Relationship between Temperate Grass Sward Characteristics and the Grazing Behavior of Dairy Heifers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pasture Treatments and Management
2.2. Animal Management and Sampling Schedule
2.3. Sward Measures and Laboratory Analyses
2.4. Grazing Behavior
2.5. Statistical Analyses
3. Results
3.1. Physical Sward Characteristics and Herbage Allowance of Grass Species
3.2. Grass Species’ Effects on Behavior
3.3. Seasonal Effects on Behavior
3.4. Interaction of Grass Species–Season on Behavior
3.5. Sward Physical Characteristics of Grasses
3.6. Relationships between Grazing Behavior and Sward Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kolver, E.S.; Muller, L.D. Performance and nutrient intake of high producing Holstein cows consuming pasture or a total mixed ration. J. Dairy Sci. 1998, 81, 1403–1411. [Google Scholar] [CrossRef]
- Burns, J.C.; Fisher, D.S. Eastern gamagrass management for pasture in the Mid-Atlantic region: I. animal performance and pasture productivity. Agron. J. 2010, 102, 171–178. [Google Scholar] [CrossRef]
- Hirata, M. Herbage availability and utilisation in small-scale patches in a bahia grass (Paspalum notatum) pasture under cattle grazing. Trop. Grassl. 2002, 36, 13–23. [Google Scholar]
- Ungar, E.D.; Noy-Meir, I. Herbage intake in relation to availability and sward structure: Grazing processes and optimal foraging. J. Appl. Ecol. 1988, 25, 1045–1062. [Google Scholar] [CrossRef]
- Forbes, T. Researching the plant-animal interface: The investigation of ingestive behavior in grazing animals. J. Anim. Sci. 1988, 66, 2369–2379. [Google Scholar] [CrossRef] [Green Version]
- Casey, I.A.; Laidlaw, A.S.; Brereton, A.J.; McGilloway, D.A.; Watson, S. The effect of bulk density on bite dimensions of cattle grazing microswards in the field. J. Agric. Sci. 2004, 142, 109–121. [Google Scholar] [CrossRef]
- Abrahamse, P.A.; Dijkstra, J.; Vlaeminck, B.; Tamminga, S. Frequent allocation of rotationally grazed dairy cows changes grazing behavior and improves productivity. J. Dairy Sci. 2008, 91, 2033–2045. [Google Scholar] [CrossRef]
- Soder, K.J.; Sanderson, M.A.; Gregorini, P.; Orr, R.J.; Rubano, M.D.; Rook, A.J. Relationship of bite mass of cattle to sward structure of four temperate grasses in short-term grazing sessions. Grass Forage Sci. 2009, 64, 421–431. [Google Scholar] [CrossRef]
- Soder, K.J.; Orr, R.J.; Rubano, M.D.; Rook, A.J. Use of a micro-sward technique for determining bite mass of four grass species in short-term tests. Euphytica 2009, 168, 135–143. [Google Scholar] [CrossRef]
- Rook, A.J.; Huckle, C.A.; Penning, P.D. Effects of sward height and concentrate supplementation on the ingestive behaviour of spring-calving dairy cows grazing grass-clover swards. Appl. Anim. Behav. Sci. 1994, 40, 101–112. [Google Scholar] [CrossRef]
- Ginnett, T.; Dankosky, J.; Deo, G.; Demment, M. Patch depression in grazers: The roles of biomass distribution and residual stems. Funct. Ecol. 1999, 13, 37–44. [Google Scholar] [CrossRef]
- Laca, E.; Ungar, E.; Seligman, N.; Ramey, M.; Demment, M. An integrated methodology for studying short-term grazing behaviour of cattle. Grass Forage Sci. 1992, 47, 81–90. [Google Scholar] [CrossRef]
- Flores-Lesama, M.; Hazard, L.; Betin, M.; Emile, J.-C. Differences in sward structure of ryegrass cultivars and impact on milk production of grazing dairy cows. Anim. Res. 2006, 55, 25–36. [Google Scholar] [CrossRef]
- Provenza, F.D.; Gregorini, P.; Carvalho, P.C.F. Synthesis: Foraging decisions link plants, herbivores and human beings. Anim. Prod. Sci. 2015, 55, 411–425. [Google Scholar] [CrossRef]
