Subsolagem Para Implantação Florestal. Rev. Arvoré 2016, 40, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Curzon, M.T.; D’Amato, A.W.; Palik, B.J. Harvest Residue Removal and Soil Compaction Impact Forest Productivity and Recovery: Potential Implications for Bioenergy Harvests. For. Ecol. Manag. 2014, 329, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Bortolas, E.P.; Stahl, J.; Minatel, R. Preparo de Solo Em Áreas de Reforma de Pinus e Eucalyptus Com Idade Superior a 20 Anos. SÉRIE TÉCNICA IPEF 2013, 17, 93–98. [Google Scholar]
- Lopes, E.D.S.; de Oliveira, D.; Rodrigues, C.K.; Drinko, C.H. Compactação de Um Solo Submetido Ao Tráfego Do Harvester e Do Forwarder Na Colheita de Madeira. Floresta Ambient. 2015, 22, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Mason, W.L.; McKay, H.M.; Weatherall, A.; Connolly, T.; Harrison, A.J. The Effects of Whole-Tree Harvesting on Three Sites in Upland Britain on the Growth of Sitka Spruce over Ten Years. Forestry 2012, 85, 111–123. [Google Scholar] [CrossRef]
- Sands, R.; Greacen, E.L.; Gerard, C.J. Compaction of Sandy Soils in Radiata Pine Forest I, a Penetrometer Study. Aust. J. Soil Res. 1979, 17, 101–113. [Google Scholar] [CrossRef]
- Misra, R.K.; Gibbons, A.K. Growth and Morphology of Eucalypt Seedling-Roots, in Relation to Soil Strength Arising from Compaction. Plant Soil 1996, 182, 11. [Google Scholar] [CrossRef]
- Sinnett, D.; Morgan, G.; Williams, M.; Hutchings, T.R. Soil Penetration Resistance and Tree Root Development. Soil Use Manag. 2008, 24, 273–280. [Google Scholar] [CrossRef]
- Furtado, B.F.; Morris, L.A.; Markewitz, D. Loblolly Pine (Pinus taeda L.) Seedling Growth Response to Site Preparation Tillage on Upland Sites. Soil Sci. Soc. Am. J. 2016, 80, 472–489. [Google Scholar] [CrossRef] [Green Version]
- Mohieddinne, H.; Brasseur, B.; Spicher, F.; Gallet-Moron, E.; Buridant, J.; Kobaissi, A.; Horen, H. Physical Recovery of Forest Soil after Compaction by Heavy Machines, Revealed by Penetration Resistance over Multiple Decades. For. Ecol. Manag. 2019, 449, 117472. [Google Scholar] [CrossRef]
- Strock, C.F.; Rangarajan, H.; Black, C.K.; Schäfer, E.D.; Lynch, J.P. Theoretical Evidence That Root Penetration Ability Interacts with Soil Compaction Regimes to Affect Nitrate Capture. Ann. Bot. 2022, 129, 315–330. [Google Scholar] [CrossRef]
- Amirinejad, A.A.; Kamble, K.; Aggarwal, P.; Chakraborty, D.; Pradhan, S.; Mittal, R.B. Geoderma Assessment and Mapping of Spatial Variation of Soil Physical Health in a Farm. Geoderma 2011, 160, 292–303. [Google Scholar] [CrossRef]
- Vaz, C.M.P.; Manieri, J.M.; de Maria, I.C.; Tuller, M. Modeling and Correction of Soil Penetration Resistance for Varying Soil Water Content. Geoderma 2011, 166, 92–101. [Google Scholar] [CrossRef]
- Goutal, N.; Boivin, P.; Ranger, J. Assessment of the Natural Recovery Rate of Soil Specific Volume Following Forest Soil Compaction. Soil Sci. Soc. Am. J. 2012, 76, 1426–1435. [Google Scholar] [CrossRef]
- Barik, K.; Aksakal, E.L.; Islam, K.R.; Sari, S.; Angin, I. Spatial Variability in Soil Compaction Properties Associated with Field Traffic Operations. Catena 2014, 120, 122–133. [Google Scholar] [CrossRef]
- Filho, G.R.; de Passos e Carvalho, M.; Montanari, R.; da Silva, J.M.; Siqueira, G.M.; Zambianco, E.C. Variabilidade Espacial de Propriedades Dendrométricas Do Eucalipto e de Atributos Físicos de Um Latossolo Vermelho. Bragantia 2011, 70, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, S.B.; Lopes, E.S.; Fiedler, N.C.; Cavalieri-polizeli, K.M.V.; Stahl, J. Resistência Do Solo a Penetração Em Diferentes Profundidades de Subsolagem. Nativa 2017, 5, 224–229. [Google Scholar] [CrossRef]
- Lima, C.G.D.R.; Panosso, A.R.; Costa, N.R.; De Carvalho, M.B.; Júnior, N.G.; da Silva, P.R.T. Sample Arrangements and Spatial Variability Characterization of Dendometrics Parameters of Eucalyptus Camaldulensis and Physical Soil Attributes. Rev. Ceres 2021, 68, 597–608. [Google Scholar] [CrossRef]
- Nitsche, P.R.; Caramori, P.H.; Ricce, W.D.S.; Pinto, L.F.D. Atlas Climático Do Estado Do Paraná. Available online: www.iapar.br (accessed on 5 May 2022).
