Teosinte (Euchlaena mexicana L.) Seed Production: Effect of Sowing Date, Seed Rate and Cutting Management on Seed Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Climate Data
2.3. Plant Attributes
2.4. Seed Yield and Its Components
2.5. Economic Analysis
2.6. Statistical Analysis
3. Results
3.1. Main Effect Means of Sowing Date, Seed Rate and Cutting Management on Vegetative Plant Components of Teosinte
3.2. Main Effect Means of Sowing Date, Seed Rate and Cutting Management on Reproductive Yield Components of Teosinte
3.3. Association of Vegetative and Reproductive Components with Seed Yield in Teosinte
3.4. Economic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khanal, B.; Devkota, N.R.; Tiwari, M.R.; Gorkhali, N.A. Maximizing fodder yield of teosinte (Euchlaena mexicana) through sowing dates and mixed fodder cropping management. J. Agric. For. Univ. 2020, 4, 269–278. [Google Scholar]
- Mohan, S.; Dar, E.A.; Singh, M. Fodder quality of teosinte fodder as influenced by nitrogen, phosphorus and zinc application. Int. J. Pure Appl. Biosci. 2017, 5, 596–604. [Google Scholar] [CrossRef]
- Niazi, I.A.K.; Rauf, S.; da Silva, J.A.T.; Munir, H. Comparison of teosinte (Zea mexicana L.) and inter-subspecific hybrids (Zea mays L. × Zea mexicana) for high forage yield under two sowing regimes. Crop Pasture Sci. 2015, 66, 49–61. [Google Scholar] [CrossRef]
- Hampton, J.; Armstrong, K. Cool Season Crop Improvement Program for Nepal; Unpublished Project Completion Report; Lincoln University: Christchurch, New Zealand, 2019. [Google Scholar]
- Devkota, N.R.; Pokharel, P.; Paudel, L.N.; Upreti, C.R.; Joshi, N.P. Performance of teosinte (Euchlaena mexicana) as a promising summer-forage crop with respect to location and sowing dates considering the scenario of possible climate change in Nepal. Nepal. J. Agric. Sci. 2015, 13, 131–141. [Google Scholar]
- National Pasture & Animal Feed Centre (NPAFC). Annual Report; Department of Livestock Services: Lalitpur, Nepal, 2018. [Google Scholar]
- Devkota, N.R.; Ghimire, R.P.; Adhikari, D.P.; Upreti, C.R.; Poudel, L.N.; Joshi, N.P. Forage productivity of teosinte (Euchlaenamexicana Schrad.) at different sowing dates in western mid-hills of Nepal. J. Agric. For. Univ. 2017, 1, 129–137. [Google Scholar]
- Doebley, J. Molecular evidence and the evolution of maize. Econ. Bot. 1990, 44, 6–27. [Google Scholar] [CrossRef]
- Matsuoka, Y.; Vigouroux, Y.; Goodman, M.M.; Sanchez, G.J.J.; Buckler, E.; Doebley, J.A. Single domestication for maize shown by multi locus microsatellite genotyping. Proc. Natl. Acad. Sci. USA 2002, 99, 6080–6084. [Google Scholar] [CrossRef] [Green Version]
- Bhuker, A.; Mor, V.S.; Digamber, M. Effect of planting seasons on seed yield and yield attributing characters in maize (Zea mays L.) hybrids. For. Res. 2019, 45, 33–37. [Google Scholar]
- Millner, J.P.; Toor, G. Influence of sowing date and hybrid on maize emergence. Agron. N. Z. 2007, 37, 15–22. [Google Scholar]