- Provenza, F.; Balph, D. Diet learning by domestic ruminants: Theory, evidence and practical implications. Appl. Anim. Behav. Sci. 1987, 18, 211–232. [Google Scholar] [CrossRef]
- Orr, R.J.; Cook, J.E.; Young, K.L.; Champion, R.A.; Rutter, S.M. Intake characteristics of perennial ryegrass varieties when grazed by yearling beef cattle under rotational grazing management. Grass Forage Sci. 2005, 60, 157–167. [Google Scholar] [CrossRef]
- Orr, R.J.; Young, K.L.; Cook, J.E.; Champion, R.A. Development of a micro-sward technique for determining intake characteristics of perennial ryegrass varieties. Euphytica 2005, 141, 65–73. [Google Scholar] [CrossRef]
- Laca, E.; Ungar, E.; Seligman, N.; Demment, M. Effects of sward height and bulk density on bite dimensions of cattle grazing homogeneous swards. Grass Forage Sci. 1992, 47, 91–102. [Google Scholar] [CrossRef]
- Mezzalira, J.C.; Bonnet, O.J.; Carvalho, P.C.d.F.; Fonseca, L.; Bremm, C.; Mezzalira, C.C.; Laca, E.A. Mechanisms and implications of a type IV functional response for short-term intake rate of dry matter in large mammalian herbivores. J. Anim. Ecol. 2017, 86, 1159–1168. [Google Scholar] [CrossRef] [Green Version]
- Soder, K.J.; Rook, A.J.; Sanderson, M.A.; Goslee, S.C. Interaction of plant species diversity on grazing behavior and performance of livestock grazing temperate region pastures. Crop Sci. 2007, 47, 416–425. [Google Scholar] [CrossRef] [Green Version]
- Brink, G.E.; Soder, K.J. Relationship between Herbage Intake and Sward Structure of Grazed Temperate Grasses. Crop Sci. 2011, 51, 2289–2298. [Google Scholar] [CrossRef]
- Moore, K.J.; Moser, L.E. Quantifying developmental morphology of perennial grasses. Crop Sci. 1995, 35, 37–43. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Rotz, C.A.; Fultz, S.W.; Rayburn, E.B. Estimating forage mass with a commercial capacitance meter, rising plate meter, and pasture ruler. Agron. J. 2001, 93, 1281–1286. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Nutrient Requirements of Beef Cattle; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Sollenberger, L.E.; Moore, J.E.; Allen, V.G.; Pedreira, C.G.S. Reporting forage allowance in grazing experiments. Crop Sci. 2005, 45, 896–900. [Google Scholar] [CrossRef]
- Jonasson, S. Evaluation of the point intercept method for the estimation of plant biomass. Oikos 1988, 52, 101–106. [Google Scholar] [CrossRef]
- Casler, M.; Schneider, D.; Combs, D. Development and application of a selection criterion for particle size breakdown of smooth bromegrass leaves. Anim. Feed. Sci. Technol. 1996, 61, 57–71. [Google Scholar] [CrossRef]
- Bremner, J.M. Nitrogen-Total. In Methods of Soil Analysis; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications); USDA Agricultural Research Service, ARS-USDA: Washington, DC, USA, 1970.
- Rutter, S.M.; Champion, R.A.; Penning, P.D. An automatic system to record foraging behaviour in free-ranging ruminants. Appl. Anim. Behav. Sci. 1997, 54, 185–195. [Google Scholar] [CrossRef]
- Rutter, S.M. Graze: A program to analyze recordings of the jaw movements of ruminants. Behav. Res. Methods Instrum. Comput. 2000, 32, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Littell, R.C.; Stroup, W.W.; Milliken, G.A.; Wolfinger, R.D.; Schabenberger, O. SAS for Mixed Models, 2nd ed.; SAS Institute, SAS Publishing: Cary, NC, USA, 2006; p. 841. [Google Scholar]
- Kuffner, T.A.; Walker, S.G. Why are p-values controversial? Am. Stat. 2019, 73, 1–3. [Google Scholar] [CrossRef]
