Innovations in Disease Detection and Forecasting: A Digital Roadmap for Sustainable Management of Fruit and Foliar Disease
Abstract
:1. Introduction
2. Surveillance and Monitoring Tools
Traditional Approach | Advanced Approach | Improvements |
---|---|---|
Weather stations Soil sensors Soil and plant analysis | Wireless Sensor Network (WSN) Advanced sensors (IoTs) | Wider range of information with increased efficiency [35,36,44] |
Field monitoring | Proximal and remote sensing: Geolocalization (GPS, GIS) Drones, UAVs, Satellites Monitoring platform | Increased data precision, geo-positioning [6,7,29,30] Large-scale monitoring [41,42,43] Reduced time and cost of the monitoring process [46,47,48,49,50] |
Pheromones traps | Image-based traps | Real-time data availability [31,32,33,34,36] |
3. Diagnostic Tools
Traditional Approach | Advanced Approach | Improvements |
---|---|---|
Traditional diagnostic methods based on symptoms or functional changes or recovery factors | Image analysis software | More precise disease quantification [53] |
Artificial intelligence, machine learning | Shortened diagnostic time [48] | |
ELISA PCR, RT-PCR LAMP RT-RPA | More precise diagnosis [55,63,64] In-field analysis [82,83,84,85,86,87] Simple and short sample preparation methods [98,100,102] |
4. Decision Making
Traditional Approach | Advanced Approach | Improvements |
---|---|---|
Experience Consultants | Decision Support system (DSS) | Holistic approach [52] |
Thresholds Simple rules or empirical models | Mechanistic, integrated models | Expert knowledge, advanced models [16,104] |
Good practices, guidelines, protocols | Informed decisions | Sustainability plays a part in the decision-making process [108] |
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. FAO Glossary of Phytosanitary Terms. FAO Plant Prot. Bull. 1990, 38, 5–23. [Google Scholar]
- IPPC. International Plant Protection Convention (New Revised Text); International Plant Protection Convention: Rome, Italy, 1997. [Google Scholar]
- Gráda, Ó.; Gráda, C.Ó. Title Making Famine History Making Famine History. J. Econ. Lit. 2007, 45, 5–38. [Google Scholar] [CrossRef]
- Zhang, Q. Precision Agriculture Technology for Crop Farming, 1st ed.; CRC Press and Taylor & Francis Group: Boca Raton, FL, USA, 2015; ISBN 978-1-4822-5107-4. [Google Scholar] [CrossRef]
- Parr, J.F.; Papendick, R.I.; Youngberg, I.G.; Meyer, R.E. Sustainable Agriculture in the United States. In Sustainable agricultural systems; CRC Press: Boca Raton, FL, USA, 2020; pp. 50–67. [Google Scholar] [CrossRef]
- Rehman, A.; Jingdong, L.; Khatoon, R.; Hussain, I. Modern Agricultural Technology Adoption Its Importance, Role and Usage for the Improvement of Agriculture. Life Sci. J. 2017, 14, 70–74. [Google Scholar] [CrossRef]
- Fantin, E.; Raj, I.; Appadurai, M.; Athiappan, K.; Raj, E.F.I. Precision Farming in Modern Agriculture. In Smart Agriculture Automation Using Advanced Technologies; Springer: Singapore, 2021; pp. 61–87. [Google Scholar] [CrossRef]
- FAO. FAO and the 17 Sustainable Development Goals; FAO: Quebec City, QC, Canada, 2015. [Google Scholar]
