Copper Distribution and Binding Affinity of Size-Fractioned Humic Substances Taken from Paddy Soil and Correlation with Optical Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling, Treatment, and Measurement
2.2. AEOM Extraction and Separation
2.3. UV-Vis and Fluorescent Measurement
2.4. Optical Index and Metal Binding Affinity Calculation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Optical Indicators
3.2. DOC and Cu Concentrations of Size-Fractioned AEOM
3.3. Cu and OC Distribution between Size-Fractioned AEOM
3.4. Cu and AEOM Binding Affinity [Cu]/[DOC] Ratio
3.5. [Cu]/[DOC] Ratios and Optical Indicators Correlation Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gmach, M.R.; Cherubin, M.R.; Kaiser, K.; Cerri, C.E.P. Processes that influence dissolved organic matter in the soil: A review. Sci. Agricol. 2019, 77. [Google Scholar] [CrossRef]
- Fernández-Romero, M.; Clark, J.; Collins, C.; Parras-Alcántara, L.; Lozano-García, B. Evaluation of optical techniques for characterising soil organic matter quality in agricultural soils. Soil Tillage Res. 2016, 155, 450–460. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Matong, J.M.; Nyaba, L.; Nomngongo, P.N. Fractionation of trace elements in agricultural soils using ultrasound assisted sequential extraction prior to inductively coupled plasma mass spectrometric determination. Chemosphere 2016, 154, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, J.P.; Pechová, P.; Berggren, D. Modeling metal binding to soils: The role of natural organic matter. Environ. Sci. Technol. 2003, 37, 2767–2774. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Wu, L.; Luo, Y.; Christie, P. Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils. Environ. Pollut. 2018, 232, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Liu, H. Relationship between organic matter humification and bioavailability of sludge-borne copper and cadmium during long-term sludge amendment to soil. Sci. Total Environ. 2016, 566, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Aiken, G.R.; Hsu-Kim, H.; Ryan, J.N. Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ. Sci. Techol. 2011, 45, 3196–3201. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, S.-H.; Chiu, T.-P.; Huang, W.-S.; Chen, T.-C.; Yeh, Y.-L. Cadmium (Cd) and Nickel (Ni) Distribution on Size-Fractioned Soil Humic Substance (SHS). Int. J. Environ. Res. Public Health 2019, 16, 3398. [Google Scholar] [CrossRef] [Green Version]
- Amery, F.; Degryse, F.; Degeling, W.; Smolders, E.; Merckx, R. The copper-mobilizing-potential of dissolved organic matter in soils varies 10-fold depending on soil incubation and extraction procedures. Environ. Sci. Technol. 2007, 41, 2277–2281. [Google Scholar] [CrossRef]
- Amery, F.; Degryse, F.; Cheyns, K.; De Troyer, I.; Mertens, J.; Merckx, R.; Smolders, E. The UV-absorbance of dissolved organic matter predicts the fivefold variation in its affinity for mobilizing Cu in an agricultural soil horizon. Eur. J. Soil Sci. 2008, 59, 1087–1095. [Google Scholar] [CrossRef]