- Ungar, E.D.; Ravid, N.; Zada, T.; Ben-Moshe, E.; Yonatan, R.; Baram, H.; Genizi, A. The implications of compound chew–bite jaw movements for bite rate in grazing cattle. Appl. Anim. Behav. Sci. 2006, 98, 183–195. [Google Scholar] [CrossRef]
- Galli, J.R.; Cangiano, C.A.; Milone, D.H.; Laca, E.A. Acoustic monitoring of short-term ingestive behavior and intake in grazing sheep. Livest. Sci. 2011, 140, 32–41. [Google Scholar] [CrossRef]
- Bradbury, J.W.; Vehrencamp, S.L.; Clifton, K.E.; Clifton, L.M. The relationship between bite rate and local forage abundance in wild Thomson’s gazelles. Ecology 1996, 77, 2237–2255. [Google Scholar] [CrossRef]
- Mezzalira, J.C.; Bremm, C.; Da Trindade, J.K.; Nabinger, C.; da Faccio Carvalho, P.C. The ingestive behaviour of cattle in large-scale and its application to pasture management in heterogeneous pastoral environments. J. Agric. Sci. Technol. A 2012, 2, 909–916. [Google Scholar] [CrossRef]
- Yayota, M.; Kato, A.; Ishida, M.; Ohtani, S. Ingestive behavior and short-term intake rate of cattle grazing on tall grasses. Livest. Sci. 2015, 180, 113–120. [Google Scholar] [CrossRef]
- Benvenutti, M.A.; Gordon, I.J.; Poppi, D.P. The effect of the density and physical properties of grass stems on the foraging behaviour and instantaneous intake rate by cattle grazing an artificial reproductive tropical sward. Grass Forage Sci. 2006, 61, 272–281. [Google Scholar] [CrossRef]
- Raynor, E.J.; Derner, J.D.; Soder, K.J.; Augustine, D.J. Noseband sensor validation and behavioural indicators for assessing beef cattle grazing on extensive pastures. Appl. Anim. Behav. Sci. 2021, 242, 105402. [Google Scholar] [CrossRef]
- Barrett, P.D.; McGilloway, D.A.; Laidlaw, A.S.; Mayne, C.S. The effect of sward structure as influenced by ryegrass genotype on bite dimensions and short-term intake rate by dairy cows. Grass Forage Sci. 2003, 58, 2–11. [Google Scholar] [CrossRef]
- Bonnet, O.J.F.; Meuret, M.; Tischler, M.R.; Cezimbra, I.M.; Azambuja, J.C.R.; Carvalho, P.C.F. Continuous bite monitoring: A method to assess the foraging dynamics of herbivores in natural grazing conditions. Anim. Prod. Sci. 2015, 55, 339–349. [Google Scholar] [CrossRef]
- Bonnet, O.; Hagenah, N.; Hebbelmann, L.; Meuret, M.; Shrader, A.M. Is Hand Plucking an Accurate Method of Estimating Bite Mass and Instantaneous Intake of Grazing Herbivores? Rangel. Ecol. Manag. 2011, 64, 366–374. [Google Scholar] [CrossRef]
- McGilloway, D.; Cushnahan, A.; Laidlaw, A.; Mayne, C.; Kilpatrick, D. The relationship between level of sward height reduction in a rotationally grazed sward and short-term intake rates of dairy cows. Grass Forage Sci. 1999, 54, 116–126. [Google Scholar] [CrossRef]
- Carvalho, P.C.D.F. Harry Stobbs Memorial Lecture: Can grazing behavior support innovations in grassland management? Trop. Grassl. 2013, 1, 137–155. [Google Scholar] [CrossRef]
- Carlson, I.T.; Oram, R.N.; Surprenant, J. Reed Canarygrass and Other Phalaris Species. In Cool-Season Forage Grasses; ASA, CSSA, SSSA: Madison, WI, USA, 1996; pp. 569–604. [Google Scholar]
Sampling Period | Acclimation Period | Experimental Period | ||
---|---|---|---|---|
2007 | 2008 | 2007 | 2008 | |
Spring | 30 April | 4 May | 7 May | 11 May |
Summer | 1 July | 6 July | 8 July | 13 July |
Fall | 16 September | 14 September | 23 September | 21 September |
Grass Species | LSD | p-Value | ||||
---|---|---|---|---|---|---|
MDF | ORG | QGR | RCG | |||
Ruminating time | ||||||
min d−1 | 391 | 395 | 424 | 358 | 47 | 0.056 |
% of total time | 27 | 27 | 29 | 25 | 3 | 0.055 |
Idling time | ||||||
min d−1 | 659 | 659 | 621 | 689 | 74 | 0.283 |
% of total time | 46 | 46 | 43 | 48 | 5 | 0.282 |