- Araus, J.L.; Cairns, J.E. Field High-Throughput Phenotyping: The New Crop Breeding Frontier. Trends Plant Sci. 2014, 19, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Pierpaoli, E.; Carli, G.; Pignatti, E.; Canavari, M. Drivers of Precision Agriculture Technologies Adoption: A Literature Review. Procedia Technol. 2013, 8, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Mahlein, A.K. Plant Disease Detection by Imaging Sensors—Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping. Plant Dis. 2016, 100, 241–254. [Google Scholar] [CrossRef] [Green Version]
- Haverkort, A.J. Ancha Srinivasan (Ed): Handbook of Precision Agriculture. Principles and Applications. Euphytica 2007, 156, 269–270. [Google Scholar] [CrossRef] [Green Version]
- Griffin, T.W.; Lowenberg-DeBoer, J. Worldwide Adoption and Profitability of Precision Agriculture Implications for Brazil. Rev. Política Agrícola 2005, 14, 20–37. [Google Scholar]
- Meyer-Aurich, A.; Matthes, U.; Osinski, E. Integrating Sustainability in Agriculture—Trade-Offs and Economic Consequences Demonstrated with a Farm Model in Bavaria. In Proceedings of the American Agricultural Economists Association Annual Meeting, Chicago, IL, USA, 5–8 August 2001. [Google Scholar]
- Bongiovanni, R.; Lowenberg-DeBoer, J. Precision Agriculture: Economics of Nitrogen Management in Corn Using Site-Specific Crop Response Estimates from a Spatial Regression Model. In Proceedings of the 2001 Annual meeting, Chicago, IL, USA, 5–8 August 2001; American Agricultural Economics Association: Anaheim, CA, USA, 2001. [Google Scholar] [CrossRef]
- Rossi, V.; Sperandio, G.; Caffi, T.; Simonetto, A.; Giolioli, G. Critical Success Factors for the Adoption of Decision Tools in IPM. Agronomy 2019, 9, 710. [Google Scholar] [CrossRef] [Green Version]
- Schriber, S. Smart Agriculture Sensors. Mouser. Available online: https://cz.mouser.com/applications/smart-agriculture-sensors (accessed on 2 June 2022).
- Ellis, K.; Baugher, T.A.; Lewis, K. Results from Survey Instruments Used to Assess Technology Adoption for Tree Fruit Production. Horttechnology 2010, 20, 1043–1048. [Google Scholar] [CrossRef] [Green Version]
- Fountas, S.; Blackmore, S.; Ess, D.; Hawkins, S.; Blumhoff, G.; Lowenberg-Deboer, J.; Sorensen, C.G. Farmer Experience with Precision Agriculture in Denmark and the US Eastern Corn Belt. Precis. Agric. 2005, 6, 121–141. [Google Scholar] [CrossRef]
- Lamb, D.W.; Frazier, P.; Adams, P. Improving Pathways to Adoption: Putting the Right P’s in Precision Agriculture. Comput. Electron. Agric. 2008, 61, 4–9. [Google Scholar] [CrossRef]
- Swinton, S.M.; Lowenberg-DeBoer, J. Evaluating the Profitability of Site-Specific Farming. J. Prod. Agric. 1998, 11, 439–446. [Google Scholar] [CrossRef]
- Sassenrath, G.F.; Heilman, P.; Luschei, E.; Bennett, G.L.; Fitzgerald, G.; Klesius, P.; Tracy, W.; Williford, J.R.; Zimba, P.V. Technology, Complexity and Change in Agricultural Production Systems. Renew. Agric. Food Syst. 2008, 23, 285–295. [Google Scholar] [CrossRef]
- Gullino, M.L.; Bonants, P.J.M. (Eds.) Detection and Diagnostics of Plant Pathogens; Springer: Dordrecth, The Netherlands, 2014; pp. 1–200. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture: Climate Change, Agriculture and Food Security; FAO: Quebec City, QC, Canada, 2016. [Google Scholar]
- The European Parliament and The Council of the European Union. Eu Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009. Off. J. Eur. Union 2009.