- Tsimba, R.; Edmeades, G.O.; Millner, J.P.; Kemp, P.D. The effect of planting date on maize grain yields and yield components. Field Crops Res. 2013, 150, 135–144. [Google Scholar] [CrossRef]
- Singh, R.P.; Prasad, P.V.V.; Reddy, K.R. Impacts of changing climate and climate variability on seed production and seed industry. Adv. Agron. 2013, 118, 49–110. [Google Scholar]
- Lizaso, J.I.; Ruiz-Ramos, M.; Rodríguez, L.; Gabaldon-Leal, C.; Oliveira, J.A.; Lorite, I.J.; Rodríguez, A. Impact of high temperatures in maize: Phenology and yield components. Field Crops Res. 2018, 216, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Moosavi, S.G.; Seghatoleslami, M.J.; Moazeni, A. Effect of planting date and plant density on morphological traits, LAI and forage corn (Sc. 370) yield in second cultivation. Int. Res. J. Appl. Basic Sci. 2012, 3, 57–63. [Google Scholar]
- Greveniotis, V.; Zotis, S.; Sioki, E.; Ipsilandis, C. Field population density effects on field yield and morphological characteristics of maize. Agriculture 2019, 9, 160. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Singh, M.K.; Kumar, M.; Kumar, V.; Tripathi, S.K. Effect of nitrogen, phosphorus and cutting management on flowering and yield of green leaves of fenugreek (Trigonella foenum-graecum L). Ann. Hortic. 2017, 9, 220–224. [Google Scholar] [CrossRef]
- Makarana, G.; Yadav, R.K.; Kumar, R.; Kumar, A.; Soni, P.G.; Kar, S.; Rajvaidya, S.K. Fodder and grain quality of Pearl millet (Pennisetum glaucum L.) under cutting management in saline irrigation water. J. Pharmacogn. Phytochem. 2018, 7, 1251–1257. [Google Scholar]
- Patil, B.; Merwade, M. Effect of cutting management on seed yield, dry fodder yield and seed quality of multicut fodder sorghum. Res. Environ. Life Sci. 2016, 9, 81–83. [Google Scholar]
- Sanjyal, S. Assessment of Seed Production Potential of Teosinte (Euchlaena mexicana) under Varying Agronomic Management Practices in the Central Region of Nepal. Ph.D. Thesis, Lincoln University, Canterbury, New Zealand, 2021. Unpublished. [Google Scholar]
- Pariyar, D.; Shrestha, K.K. Seed Production of Forage Crops; Pasture and Forage Division, National Animal Science Research Institute, NARC: Khumaltar, Nepal, 2016; pp. 61–72. [Google Scholar]
- Musa, U.T.; Usman, T.H. Leaf are determination for maize (Zea mays L.), okra (Abelmoschus esculentus L.) and cowpea (Vigna unguiculata L.) crops using linear measurements. J. Biol. Agric. Healthc. 2016, 6, 103–111. [Google Scholar]
- Shrestha, K.K.; Timisina, K.P.; Sanjyal, S.; Munakarmi, P.B. Study on different aspects of milk for reducing the cost of production in Nepal. In Proceedings of the 6th National Animal Science Conference, Dhulikhel, Nepal, 25–26 September 2011; pp. 90–100. [Google Scholar]
- VSN International. Genstat for Windows, 19th ed.; VSN International: Hemel Hempstead, UK, 2019; Available online: genstat.co.uk (accessed on 25 March 2018).