Chews d−1 | 14,814 | ⋯ * | 11,935 | 11,875 | 4416 | 0.602 |
TGJM d−1 | 28,533 | 30,188 | 29,426 | 26,431 | 8903 | 0.817 |
Season | LSD | p-Value | |||
---|---|---|---|---|---|
Spring | Summer | Fall | |||
Ruminating time | |||||
min d−1 | 353 | 405 | 418 | 41 | 0.080 |
% of total time | 25 | 28 | 29 | 3 | 0.080 |
Idling time | |||||
min d−1 | 782 | 638 | 551 | 64 | ≤0.001 |
% of total time | 54 | 44 | 38 | 4 | ≤0.001 |
Chews, # d−1 | 11,847 | 11,680 | 15,166 | 2317 | 0.034 |
TGJM, # d−1 | 22,316 | 29,786 | 33,832 | 7710 | 0.021 |
Grass Species | LSD 1 | p-Value | ||||
---|---|---|---|---|---|---|
MDF | ORG | QGR | RCG | |||
Grazing time (min d−1) | ||||||
Spring | 327 | 298 | 261 | 329 | 79 | 0.070 |
Summer | 417 | 350 | 437 | 373 | ||
Fall | 422 | 498 | 489 | 479 | ||
Grazing time (% of total time) | ||||||
Spring | 23 | 21 | 18 | 23 | 5 | 0.070 |
Summer | 29 | 24 | 30 | 26 | ||
Fall | 29 | 35 | 34 | 33 | ||
Bites per day | ||||||
Spring | 12,322 | 10,387 | 10,798 | 11,231 | 59 | 0.054 |
Summer | 17,165 | 16,969 | 19,957 | 15,049 | ||
Fall | 13,436 | 16,750 | 27,060 | 23,237 | ||
Bite rate (bites min−1) | ||||||
Spring | 33 | 32 | 36 | 34 | 13 | 0.066 |
Summer | 42 | 40 | 46 | 34 | ||
Fall | 32 | 34 | 57 | 49 |
Grass Species | LSD 1 | p-Value | ||||
---|---|---|---|---|---|---|
MDF | ORG | QGR | RCG | |||
Leaf tensile strength (MPa) | ||||||
Spring | 224 | 334 | 211 | 253 | 46 | 0.062 |
Summer | 308 | 522 | 443 | 391 | ||
Fall | 280 | 391 | 341 | 303 | ||
Energy required to sever leaf blade (N·mm) | ||||||
Spring | 5.02 | 6.47 | 5.41 | 9.26 | 1.51 | 0.078 |
Summer | 5.60 | 7.83 | 3.94 | 6.53 | ||
Fall | 6.23 | 5.34 | 3.67 | 5.31 | ||
Resistance (particle size reduction index, %) † | ||||||
Spring | 17.7 | 11.5 | 6.4 | 6.1 | 2.4 | ≤0.001 |
Summer | 14.4 | 5.4 | 14.5 | 9.5 | ||
Fall | 12.8 | 6.3 | 17.0 | 14.0 |
Pregraze | Sward Bulk Density | Leaf Tensile Strength | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sward Height | Herbage Mass | Leaf | Stem | Energy ŧ | Resistance § | N | NDF † | NDFd | ||
RT (min d−1) | r = −0.46 0.024 | r = −0.46 0.071 | r = −0.27 0.204 | r = −0.57 0.004 | r = −0.50 0.013 | r = −0.43 0.037 | r = −0.25 0.246 | r = −0.12 0.568 | r = 0.22 0.309 | r = 0.28 0.187 |
BR (bites min−1) | r = −0.03 0.877 | r = −0.41 0.050 | r = −0.32 0.132 | r = −0.02 0.942 | r = −0.22 0.291 | r = 0.14 0.500 | r = −0.26 0.214 | r = −0.15 0.480 | r = 0.16 0.456 | r = 0.18 0.400 |
No. Bites | r = 0.52 0.009 | r = 0.60 0.002 | r = 0.06 0.792 | r = 0.10 0.627 | r = −0.12 0.585 | r = −0.10 0.629 | r = 0.18 0.408 | r = −0.07 0.762 | r = −0.08 0.693 | r = 0.18 0.403 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soder, K.J.; Brink, G.E.; Raynor, E.J.; Casler, M.D. Relationship between Temperate Grass Sward Characteristics and the Grazing Behavior of Dairy Heifers. Agronomy 2022, 12, 1584. https://doi.org/10.3390/agronomy12071584
Soder KJ, Brink GE, Raynor EJ, Casler MD. Relationship between Temperate Grass Sward Characteristics and the Grazing Behavior of Dairy Heifers. Agronomy. 2022; 12(7):1584. https://doi.org/10.3390/agronomy12071584
Chicago/Turabian StyleSoder, Kathy J., Geoffrey E. Brink, Edward J. Raynor, and Michael D. Casler. 2022. "Relationship between Temperate Grass Sward Characteristics and the Grazing Behavior of Dairy Heifers" Agronomy 12, no. 7: 1584. https://doi.org/10.3390/agronomy12071584
APA StyleSoder, K. J., Brink, G. E., Raynor, E. J., & Casler, M. D. (2022). Relationship between Temperate Grass Sward Characteristics and the Grazing Behavior of Dairy Heifers. Agronomy, 12(7), 1584. https://doi.org/10.3390/agronomy12071584