- Koutsos, T.M.; Menexes, G.C.; Dordas, C.A. An Efficient Framework for Conducting Systematic Literature Reviews in Agricultural Sciences. Sci. Total Environ. 2019, 682, 106–117. [Google Scholar] [CrossRef]
- Cook, D.J.; Mulrow, C.D.; Haynes, R.B. Systematic Reviews: Synthesis of Best Evidence for Clinical Decisions. Ann. Intern. Med. 1997, 126, 376–380. [Google Scholar] [CrossRef]
- Rossi, V.; Giosuè, S.; Caffi, T. Modelling Plant Diseases for Decision Making in Crop Protection. In Precision Crop Protection—The Challenge and Use of Heterogeneity; Oerke, E.C., Gerhards, R., Menz, G., Sikora, R.A., Eds.; Springer: New York, NY, USA, 2010; pp. 241–258. ISBN 9048192765. [Google Scholar]
- Tayari, E.; Jamshid, A.R.; Goodarzi, H.R. Role of GPS and GIS in Precision Agriculture. J. Sci. Res. Dev. 2015, 2, 157–162. [Google Scholar]
- Mandal, D.; Ghosh, S.K. Precision Farming—The Emerging Concept of Agriculture for Today and Tomorrow. Curr. Sci. 2000, 79, 1644–1647. [Google Scholar]
- Boissard, P.; Martin, V.; Moisan, S. A Cognitive Vision Approach to Early Pest Detection in Greenhouse Crops. Comput. Electron. Agric. 2008, 62, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.; Taylor, G. Automatic Moth Detection from Trap Images for Pest Management. Comput. Electron. Agric. 2016, 123, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Maini, S.; Kat alin Josvai, J. Automatic Trap for Moth Detection in Integrated Pest Management. Bull. Insectology 2011, 64, 247–251. [Google Scholar]
- Potamitis, I.; Rigakis, I.; Vidakis, N.; Petousis, M.; Weber, M. Affordable Bimodal Optical Sensors to Spread the Use of Automated Insect Monitoring. J. Sens. 2018, 2018, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Srbinovska, M.; Gavrovski, C.; Dimcev, V.; Krkoleva, A.; Borozan, V. Environmental Parameters Monitoring in Precision Agriculture Using Wireless Sensor Networks. J. Clean. Prod. 2015, 88, 297–307. [Google Scholar] [CrossRef]
- Wu, D.D.; Olson, D.L.; Birge, J.R. Risk Management in Cleaner Production. J. Clean. Prod. 2013, 53, 1–6. [Google Scholar] [CrossRef]
- Langendoen, K.; Baggio, A.; Visser, O. Murphy Loves Potatoes Experiences from a Pilot Sensor Network Deployment in Precision Agriculture. In Proceedings of the 20th International Parallel and Distributed Processing Symposium, Rhodes Island, Greece, 25–29 April 2006; IEEE Computer Society: Washington, DC, USA, 2006; Volume 2006. [Google Scholar]
- Velusamy, P.; Rajendran, S.; Mahendran, R.K.; Naseer, S.; Shafiq, M.; Choi, J.-G. Unmanned Aerial Vehicles (UAV) in Precision Agriculture: Applications and Challenges. Energies 2022, 15, 217. [Google Scholar] [CrossRef]
- Hunt, E.R.J.; Hively, W.D.; Daughtry, C.S.T.; McCarty, G.W.; Fujikawa, S.J.; Ng, L.T.; Tranchitella, M.; Linden, D.S.; Yoel, D.W. Remote Sensing of Crop Leaf Area Index Using Unmanned Airborne Vehicles. In Proceedings of the Pecora 17 Symposium, Denver, CO, USA, 16–20 November 2008. [Google Scholar]
- Nebiker, S.; Annen, A.; Scherrer, M.; Oesch, D. A Light-Weight Multispectral Sensor for Micro UAV—Opportunities for Very High Resolution Airborne Remote Sensing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 61, 1193–1200. [Google Scholar]
- Sankaran, S.; Khot, L.R.; Espinoza, C.Z.; Jarolmasjed, S.; Sathuvalli, V.R.; Vandemark, G.J.; Miklas, P.N.; Carter, A.H.; Pumphrey, M.O.; Knowles, R.R.N.; et al. Low-Altitude, High-Resolution Aerial Imaging Systems for Row and Field Crop Phenotyping: A Review. Eur. J. Agron. 2015, 70, 112–123. [Google Scholar] [CrossRef]