- Koireng, R.J.; Ansar-Ul-Haq, N.; Devi, K.P. Effect of planting dates and seed rates on performance of forage maize (Zea mays) under rain fed condition of Manipur. Forage Res. 2018, 43, 270–273. [Google Scholar]
- Jones, G.B.; Alpuerto, J.B.; Tracy, B.F.; Fukao, T. Physiological effect of cutting height and high temperature on regrowth vigour in orchard grass. Front. Plant Sci. 2017, 8, 805. [Google Scholar] [CrossRef] [Green Version]
- Jan, A.; Hamid, I.; Muhammad, T. Seed rates and sowing dates effect on the performance of wheat variety Bakhtawar-92. Pak. J. Biol. Sci. 2000, 3, 1409–1411. [Google Scholar]
- Alam, M.M.; Hammer, G.L.; Van Oosterom, E.J.; Cruickshank, A.W.; Hunt, C.H.; Jordan, D.R. A physiological framework to explain genetic and environmental regulation of tillering in sorghum. New Phytol. 2014, 203, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Hakala, K.; Kontturi, M.; Pahkala, K. Field biomass as global energy source. Agric. Food Sci. 2009, 18, 347–365. [Google Scholar] [CrossRef]
- Crozier, C.R.; Gehl, R.J.; Hardy, D.H.; Heiniger, R.W. Nitrogen management for high population corn production in wide and narrow rows. Agron. J. 2014, 106, 66–72. [Google Scholar] [CrossRef]
- Bavec, F.; Bavec, M. Effects of plant population on leaf area index, cob characteristics and grain yield of early maturing maize cultivars (FAO 100–400). Eur. J. Agron. 2002, 16, 151–159. [Google Scholar] [CrossRef]
- Donaghy, D.J.; Turner, L.R.; Adamczewski, K.A. Effect of defoliation management on water-soluble carbohydrate energy reserves, dry matter yields, and herbage quality of tall fescue. Agron. J. 2008, 100, 122–127. [Google Scholar] [CrossRef] [Green Version]
- Banotra, M.; Sharma, B.C.; Nandan, B.; Verma, A.; Shah, I.A.; Kumar, R.; Namgial, T. Growth, phenology, yield and nutrient uptake of sweet corn as influenced by cultivars and planting times under irrigated subtropics of shiwalik foot hills. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2971–2985. [Google Scholar] [CrossRef]
- Sorensen, I.; Stone, P.; Rogers, B. Effect of sowing time on yield of a short and a long season maize hybrid. Agron. N. Z. 2000, 30, 63–66. [Google Scholar]
- Sangoi, L. An Ideotype of Maize for Conditions of High Temperature and Low Moisture. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 1996. Unpublished. [Google Scholar]
- Pavlista, A.D.; Lyon, D.J.; Baltensperger, D.D.; Hergert, G.W. Yield components as affected by planting dryland maize in a double-skip row pattern. J. Crop Improv. 2010, 24, 131–141. [Google Scholar] [CrossRef]
- Paponov, I.A.; Sambo, P.; Presterl, T.; Geiger, H.H.; Engels, C. Kernel set in maize genotypes differing in nitrogen use efficiency in response to resource availability around flowering. Plant Soil 2005, 272, 101–110. [Google Scholar] [CrossRef]
- Barimavandi, A.R.; Sedaghathoor, S.; Ansari, R. Effect of different defoliation treatments on yield and yield components in maize (Zea mays L.) cultivar S.C704. Aust. J. Crop Sci. 2010, 4, 9–15. [Google Scholar]