- Khanam, R.; Kumar, A.; Nayak, A.K.; Shahid, M.; Tripathi, R.; Vijayakumar, S.; Bhaduri, D.; Kumar, U.; Mohanty, S.; Panneerselvam, P. Metal (loid) s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Sc. Total Environ. 2020, 699, 134330. [Google Scholar] [CrossRef] [PubMed]
- Sauvé, S.; Manna, S.; Turmel, M.-C.; Roy, A.G.; Courchesne, F. Solid− Solution partitioning of Cd, Cu, Ni, Pb, and Zn in the organic horizons of a forest soil. Environ. Sci. Technol. 2003, 37, 5191–5196. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zou, L.; Guan, D.; Li, W.; Jiang, H. Molecular weight-dependent spectral and metal binding properties of sediment dissolved organic matter from different origins. Sci. Total Environ. 2019, 665, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Dabrin, A.; Roulier, J.-L.; Coquery, M. Colloidal and truly dissolved metal (oid) fractionation in sediment pore waters using tangential flow filtration. Appl. Geochem. 2013, 31, 25–34. [Google Scholar] [CrossRef]
- Hargreaves, A.J.; Vale, P.; Whelan, J.; Constantino, C.; Dotro, G.; Campo, P.; Cartmell, E. Distribution of trace metals (Cu, Pb, Ni, Zn) between particulate, colloidal and truly dissolved fractions in wastewater treatment. Chemosphere 2017, 175, 239–246. [Google Scholar] [CrossRef]
- Jarvie, H.; Neal, C.; Rowland, A.; Neal, M.; Morris, P.; Lead, J.; Lawlor, A.; Woods, C.; Vincent, C.; Guyatt, H. Role of riverine colloids in macronutrient and metal partitioning and transport, along an upland–lowland land-use continuum, under low-flow conditions. Sci. Total Environ. 2012, 434, 171–185. [Google Scholar] [CrossRef] [Green Version]
- Worms, I.A.; Szigeti, Z.A.-G.; Dubascoux, S.; Lespes, G.; Traber, J.; Sigg, L.; Slaveykova, V.I. Colloidal organic matter from wastewater treatment plant effluents: Characterization and role in metal distribution. Water Res. 2010, 44, 340–350. [Google Scholar] [CrossRef]
- Luan, H.; Vadas, T.M. Size characterization of dissolved metals and organic matter in source waters to streams in developed landscapes. Environ. Pollut. 2015, 197, 76–83. [Google Scholar] [CrossRef]
- McPhedran, K.N.; Seth, R.; Drouillard, K.G. Investigation of Hydrophobic Organic Carbon (HOC) partitioning to 1 kDa fractionated municipal wastewater colloids. Environ. Sci. Technol. 2013, 47, 2548–2553. [Google Scholar] [CrossRef]
- Birdwell, J.E.; Engel, A.S. Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy. Org. Geochem. 2010, 41, 270–280. [Google Scholar] [CrossRef]
- Derrien, M.; Yang, L.; Hur, J. Lipid biomarkers and spectroscopic indices for identifying organic matter sources in aquatic environments: A review. Water Res. 2017, 112, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.M.; Kraus, T.E.; Pellerin, B.A.; Fleck, J.A.; Downing, B.D.; Bergamaschi, B.A. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnol. Oceanogr. 2016, 61, 1015–1032. [Google Scholar] [CrossRef] [Green Version]