- Hunt, E.R.; Dean Hively, W.; Fujikawa, S.J.; Linden, D.S.; Daughtry, C.S.T.; McCarty, G.W. Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring. Remote Sens. 2010, 2, 290–305. [Google Scholar] [CrossRef] [Green Version]
- Puri, V.; Nayyar, A.; Raja, L. Agriculture Drones: A Modern Breakthrough in Precision Agriculture. J. Stat. Manag. Syst. 2017, 20, 507–518. [Google Scholar] [CrossRef]
- Khanna, M. Sequential Adoption of Site-Specific Technologies and Its Implications for Nitrogen Productivity: A Double Selectivity Model. Am. J. Agric. Econ. 2001, 83, 35–51. [Google Scholar] [CrossRef]
- Sundmaeker, H.; Verdouw, C.; Wolfert, S.; Freire, L.P. Internet of Food and Farm 2020. Digit. Ind. Internet Things Connect. Phys. Digit. Virtual Worlds 2016, 49, 129–151. [Google Scholar]
- FAO. A Service Provided by the Locust and Other Migratory Pests Group to Monitor the World-Wide Locust Situation and Keep Affected Countries and Donors Informed of Expected Developments; FAO: Quebec City, QC, Canada, 2020. [Google Scholar]
- FAO. Fall Armyworm Monitoring and Early Warning System (FAMEWS); FAO: Quebec City, QC, Canada, 2018. [Google Scholar]
- Tepa-Yotto, G.T.; Chinwada, P.; Rwomushana, I.; Goergen, G.; Subramanian, S. Integrated Management of Spodoptera Frugiperda 6 Years Post Detection in Africa: A Review. Curr. Opin. Insect Sci. 2022, 52, 100928. [Google Scholar] [CrossRef] [PubMed]
- Park, R.; Fetch, T.; Hodson, D.; Jin, Y.; Nazari, K.; Prashar, M.; Pretorius, Z. International Surveillance of Wheat Rust Pathogens: Progress and Challenges. Euphytica 2011, 179, 109–117. [Google Scholar] [CrossRef]
- Hansen, J.G.; Lassen, P.; Lassen, P. Managing Global Crop Disease Data. In Proceedings of the EFITA Conference, Torino, Italy, 24–27 June 2013. [Google Scholar]
- Maloy, O.C. Plant Disease Management. Plant Health Instr. 2005, 10. [Google Scholar] [CrossRef]
- Agrios, G. Plant Pathology: Fifth Edition. In Plant pathology; Academic Press: Cambridge, MA, USA, 2005; p. 922. ISBN 9780120445653. [Google Scholar] [CrossRef]
- Caffi, T.; Gilardi, G.; Monchiero, M.; Rossi, V. Production and Release of Asexual Sporangia in Plasmopara Viticola. Phytopathology 2013, 103, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Narayanasamy, P. Detection of Fungal Pathogens in Plants. In Microbial Plant Pathogens-Detection and Disease Diagnosis; Springer: Dordrecht, The Netherlands, 2011; p. 199. [Google Scholar] [CrossRef]
- Capote, N.; Pastrana, A.M.; Torres-tomejil, L.; Andalucía, J.D.; Río, A. Molecular Tools for Detection of Plant Pathogenic Fungi and Fungicide Resistance. Plant Pathol. 2003, 374, 151–202. [Google Scholar]
- Böhm, J.; Hahn, A.; Schubert, R.; Bahnweg, G.; Adler, N.; Nechwatal, J.; Oehlmann, R.; Obszwald, W. Real-Time Quantitative PCR: DNA Determination in Isolated Spores of the Mycorrhizal Fungus Glomus Mosseae and Monitoring of Phytophthora Infestans and Phytophthora Citricola in Their Respective Host Plants. J. Phytopathol. 1999, 147, 409–416. [Google Scholar] [CrossRef]
- Carisse, O.; Tremblay, D.M.; Lévesque, C.A.; Gindro, K.; Ward, P.; Houde, A. Development of a TaqMan Real-Time PCR Assay for Quantification of Airborne Conidia of Botrytis Squamosa and Management of Botrytis Leaf Blight of Onion. Phytopathology 2009, 99, 1273–1280. [Google Scholar] [CrossRef] [Green Version]
- Lievens, B.; Brouwer, M.; Vanachter, A.C.R.C.; Cammue, B.P.A.; Thomma, B.P.H.J. Real-Time PCR for Detection and Quantification of Fungal and Oomycete Tomato Pathogens in Plant and Soil Samples. Plant Sci. 2006, 171, 155–165. [Google Scholar] [CrossRef]