- Soil Survey Staff Natural Resources Conservation Service, United States Department of Agriculture. Available online: http://websoilsurvey.nrcs.usda.gov/app/ (accessed on 31 August 2019).
- EMBRAPA. Manual de Métodos de Analise de Solo, 3rd ed.; Teixeira, P.C., Fontana, G.K.D.A., Teixeira, W.G., Eds.; Empresa Brasileira de Pesquisa Agropacuária, Centro Nacional de Pesquisa de Solos: Brasília, Brazil, 2017; ISBN 9788570357717. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Isaaks, H.E.; Srivastava, R.M. An Introduction to Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Warrick, A.W. Spatial Variability. In Environmental Soil Physics; Hillel, D., Ed.; Academic Press: New York, NY, USA, 1998; pp. 655–675. [Google Scholar]
- Coelho, D.S.; Cortez, J.W.; Olszevski, N. Variabilidade Espacial Da Resisttênncia Mecânica à Penetração Em Vertissolo Cultivado Com Manga No Perímetro Irrigado de Mandacaru, Juazeiro, Bahia, Brasil. Rev. Bras. Cienc. Do Solo 2012, 36, 755–763. [Google Scholar] [CrossRef] [Green Version]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Holthusen, D.; Brandt, A.A.; Reichert, J.M.; Horn, R.; Fleige, H.; Zink, A. Soil Functions and in Situ Stress Distribution in Subtropical Soils as Affected by Land Use, Vehicle Type, Tire Inflation Pressure and Plant Residue Removal. Soil Tillage Res. 2018, 184, 78–92. [Google Scholar] [CrossRef]
- Ampoorter, E.; Goris, R.; Cornelis, W.M.; Verheyen, K. Impact of Mechanized Logging on Compaction Status of Sandy Forest Soils. For. Ecol. Manag. 2007, 241, 162–174. [Google Scholar] [CrossRef]
- Williamson, J.R.; Neilsen, W.A. The Influence of Forest Site on Rate and Extent of Soil Compaction and Profile Disturbance of Skid Trails during Ground-Based Harvesting. Can. J. For. Res. 2000, 30, 1196–1205. [Google Scholar] [CrossRef]
- da Veiga, M.; Horn, R.; Reinert, D.J.; Reichert, J.M. Soil Compressibility and Penetrability of an Oxisol from Southern Brazil, as Affected by Long-Term Tillage Systems. Soil Tillage Res. 2007, 92, 104–113. [Google Scholar] [CrossRef]
- Richart, A.; Tavares Filho, J.; Brito, O.R.; Llanillo, R.F.; Ferreira, R. Compactação Do Solo: Causas e Efeitos. Semin. Ciências Agrárias 2005, 26, 321–344. [Google Scholar] [CrossRef]
- Fabiola, N.; Giarola, B.; da Silva, A.P.; Imhoff, S.; Dexter, A.R. Contribution of Natural Soil Compaction on Hardsetting Behavior. Geoderma 2003, 113, 95–108. [Google Scholar] [CrossRef]
- Stape, J.L.; Binkley, D.; Ryan, M.G.; Fonseca, S.; Loos, R.A.; Takahashi, E.N.; Silva, C.R.; Silva, S.R.; Hakamada, R.E.; Ferreira, J.M. de A.; et al. The Brazil Eucalyptus Potential Productivity Project: Influence of Water, Nutrients and Stand Uniformity on Wood Production. For. Ecol. Manag. 2010, 259, 1684–1694. [Google Scholar] [CrossRef]
- Dias Junior, M.D.S.; Leite, F.P.; Lasmar Junior, E.; Araújo Junior, F. Traffic Effects on the Soil Preconsolidation Pressure Due to Eucalyptus Harvest Operations. Sci. Agric. 2005, 62, 248–255. [Google Scholar] [CrossRef]