- Helms, J.R.; Stubbins, A.; Ritchie, J.D.; Minor, E.C.; Kieber, D.J.; Mopper, K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 2008, 53, 955–969. [Google Scholar] [CrossRef] [Green Version]
- Hudson, N.; Baker, A.; Reynolds, D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River Res. Appl. 2007, 23, 631–649. [Google Scholar] [CrossRef]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.-M.; Parlanti, E. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Matilainen, A.; Gjessing, E.T.; Lahtinen, T.; Hed, L.; Bhatnagar, A.; Sillanpää, M. An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere 2011, 83, 1431–1442. [Google Scholar] [CrossRef] [PubMed]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef] [PubMed]
- Baken, S.; Degryse, F.; Verheyen, L.; Merckx, R.; Smolders, E. Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands. Environ. Sci. Technol. 2011, 45, 2584–2590. [Google Scholar] [CrossRef] [Green Version]
- Chon, K.; Chon, K.; Cho, J. Characterization of size fractionated dissolved organic matter from river water and wastewater effluent using preparative high performance size exclusion chromatography. Org. Geochem. 2017, 103, 105–112. [Google Scholar]
- Fujii, M.; Imaoka, A.; Yoshimura, C.; Waite, T. Effects of molecular composition of natural organic matter on ferric iron complexation at circumneutral pH. Environ. Sci. Technol. 2014, 48, 4414–4424. [Google Scholar] [PubMed]
- Kikuchi, T.; Fujii, M.; Terao, K.; Jiwei, R.; Lee, Y.P.; Yoshimura, C. Correlations between aromaticity of dissolved organic matter and trace metal concentrations in natural and effluent waters: A case study in the Sagami River Basin, Japan. Sci. Total Environ. 2017, 576, 36–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, Y.; Xiao, M.; Mostofa, K.M.; Xu, S.; Wang, Z. Spatial variations of trace metals and their complexation behavior with DOM in the water of Dianchi Lake, China. Int. J. Environ. Res. Public Health 2019, 16, 4919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Yue, D.; Liu, J.; Nie, Y. Size fractionation of organic matter and heavy metals in raw and treated leachate. Waste Manag. 2009, 29, 2527–2533. [Google Scholar] [CrossRef]
- Chiu, T.-P.; Huang, W.-S.; Chen, T.-C.; Yeh, Y.-L. Fluorescence characteristics of dissolved organic matter (DOM) in percolation water and lateral seepage affected by soil solution (SS) in a lysimeter test. Sensors 2019, 19, 4016. [Google Scholar]
- Gao, J.; Liang, C.; Shen, G.; Lv, J.; Wu, H. Spectral characteristics of dissolved organic matter in various agricultural soils throughout China. Chemosphere 2017, 176, 108–116. [Google Scholar]
- Jalali, M.; Hemati, N. Chemical fractionation of seven heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, and Zn) in selected paddy soils of Iran. Paddy Water Environ. 2013, 11, 299–309. [Google Scholar]
- Krishnamurti, G.S.; Naidu, R. Solid− solution speciation and phytoavailability of copper and zinc in soils. Environ. Sci. Technol. 2002, 36, 2645–2651. [Google Scholar] [CrossRef]