- Sallan, A.M.; Ibrahim, H.I.M. Effect of harvest time on yield and seed quality of teosinte. Am. Eurasian J. Agric. Environ. Sci. 2014, 14, 1159–1164. [Google Scholar]
Main Effect Means of: | Final Plant Height (cm) | Final Tiller Number Per Plant | LAI | |||
---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
Sowing date (SD) | ||||||
30-Mar | 340 a | 364 a | 8.1 a | 6.6 a | 3.2 a | 3.5 a |
30-Apr | 331 a | 348 a | 7.8 a | 5.4 b | 3.0 a | 3.2 a |
30-May | 321 a | 319 b | 6.1 b | 4.2 c | 1.3 b | 2.0 b |
30-Jun | 279 b | - | 5.5 b | - | 1.2 b | - |
Linear contrast p value | 0.002 | 0.005 | <0.001 | <0.001 | <0.001 | 0.001 |
LSD (5%) | 32 | 25 | 0.9 | 0.6 | 0.6 | 0.6 |
CV% | 6.2 | 4.2 | 8.0 | 6.3 | 16 | 12.4 |
Seed rate (SR) | ||||||
20 kg ha−1 | 325 a | 351 a | 6.9 a | 5.3 a | 2.4 a | 3.3 a |
40 kg ha−1 | 317 a | 335 a | 6.8 a | 5.5 a | 2.2 b | 3.2 a |
60 kg ha−1 | 317 a | 346 a | 7.1 a | 5.5 a | 2.2 b | 2.9 a |
80 kg ha−1 | 313 a | 342 a | 6.7 a | 5.3 a | 2.0 b | 2.2 b |
Linear contrast p value | 0.669 | 0.484 | 0.797 | 0.818 | 0.001 | <0.001 |
LSD (5%) | 32 | 17 | 0.76 | 0.4 | 0.2 | 0.6 |
CV% | 14 | 6 | 15.6 | 8.6 | 14.0 | 23.4 |
Cut management (CM) | ||||||
No cut | 341 a | 373 a | 8.1 a | 5.5 a | 2.5 a | 3.5 a |
One cut | 313 b | 332 b | 7.0 b | 5.6 a | 2.1 b | 2.6 b |
Two cut | 300 b | 325 b | 5.4 c | 5.1 b | 2.0 b | 2.5 b |
Linear contrast p value | <0.001 | <0.001 | <0.001 | 0.03 | <0.001 | <0.001 |
LSD (5%) | 22 | 16 | 0.5 | 0.3 | 0.2 | 0.4 |
CV% | 20 | 12 | 21.1 | 15.2 | 25.3 | 30.8 |
Significance of interactions of linear contrasts (p value) | ||||||
SD (lin) × SR (lin) | 0.900 | 0.237 | 0.400 | 0.892 | 0.018 | <0.001 |
SD (lin) × CM (lin) | <0.001 | 0.073 | 0.633 | 0.735 | 0.143 | 0.842 |
SR (lin) × CM (lin) | 0.772 | 0.037 | 0.431 | 0.611 | 0.045 | 0.092 |
SD (lin) × SR (lin) × CM (lin) | 0.681 | 0.387 | 0.587 | 0.543 | 0.175 | 0.911 |
Main Effect Means of: | Cobs per Plant | Ears per Cob | Seeds per Ear | Total Seed Yield kg ha−1 | ||||
---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
Sowing date (SD) | ||||||||
30-Mar | 11.5 a | 8.4 a | 6.8 a | 6.3 a | 5.0 a | 4.8 a | 4233 a | 3791 a |
30-Apr | 10.1 ab | 7.8 ab | 6.0 a | 5.8 a | 4.6 ab | 4.7 ab | 3440 a | 3054 a |
30-May | 8.7 b | 7.0 b | 5.1 b | 4.4 b | 4.4 b | 4.3 b | 1778 b | 1618 b |
30-Jun | 6.3 c | - | 4.0 c | - | 3.0 c | - | 998 b | - |
Linear contrast p value | <0.001 | 0.007 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
LSD (5%) | 1.6 | 0.9 | 0.8 | 0.6 | 0.4 | 0.5 | 924 | 859 |
CV% | 11.2 | 6.5 | 9.3 | 6.9 | 6.3 | 5.8 | 23 | 19 |
Seed rate (SR) | ||||||||
20 kg ha−1 | 9.2 a | 8.6 a | 5.3 a | 6.0 a | 4.2 ab | 4.9 a | 2605 ab | 3475 a |
40 kg ha−1 | 9.4 a | 8.0 b | 5.7 a | 5.5 ab | 4.4 a | 4.6 ab | 2628 ab | 3287 a |
60 kg ha−1 | 9.3 a | 7.5 b | 5.4 a | 5.5 ab | 4.3 ab | 4.4 b | 2850 a | 2772 b |
80 kg ha−1 | 8.6 a | 6.8 c | 5.5 a | 5.0 b | 4.1 b | 4.5 b | 2366 b | 1751 c |