- Vieira, S.R. Geoestatística Em Estudos de Variabilidade Espacial Do Solo. In Tópicos em Ciência Do Solo; Novais, R.F., Alvarez, V.V.H., Schaefer, G.R., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2000; Volume 1, pp. 1–54. [Google Scholar]
- Lima, C.G.D.R.; Carvalho, M.D.P.E.C.; Narimatsu, K.C.P.; Da Silva, M.G.; Queiroz, H.A. De Atributos Físico-Químicos de Um Latossolo Do Cerrado Brasileiro e Sua Relação Com Caracteristicas Dendrométricas Do Eucalipto. Rev. Bras. Cienc. Do Solo 2010, 34, 163–173. [Google Scholar] [CrossRef]
Chemical Attributes ς | Particle Size Distribution | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Layers | pH (H2O) | P | K+ | Ca2+ | Mg2+ | Al3+ | H + Al | SOM § | Clay | Silt | Fine Sand | Coarse Sand |
(m) | mg dm−3 | cmolc dm−3 | dag kg−1 | kg kg−1 | ||||||||
Coppicing areas | ||||||||||||
harvester + forwarder | ||||||||||||
0.00–0.20 | 4.4 | 2.2 | 23.0 | 0.31 | 0.39 | 2.06 | 10.20 | 3.63 | 0.32 | 0.11 | 0.30 | 0.26 |
0.20–0.40 | 4.2 | 1.3 | 8.0 | 0.00 | 0.12 | 1.67 | 6.30 | 1.75 | 0.32 | 0.11 | 0.29 | 0.25 |
0.40–0.60 | 4.2 | 1.1 | 4.0 | 0.02 | 0.12 | 1.47 | 6.00 | 1.48 | 0.30 | 0.12 | 0.31 | 0.27 |
feller + skidder | ||||||||||||
0.00–0.20 | 4.2 | 2.0 | 27.0 | 0.19 | 0.14 | 2.65 | 9.50 | 4.03 | 0.33 | 0.09 | 0.29 | 0.27 |
0.20–0.40 | 4.2 | 1.3 | 8.0 | 0.03 | 0.07 | 2.06 | 7.90 | 2.55 | 0.27 | 0.14 | 0.31 | 0.27 |
0.40–0.60 | 4.1 | 1.3 | 6.0 | 0.01 | 0.07 | 1.96 | 8.90 | 2.28 | 0.23 | 0.19 | 0.33 | 0.28 |
Stand renewal areas δ | ||||||||||||
harvester + forwarder | ||||||||||||
0.00–0.20 | 5.0 | 2.1 | 47.0 | 2.49 | 0.54 | 0.59 | 8.90 | 3.76 | 0.28 | 0.10 | 0.36 | 0.26 |
0.20–0.40 | 4.8 | 1.8 | 23.0 | 2.44 | 0.45 | 0.49 | 7.30 | 3.49 | 0.30 | 0.09 | 0.34 | 0.26 |
0.40–0.60 | 4.5 | 1.4 | 15.0 | 0.52 | 0.16 | 1.18 | 6.50 | 2.02 | 0.31 | 0.11 | 0.32 | 0.26 |
feller + skidder | ||||||||||||
0.00–0.20 | 4.3 | 1.6 | 15.0 | 0.23 | 0.13 | 1.76 | 9.10 | 3.09 | 0.35 | 0.06 | 0.27 | 0.32 |
0.20–0.40 | 4.2 | 1.4 | 12.0 | 0.18 | 0.09 | 1.76 | 8.60 | 2.42 | 0.37 | 0.07 | 0.27 | 0.29 |
0.40–0.60 | 4.1 | 1.0 | 6.0 | 0.02 | 0.06 | 1.57 | 7.90 | 2.28 | 0.39 | 0.07 | 0.26 | 0.28 |
Layers | Average ς | CV § | Normality Test ¥ | PR = f(θm) δ | ||
---|---|---|---|---|---|---|
(m) | (kg kg−1) | (%) | W | p-Value | R | p-Value |
Coppicing areas | ||||||
harvester + forwarder | ||||||
0.00–0.20 | 0.21 ± 0.03 | 22.88 | 0.95 | 0.62ns | −0.007 | 0.98ns |
0.20–0.40 | 0.21 ± 0.02 | 15.94 | 0.85 | 0.05ns | ||
0.40–0.60 | 0.22 ± 0.02 | 16.5 | 0.85 | 0.05ns | ||
feller + skidder | ||||||
0.00–0.20 | 0.20 ± 0.02 | 15.24 | 0.96 | 0.84ns | −0.07 | 0.85ns |
0.20–0.40 | 0.20 ± 0.01 | 12.84 | 0.95 | 0.65ns | ||
0.40–0.60 | 0.21 ± 0.01 | 12.11 | 0.95 | 0.69ns | ||
Stand renewal areas | ||||||
harvester + forwarder with straw level 100% | ||||||
0.00–0.20 | 0.20 ± 0.01 | 13.54 | 0.88 | 0.12ns | −0.093 | 0.80ns |
0.20–0.40 | 0.20 ± 0.01 | 12.67 | 0.97 | 0.90ns | ||
0.40–0.60 | 0.20 ± 0.01 | 8.14 | 0.95 | 0.59ns | ||
harvester + forwarder with straw level 50% | ||||||