- Nkhili, E.; Guyot, G.; Vassal, N.; Richard, C. Extractability of water-soluble soil organic matter as monitored by spectroscopic and chromatographic analyses. Environ. Sci. Pollut. Res. 2012, 19, 2400–2407. [Google Scholar] [CrossRef]
- Hur, J.; Park, M.-H.; Schlautman, M.A. Microbial transformation of dissolved leaf litter organic matter and its effects on selected organic matter operational descriptors. Environ. Sci. Technol. 2009, 43, 2315–2321. [Google Scholar]
- McKnight, D.M.; Boyer, E.W.; Westerhoff, P.K.; Doran, P.T.; Kulbe, T.; Andersen, D.T. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 2001, 46, 38–48. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Kinniburgh, D. An R script for visualising and analysing fluorescence excitation–emission matrices (EEMs). Comput. Geosci. 2009, 35, 2160–2163. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.-J.; Zhao, C.; Shi, Z.-H.; Zhong, J.; Liu, J.-G.; Li, J.-Q. Spectroscopic characteristics of dissolved organic matter in afforestation forest soil of Miyun District, Beijing. J. Anal. Methods Chem. 2016, 2016, 1480857. [Google Scholar] [PubMed]
- Araújo, E.; Strawn, D.G.; Morra, M.; Moore, A.; Alleoni, L.R.F. Association between extracted copper and dissolved organic matter in dairy-manure amended soils. Environ. Pollut. 2019, 246, 1020–1026. [Google Scholar] [PubMed]
- Cambier, P.; Pot, V.; Mercier, V.; Michaud, A.; Benoit, P.; Revallier, A.; Houot, S. Impact of long-term organic residue recycling in agriculture on soil solution composition and trace metal leaching in soils. Sci. Total Environ. 2014, 499, 560–573. [Google Scholar] [CrossRef]
- Ilina, S.M.; Lapitskiy, S.A.; Alekhin, Y.V.; Viers, J.; Benedetti, M.; Pokrovsky, O.S. Speciation, size fractionation and transport of trace elements in the continuum soil water–mire–humic lake–river–large oligotrophic lake of a Subarctic watershed. Aquat. Geochem. 2016, 22, 65–95. [Google Scholar] [CrossRef]
- Martin, J.M.; Dai, M.H.; Cauwet, G. Significance of colloids in the biogeochemical cycling of organic carbon and trace metals in the Venice Lagoon (Italy). Limnol. Oceanogr. 1995, 40, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Dai, M.; Martin, J.-M.; Cauwet, G. The significant role of colloids in the transport and transformation of organic carbon and associated trace metals (Cd, Cu and Ni) in the Rhône delta (France). Mar. Chem. 1995, 51, 159–175. [Google Scholar] [CrossRef]
- Wen, L.-S.; Santschi, P.; Gill, G.; Paternostro, C. Estuarine trace metal distributions in Galveston Bay: Importance of colloidal forms in the speciation of the dissolved phase. Mar. Chem. 1999, 63, 185–212. [Google Scholar] [CrossRef]
- de Zarruk, K.K.; Scholer, G.; Dudal, Y. Fluorescence fingerprints and Cu2+-complexing ability of individual molecular size fractions in soil-and waste-borne DOM. Chemosphere 2007, 69, 540–548. [Google Scholar] [CrossRef]