Linear contrast p value | 0.153 | <0.001 | 0.793 | 0.001 | 0.191 | <0.005 | 0.439 | <0.001 |
LSD (5%) | 0.9 | 0.5 | 0.4 | 0.5 | 0.2 | 0.3 | 406 | 430 |
CV% | 14 | 7.2 | 10.7 | 10.9 | 7.7 | 7.7 | 22 | 18 |
Cut management (CM) | ||||||||
No cut | 10.3 a | 8.3 a | 5.8 a | 6.2 a | 4.7 a | 5.1 a | 3092 a | 3311 a |
One cut | 9.8 a | 7.7 b | 5.7 a | 5.7 b | 4.6 a | 4.8 b | 2725 a | 2850 b |
Two cut | 7.3 b | 7.1 c | 5.0 b | 4.6 c | 3.5 b | 4.0 c | 2019 b | 2303 c |
Linear contrast p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
LSD (5%) | 0.7 | 0.4 | 0.3 | 0.4 | 0.2 | 0.2 | 406 | 227 |
CV% | 20.7 | 11.8 | 17 | 18.6 | 11.1 | 13 | 44 | 20 |
Significance of interactions of linear contrasts (p value) | ||||||||
SD (lin) × SR (lin) | 0.575 | 0.022 | 0.722 | 0.508 | 0.261 | 0.016 | 0.054 | 0.820 |
SD (lin) ×CM (lin) | 0.016 | 0.639 | <0.001 | 0.007 | <0.001 | 0.393 | 0.046 | <0.001 |
SR (lin) × CM (lin) | 0.66 | 0.010 | 0.844 | 0.087 | 0.088 | 0.954 | 0.781 | 0.632 |
SD (lin) × SR (lin) × CM (lin) | 0.851 | 0.021 | 0.530 | 0.279 | 0.306 | 0.613 | 0.446 | 0.140 |
Cutting Management | Income from Milk (Rs ha−1) | Income from Seed (Rs ha−1) | Gross Return (Rs ha−1) | Total Cost (Rs ha−1) | Gross Margin (Rs ha−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
No cut | - | - | 310,198 a | 364,156 a | 310,198 a | 364,156 a | 68,979 c | 72,376 c | 241,219 a | 291,780 a |
One cut | 29,763 b | 36,033 b | 272,494 a | 313,470 b | 317,139 a | 367,520 a | 75,371 b | 80,107 b | 241,768 a | 287,413 a |
Double cut | 42,563 a | 52,652 a | 201,486 b | 253,379 c | 265,765 b | 332,357 b | 76,715 a | 82,808 a | 189,050 b | 249,549 b |
Linear contrast p value | <0.001 | <0.001 | <0.001 | <0.001 | 0.035 | 0.002 | <0.001 | <0.001 | 0.011 | 0.002 |
LSD (5%) | 3036 | 4104 | 42,634 | 24,958 | 41161 | 26,880 | 1167 | 1281 | 40,047 | 25,896 |
CV% | 16 | 22 | 46 | 20 | 39 | 19 | 5 | 4 | 51 | 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanjyal, S.; Hampton, J.G.; Rolston, P.; Marahatta, S. Teosinte (Euchlaena mexicana L.) Seed Production: Effect of Sowing Date, Seed Rate and Cutting Management on Seed Yield. Agronomy 2022, 12, 1646. https://doi.org/10.3390/agronomy12071646
Sanjyal S, Hampton JG, Rolston P, Marahatta S. Teosinte (Euchlaena mexicana L.) Seed Production: Effect of Sowing Date, Seed Rate and Cutting Management on Seed Yield. Agronomy. 2022; 12(7):1646. https://doi.org/10.3390/agronomy12071646
Chicago/Turabian StyleSanjyal, Sunita, John G. Hampton, Phil Rolston, and Santosh Marahatta. 2022. "Teosinte (Euchlaena mexicana L.) Seed Production: Effect of Sowing Date, Seed Rate and Cutting Management on Seed Yield" Agronomy 12, no. 7: 1646. https://doi.org/10.3390/agronomy12071646
APA StyleSanjyal, S., Hampton, J. G., Rolston, P., & Marahatta, S. (2022). Teosinte (Euchlaena mexicana L.) Seed Production: Effect of Sowing Date, Seed Rate and Cutting Management on Seed Yield. Agronomy, 12(7), 1646. https://doi.org/10.3390/agronomy12071646