0.00–0.20 | 0.21 ± 0.01 | 9.7 | 0.96 | 0.72ns | 0.597 | 0.54ns |
0.20–0.40 | 0.22 ± 0.01 | 9.39 | 0.9 | 0.15ns | ||
0.40–0.60 | 0.21 ± 0.01 | 12.86 | 0.95 | 0.69ns | ||
harvester + forwarder with straw level 0% | ||||||
0.00–0.20 | 0.26 ± 0.02 | 13.05 | 0.89 | 0.15ns | 0.23 | 0.52ns |
0.20–0.40 | 0.26 ± 0.01 | 11.19 | 0.92 | 0.32ns | ||
0.40–0.60 | 0.26 ± 0.01 | 9.75 | 0.89 | 0.15ns | ||
feller + skidder with straw level 100% | ||||||
0.00–0.20 | 0.23 ± 0.01 | 8.71 | 0.94 | 0.48ns | 0.54 | 0.09ns |
0.20–0.40 | 0.23 ± 0.01 | 10.08 | 0.94 | 0.48ns | ||
0.40–0.60 | 0.25 ± 0.01 | 7.81 | 0.93 | 0.37ns | ||
feller + skidder with straw level 50% | ||||||
0.00–0.20 | 0.25 ± 0.01 | 7.07 | 0.88 | 0.09ns | −0.061 | 0.85ns |
0.20–0.40 | 0.26 ± 0.01 | 10.49 | 0.94 | 0.53ns | ||
0.40–0.60 | 0.27 ± 0.01 | 7.1 | 0.94 | 0.56ns | ||
feller + skidder with straw level 0% | ||||||
0.00–0.20 | 0.25 ± 0.01 | 6.63 | 0.94 | 0.53ns | −0.07 | 0.36ns |
0.20–0.40 | 0.26 ± 0.01 | 10.53 | 0.85 | 0.05ns | ||
0.40–0.60 | 0.27 ± 0.01 | 4.01 | 0.91 | 0.23ns |
Parameter | Harvester + Forwarder | Feller + Skidder | ||||
---|---|---|---|---|---|---|
Layer (m) | 0.00–0.20 | 0.20–0.40 | 0.40–0.60 | 0–0.20 | 0.20–0.40 | 0.40–0.60 |
Average (MPa) | 0.99 | 1.27 | 1.32 | 1.05 | 1.24 | 1.25 |
Median | 0.60 | 0.46 | 0.30 | 0.58 | 0.37 | 0.23 |
CV (%) § | 60.51 | 35.97 | 22.66 | 54.97 | 29.45 | 18.58 |
Asymmetry | 0.50 | −0.01 | 0.30 | 0.29 | −0.20 | 0.25 |
Kurtosis | −0.81 | −0.65 | −0.51 | −1.30 | −0.57 | −0.12 |
Sill | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.02 |
Nugget | 0.34 | 0.20 | 0.09 | 0.35 | 0.14 | 0.04 |
Sill + Nugget | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.06 |
Range (m) | 0.00 | 0.00 | 163.22 | 0.00 | 0.00 | 139.96 |
SD (%) ς | 0.00 | 0.00 | 90.50 | 0.00 | 0.00 | 72.77 |
Model | no | no | linear | no | no | linear |
R2 ¥ | no | no | 0.14 | no | no | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, J.d.M.; Tormena, C.A.; dos Santos, G.R.; Zotarelli, L.; Fernandes, R.B.A.; de Oliveira, T.S. Soil Penetration Resistance Influenced by Eucalypt Straw Management under Mechanized Harvesting. Agronomy 2022, 12, 1482. https://doi.org/10.3390/agronomy12061482
Oliveira JdM, Tormena CA, dos Santos GR, Zotarelli L, Fernandes RBA, de Oliveira TS. Soil Penetration Resistance Influenced by Eucalypt Straw Management under Mechanized Harvesting. Agronomy. 2022; 12(6):1482. https://doi.org/10.3390/agronomy12061482
Chicago/Turabian StyleOliveira, Judyson de M., Cássio A. Tormena, Gérson R. dos Santos, Lincoln Zotarelli, Raphael B. A. Fernandes, and Teógenes S. de Oliveira. 2022. "Soil Penetration Resistance Influenced by Eucalypt Straw Management under Mechanized Harvesting" Agronomy 12, no. 6: 1482. https://doi.org/10.3390/agronomy12061482
APA StyleOliveira, J. d. M., Tormena, C. A., dos Santos, G. R., Zotarelli, L., Fernandes, R. B. A., & de Oliveira, T. S. (2022). Soil Penetration Resistance Influenced by Eucalypt Straw Management under Mechanized Harvesting. Agronomy, 12(6), 1482. https://doi.org/10.3390/agronomy12061482