- Shi, M.-S.; Huang, W.-S.; Hsu, L.-F.; Yeh, Y.-L.; Chen, T.-C. Fluorescence of Size-Fractioned Humic Substance Extracted from Sediment and Its Effect on the Sorption of Phenanthrene. Int. J. Environ. Res. Public Health 2019, 16, 5087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, L.-S.; Stordal, M.C.; Tang, D.; Gill, G.A.; Santschi, P.H. An ultraclean cross-flow ultrafiltration technique for the study of trace metal phase speciation in seawater. Mar. Chem. 1996, 55, 129–152. [Google Scholar] [CrossRef]
- Wang, W.; Wen, B.; Zhang, S.; Shan, X.-Q. Distribution of heavy metals in water and soil solutions based on colloid-size fractionation. Int. J. Environ. Anal. Chem. 2003, 83, 357–365. [Google Scholar] [CrossRef]
- Wenming, X.; ZHANG, S.; Lin, R.; Mingyue, Y.; Weiming, S.; ZHANG, H.; Weihua, L. Evaluating soil dissolved organic matter extraction using three-dimensional excitation-emission matrix fluorescence spectroscopy. Pedosphere 2017, 27, 968–973. [Google Scholar]
- Wang, W.; Chen, M.; Guo, L.; Wang, W.-X. Size partitioning and mixing behavior of trace metals and dissolved organic matter in a South China estuary. Sci. Total Environ. 2017, 603, 434–444. [Google Scholar] [CrossRef]
Fractioned AEOM | SUVA254 L/mg-C/m | FI | BIX |
---|---|---|---|
M-O | 3.25 ± 1.92 (0.30, 7.92) a,b | 1.51 ± 0.11 (1.32, 1.86) b | 0.84 ± 0.14 (0.66, 1.16) b |
M-A | 3.72 ± 2.36 (0.37, 10.69) a,b | 1.51 ± 0.11 (1.30, 1.86) b | 0.86 ± 0.15 (0.68, 1.23) b |
M-B | 4.77 ± 1.93 (2.13, 10.48) a, | 1.40 ± 0.06 (1.25, 1.50) a | 0.69 ± 0.11 (0.27, 0.92) a |
M-C | 2.49 ± 1.77 (0.53, 7.64) b,c | 1.55 ± 0.11 (1.33, 1.85) b,c | 0.89 ± 0.22 (0.64, 1.57) b,c |
M-D | 1.86 ± 0.95 (0.49, 4.24) c | 1.62 ± 0.16 (1.38, 2.07) c | 0.95 ± 0.25 (0.62, 1.73) b,c |
M-E | 1.66 ± 0.93 (0.15, 3.27) c | 1.67 ± 0.11 (1.50, 1.85) c | 1.07 ± 0.26 (0.71, 1.65) c |
Total | 2.99 ± 2.03 (0.15, 10.69) | 1.54 ± 0.14 (1.25, 2.07) | 0.88 ± 0.23 (0.27, 1.73) |
p value | <0.001 | <0.001 | <0.001 |
Site | Cu (mg/kg) | AEOM-Cu (mg/kg) | AEOM-Cu/Cu (%) | TOC (g/kg) | DOC (g/kg) | DOC/TOC (%) |
---|---|---|---|---|---|---|
S-1 | 13.10 ± 0.38 c | 6.07 ± 0.99 a,b | 46.3 | 53.3 ± 3.8 b | 3.08 ± 0.60 b,c | 5.78 |
S-2 | 18.76 ± 0.38 b,c | 6.60 ± 1.73 a | 35.2 | 46.7 ± 6.3 b,c | 2.07 ± 0.57 b,c | 4.43 |
S-3 | 29.75 ± 2.22 a | 3.67 ± 0.31 c | 12.3 | 45.8 ± 3.8 b,c | 3.37 ± 1.28 a,b | 7.36 |
S-4 | 9.32 ± 0.33 c | 5.60 ± 0.53 a,b | 60.1 | 41.7 ± 5.8 b,c | 5.28 ± 0.98 a | 12.67 |
S-5 | 22.09 ± 0.38 a,b | 5.20 ± 0.20 b,c | 23.5 | 58.3 ± 5.2 a,b | 1.59 ± 0.16 c | 2.73 |
S-6 | 18.98 ± 0.33 b,c | 5.07 ± 0.42 b,c | 26.7 | 43.3 ± 2.9 b,c | 4.27 ± 1.19 a,b | 9.86 |
S-7 | 20.20 ± 0.51 b,c | 2.47 ± 0.42 c | 12.2 | 14.2 ± 1.4 c | 1.91 ± 0.34 b,c | 13.45 |
S-8 | 27.53 ± 0.38 a | 7.73 ± 1.68 a | 28.1 | 129.2 ± 1.4 a | 3.66 ± 1.30 a,b | 2.83 |
S-9 | 23.20 ± 1.17 a,b | 5.73 ± 0.31 a,b | 24.6 | 121.7 ± 3.8 a | 2.83 ± 0.54 b,c | 2.33 |
S-10 | 26.53 ± 1.35 a,b | 6.13 ± 1.14 a,b | 23.1 | 66.7 ± 3.8 a,b | 2.95 ± 0.51 b,c | 4.42 |
Total | 20.95 ± 6.19 | 5.43 ± 1.03 | 29.2 ± 14.8 | 62.1 ± 35.0 | 3.10 ± 1.29 | 6.59 ± 4.12 |