- Schaad, N.W.; Frederick, R.D. Real-Time PCR and Its Application for Rapid Plant Disease Diagnostics. Can. J. Plant Pathol. 2010, 24, 250–258. [Google Scholar] [CrossRef]
- West, J.S.; Atkins, S.D.; Emberlin, J.; Fitt, B.D.L. PCR to Predict Risk of Airborne Disease. Trends Microbiol. 2008, 16, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Ammour, M.S.; Fedele, G.; Morcia, C.; Terzi, V.; Rossi, V. Quantification of Botrytis Cinerea in Grapevine Bunch Trash by Real-Time PCR. Phytopathology 2019, 109, 1312–1319. [Google Scholar] [CrossRef]
- Van De Graaf, P.; Lees, A.K.; Cullen, D.W.; Duncan, J.M. Detection and Quantification of Spongospora Subterranea in Soil, Water and Plant Tissue Samples Using Real-Time PCR. Eur. J. Plant Pathol. 2003, 109, 589–597. [Google Scholar] [CrossRef]
- Abbott, C.L.; Gilmore, S.R.; Lewis, C.T.; Chapados, J.T.; Peters, R.D.; Platt, H.W.; Coffey, M.D.; Lévesque, C.A. Development of a SNP Genetic Marker System Based on Variation in Microsatellite Flanking Regions of Phytophthora Infestans. Can. J. Plant Pathol. 2010, 32, 440–457. [Google Scholar] [CrossRef]
- Kroon, L.P.N.M.; Verstappen, E.C.P.; Kox, L.F.F.; Flier, W.G.; Bonants, P.J.M. A Rapid Diagnostic Test to Distinguish Between American and European Populations of Phytophthora Ramorum. Phytopathology 2007, 94, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Almassian, D.R.; Cockrell, L.M.; Nelson, W.M. Portable Nucleic Acid Thermocyclers. Chem. Soc. Rev. 2013, 42, 8769–8798. [Google Scholar] [CrossRef]
- Mavrodieva, V.; Levy, L.; Gabriel, D.W. Improved Sampling Methods for Real-Time Polymerase Chain Reaction Diagnosis of Citrus Canker from Field Samples. Phytopathology 2007, 94, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Hughes, K.J.D.; Giltrap, P.M.; Barton, V.C.; Hobden, E.; Tomlinson, J.A.; Barber, P. On-Site Real-Time PCR Detection of Phytophthora Ramorum Causing Dieback of Parrotia Persica in the UK. Plant Pathol. 2006, 55, 813. [Google Scholar] [CrossRef]
- Tomlinson, J.A.; Boonham, N.; Hughes, K.J.D.; Griffin, R.L.; Barker, I. On-Site DNA Extraction and Real-Time PCR for Detection of Phytophthora Ramorum in the Field. Appl. Environ. Microbiol. 2005, 71, 6702–6710. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.L.; Wang, H.T.T.; Chang, H.F.G.; Tsai, C.F.; Lin, C.K.; Teng, P.H.; Su, C.; Jeng, C.C.; Lee, P.Y. Development of TaqMan Probe-Based Insulated Isothermal PCR (IiPCR) for Sensitive and Specific On-Site Pathogen Detection. PLoS ONE 2012, 7, e45278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.H.; Lin, Y.J.; Chang, T.D.; Hong, L.L.; Chen, T.Y.; Chang, P.F.L. Development of a TaqMan Probe-Based Insulated Isothermal Polymerase Chain Reaction (IiPCR) Assay for Detection of Fusarium Oxysporum f. Sp. Cubense Race 4. PLoS ONE 2016, 11, e0159681. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.; Ghaemi, A. Nucleic Acid Isothermal Amplification Technologies—A Review. Nucleosides Nucleotides Nucleic Acids 2008, 27, 224–243. [Google Scholar] [CrossRef]
- Li, J.; Macdonald, J. Advances in Isothermal Amplification: Novel Strategies Inspired by Biological Processes. Biosens. Bioelectron. 2015, 64, 196–211. [Google Scholar] [CrossRef] [PubMed]
- Niessen, L. Current State and Future Perspectives of Loop-Mediated Isothermal Amplification (LAMP)-Based Diagnosis of Filamentous Fungi and Yeasts. Appl. Microbiol. Biotechnol. 2014, 99, 553–574. [Google Scholar] [CrossRef]