Range | 8.99, 32.30 | 2.00, 8.80 | 9.7, 64.5 | 12.5, 130.0 | 1.46, 5.97 | 2.33, 13.50 |
p value | 0.001 | 0.011 | 0.002 | 0.011 |
Site | M-O | M-A | M-B | M-C | M-D | M-E | p-Value | MB (%) |
---|---|---|---|---|---|---|---|---|
DOC (mg/L) | ||||||||
S-1 | 154 ± 30 b,c | 153 ± 35 a,b | 1038 ± 299 a,b | 88 ± 13 | 78 ± 9 | 68 ± 5 | 0.008 | 108 ± 3 |
S-2 | 104 ± 29 b,c | 105 ± 27 b,c | 476 ± 163 b,c | 83 ± 16 | 82 ± 19 | 72 ± 25 | 0.095 | 115 ± 35 |
S-3 | 169 ± 64 a,b | 141 ± 26 b,c | 643 ± 30 b,c | 115 ± 28 | 93 ± 38 | 83 ± 32 | 0.035 | 90 ± 26 |
S-4 | 264 ± 49 a | 233 ± 69 a | 1973 ± 85 a | 141 ± 32 | 90 ± 10 | 79 ± 11 | 0.008 | 104 ± 13 |
S-5 | 80 ± 8 c | 79 ± 7 c | 240 ± 15 b,c | 63 ± 4 | 60 ± 7 | 55 ± 12 | 0.013 | 95 ± 15 |
S-6 | 213 ± 60 a,b | 192 ± 43 a,b | 1034 ± 249 a,b | 140 ± 10 | 88 ± 6 | 87 ± 16 | 0.009 | 90 ± 10 |
S-7 | 96 ± 17 b,c | 103 ± 27 b,c | 182 ± 48 c | 82 ± 30 | 85 ± 37 | 74 ± 34 | 0.120 | 90 ± 20 |
S-8 | 183 ± 65 a,b | 174 ± 65 a,b | 685 ± 283 b,c | 160 ± 80 | 134 ± 70 | 99 ± 41 | 0.093 | 89 ± 9 |
S-9 | 142 ± 27 b,c | 126 ± 31 b,c | 380 ± 86 b,c | 113 ± 43 | 125 ± 34 | 110 ± 48 | 0.163 | 95 ± 20 |
S-10 | 148 ± 26 b,c | 144 ± 30 b,c | 643 ± 44 b,c | 127 ± 35 | 109 ± 29 | 84 ± 31 | 0.045 | 97 ± 11 |
Total | 155 ± 64 | 145 ± 55 | 729 ± 525 | 111 ± 42 | 94 ± 34 | 81 ± 28 | 97 ± 18 | |
Range | 73, 299 | 71, 273 | 130, 2057 | 48, 222 | 44, 178 | 39, 148 | 61, 155 | |
p value | 0.011 | 0.033 | 0.002 | 0.083 | 0.34 | 0.66 | ||
Cu (mg/L) | ||||||||
S-1 | 0.30 ± 0.05 a,b | 0.31 ± 0.04 a,b | 2.64 ± 0.19 a,b | 0.10 ± 0.05 b,c | 0.11 ± 0.03 | 0.07 ± 0.01 | 0.010 | 109 ± 7 |
S-2 | 0.33 ± 0.09 a,b | 0.33 ± 0.10 a,b | 2.41 ± 0.50 a,b | 0.21 ± 0.02 a,b | 0.20 ± 0.03 | 0.08 ± 0.02 | 0.008 | 102 ± 7 |
S-3 | 0.18 ± 0.02 c | 0.19 ± 0.02 c | 1.55 ± 0.12 c | 0.19 ± 0.10 a,b | 0.20 ± 0.07 | 0.06 ± 0.02 | 0.031 | 123 ± 7 |
S-4 | 0.28 ± 0.03 a,b | 0.29 ± 0.02 a,b | 2.28 ± 0.08 a,b | 0.14 ± 0.02 b,c | 0.10 ± 0.02 | 0.05 ± 0.01 | 0.007 | 104 ± 11 |
S-5 | 0.26 ± 0.01 b,c | 0.25 ± 0.01 b,c | 1.71 ± 0.06 b,c | 0.08 ± 0.02 c | 0.06 ± 0.02 | 0.02 ± 0.01 | 0.007 | 79 ± 2 |
S-6 | 0.25 ± 0.02 b,c | 0.26 ± 0.02 b,c | 1.93 ± 0.11 b,c | 0.12 ± 0.01 b,c | 0.12 ± 0.01 | 0.07 ± 0.01 | 0.008 | 105 ± 9 |
S-7 | 0.12 ± 0.02 c | 0.13 ± 0.03 c | 0.97 ± 0.17 c | 0.08 ± 0.04 c | 0.17 ± 0.07 | 0.05 ± 0.03 | 0.028 | 119 ± 21 |
S-8 | 0.39 ± 0.08 a | 0.38 ± 0.08 a | 2.55 ± 0.59 a,b | 0.37 ± 0.16 a | 0.20 ± 0.12 | 0.06 ± 0.02 | 0.018 | 92 ± 12 |
S-9 | 0.29 ± 0.02 a,b | 0.29 ± 0.02 a,b | 2.11 ± 0.19 a,b | 0.17 ± 0.01 a,b | 0.35 ± 0.02 | 0.07 ± 0.03 | 0.018 | 107 ± 9 |
S-10 | 0.31 ± 0.06 a,b | 0.32 ± 0.05 a,b | 2.70 ± 0.22 a | 0.23 ± 0.02 a,b | 0.24 ± 0.11 | 0.07 ± 0.03 | 0.015 | 117 ± 11 |
Total | 0.27 ± 0.08 | 0.28 ± 0.08 | 2.08 ± 0.58 | 0.17 ± 0.10 | 0.18 ± 0.11 | 0.06 ± 0.02 | 106 ± 16 | |
Range | 0.10, 0.44 | 0.10, 0.44 | 0.77, 3.20 | 0.04, 0.49 | 0.04, 0.47 | 0.01, 0.10 | 77, 134 | |
p value | 0.010 | 0.008 | 0.003 | 0.008 | 0.052 | 0.176 |
Site | M-O | M-A | M-B | M-C | M-D | M-E | p-Value |
---|---|---|---|---|---|---|---|
S-1 | 31.2 ± 2.3 b | 32.5 ± 4.7 b,c | 41.6 ± 8.7 b,c | 17.2 ± 7.5 b,c | 21.4 ± 5.2 b,c | 16.3 ± 3.5 | 0.015 |
S-2 | 50.5 ± 5.3 a | 49.4 ± 5.9 a | 82.0 ± 9.8 a,b | 39.7 ± 5.6 a | 39.8 ± 5.3 a | 19.2 ± 8.6 | 0.011 |
S-3 | 18.5 ± 5.8 b,c | 21.4 ± 4.7 c | 38.1 ± 3.7 b,c | 24.7 ± 8.6 a,b | 34.6 ± 5.1 a,b | 11.3 ± 2.5 | 0.013 |
S-4 | 16.9 ± 1.9 c | 20.6 ± 6.1 c | 18.3 ± 1.0 c | 16.7 ± 6.5 b,c | 17.9 ± 4.5 b,c | 10.6 ± 0.5 | 0.120 |
S-5 | 51.9 ± 6.3 a | 50.5 ± 3.9 a | 112.8 ± 10.9 a | 19.3 ± 5.6 b,c | 14.7 ± 4.1 c | 6.8 ± 3.7 | 0.007 |
S-6 | 19.6 ± 4.7 b,c | 21.7 ± 4.3 c | 31.1 ± 10.4 c | 13.6 ± 1.8 c | 21.0 ± 2.2 b,c | 12.8 ± 1.7 | 0.019 |
S-7 | 20.3 ± 0.2 b,c | 20.2 ± 1.8 c | 85.2 ± 8.9 a,b | 15.6 ± 2.2 b,c | 32.1 ± 0.6 a,b | 8.9 ± 4.3 | 0.006 |
S-8 | 34.8 ± 6.2 b | 36.6 ± 8.1 a,b | 67.5 ± 34.0 a,b | 38.3 ± 4.3 a | 23.3 ± 2.1 b,c | 10.5 ± 1.9 | 0.016 |
S-9 | 32.9 ± 8.1 b | 38.3 ± 10.5 a,b | 91.8 ± 31.0 a,b | 26.1 ± 11.2 a,b | 42.4 ± 12.8 a | 11.4 ± 3.5 | 0.020 |
S-10 | 34.2 ± 12.9 b | 37.3 ± 14.6 a,b | 66.5 ± 9.8 a,b | 30.4 ± 7.9 a,b | 33.1 ± 8.8 a,b | 16.8 ± 13.6 | 0.095 |
Total | 31.1 ± 13.3 | 32.8 ± 12.8 | 63.5 ± 32.3 | 24.2 ± 10.7 | 28.0 ± 10.5 | 12.5 ± 6.0 | |
Range | 13.2–56.2 | 16.7–54.9 | 17.5–127.6 | 11.1–44.0 | 12.2–50.9 | 3.1–31.9 | |
p value | 0.003 | 0.005 | 0.005 | 0.017 | 0.006 | 0.134 |
Site | SUVA254 | FI | BIX |
---|---|---|---|
S-1 | 0.57 * | −0.67 *** | −0.61 ** |
S-2 | 0.39 | −0.63 ** | −0.57 * |
S-3 | 0.37 | −0.65 ** | −0.46 |
S-4 | 0.83 *** | −0.48 * | −0.50 * |
S-5 | 0.28 | −0.64 ** | −0.77 *** |
S-6 | 0.87 *** | −0.65 ** | −0.34 |
S-7 | 0.77 *** | −0.59 * | −0.47 |
S-8 | 0.83 *** | −0.78 *** | −0.69 *** |
S-9 | 0.92 *** | -0.47 | −0.88 *** |
S-10 | 0.88 *** | −0.82 *** | −0.74 *** |
Total | 0.26 *** | −0.30 *** | −0.27 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.-H.; Lin, T.-C.; Huang, C.-M.; Chen, T.-C.; Yeh, Y.-L. Copper Distribution and Binding Affinity of Size-Fractioned Humic Substances Taken from Paddy Soil and Correlation with Optical Characteristics. Agronomy 2022, 12, 1689. https://doi.org/10.3390/agronomy12071689
Huang W-H, Lin T-C, Huang C-M, Chen T-C, Yeh Y-L. Copper Distribution and Binding Affinity of Size-Fractioned Humic Substances Taken from Paddy Soil and Correlation with Optical Characteristics. Agronomy. 2022; 12(7):1689. https://doi.org/10.3390/agronomy12071689
Chicago/Turabian StyleHuang, Wei-Hsiang, Tzu-Che Lin, Chao-Min Huang, Ting-Chien Chen, and Yi-Lung Yeh. 2022. "Copper Distribution and Binding Affinity of Size-Fractioned Humic Substances Taken from Paddy Soil and Correlation with Optical Characteristics" Agronomy 12, no. 7: 1689. https://doi.org/10.3390/agronomy12071689
APA StyleHuang, W. -H., Lin, T. -C., Huang, C. -M., Chen, T. -C., & Yeh, Y. -L. (2022). Copper Distribution and Binding Affinity of Size-Fractioned Humic Substances Taken from Paddy Soil and Correlation with Optical Characteristics. Agronomy, 12(7), 1689. https://doi.org/10.3390/agronomy12071689