- Yan, L.; Zhou, J.; Zheng, Y.; Gamson, A.S.; Roembke, B.T.; Nakayama, S.; Sintim, H.O. Isothermal Amplified Detection of DNA and RNA. Mol. Biosyst. 2014, 10, 970–1003. [Google Scholar] [CrossRef] [Green Version]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-Mediated Isothermal Amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef] [Green Version]
- Damhorst, G.L.; Duarte-Guevara, C.; Chen, W.; Ghonge, T.; Cunningham, B.T.; Bashir, R. Smartphone-Imaged HIV-1 Reverse-Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) on a Chip from Whole Blood. Engineering 2015, 1, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.; Qu, G.; Guo, S.; Ma, L.; Zhang, N.; Zhang, S.; Gao, S.; Shen, Z. Applications of Loop-Mediated Isothermal DNA Amplification. Appl. Biochem. Biotechnol. 2011, 163, 845–850. [Google Scholar] [CrossRef]
- Kurosaki, Y.; Magassouba, N.; Oloniniyi, O.K.; Cherif, M.S.; Sakabe, S.; Takada, A.; Hirayama, K.; Yasuda, J. Development and Evaluation of Reverse Transcription-Loop-Mediated Isothermal Amplification (RT-LAMP) Assay Coupled with a Portable Device for Rapid Diagnosis of Ebola Virus Disease in Guinea. PLoS Negl. Trop. Dis. 2016, 10, e0004472. [Google Scholar] [CrossRef]
- Parida, M.M.; Sannarangaiah, S.; Dash, P.K.; Rao, P.V.L.; Morita, K. Loop Mediated Isothermal Amplification (LAMP): A New Generation of Innovative Gene Amplification Technique; Perspectives in Clinical Diagnosis of Infectious Diseases. Rev. Med. Virol. 2008, 18, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Temple, T.N.; Johnson, K.B. Evaluation of Loop-Mediated Isothermal Amplification for Rapid Detection of Erwinia Amylovora on Pear and Apple Fruit Flowers. Plant Dis. 2011, 95, 423–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, Y.; Notomi, T. Loop-Mediated Isothermal Amplification (LAMP): A Rapid, Accurate, and Cost-Effective Diagnostic Method for Infectious Diseases. J. Infect. Chemother. 2009, 15, 62–69. [Google Scholar] [CrossRef]
- Harper, S.J.; Ward, L.I.; Clover, G.R.G. Development of LAMP and Real-Time PCR Methods for the Rapid Detection of Xylella Fastidiosa for Quarantine and Field Applications. Phytopathology 2010, 100, 1282–1288. [Google Scholar] [CrossRef]
- Keremane, M.L.; Ramadugu, C.; Rodriguez, E.; Kubota, R.; Shibata, S.; Hall, D.G.; Roose, M.L.; Jenkins, D.; Lee, R.F. A Rapid Field Detection System for Citrus Huanglongbing Associated ‘Candidatus Liberibacter Asiaticus’ from the Psyllid Vector, Diaphorina Citri Kuwayama and Its Implications in Disease Management. Crop Prot. 2015, 68, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Moradi, A.; Nasiri, J.; Abdollahi, H.; Almasi, M. Development and Evaluation of a Loop-Mediated Isothermal Amplification Assay for Detection of Erwinia Amylovora Based on Chromosomal DNA. Eur. J. Plant Pathol. 2012, 133, 609–620. [Google Scholar] [CrossRef]
- Thiessen, L.D.; Keune, J.A.; Neill, T.M.; Turechek, W.W.; Grove, G.G.; Mahaffee, W.F. Development of a Grower-Conducted Inoculum Detection Assay for Management of Grape Powdery Mildew. Plant Pathol. 2016, 65, 238–249. [Google Scholar] [CrossRef]
- Tomlinson, J.A.; Dickinson, M.J.; Boonham, N. Rapid Detection of Phytophthora Ramorum and P. Kernoviae by Two-Minute DNA Extraction Followed by Isothermal Amplification and Amplicon Detection by Generic Lateral Flow Device. Phytopathology 2010, 100, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Villari, C.; Mahaffee, W.F.; Mitchell, T.K.; Pedley, K.F.; Pieck, M.L.; Peduto Hand, F. Early Detection of Airborne Inoculum of Magnaporthe Oryzae in Turfgrass Fields Using a Quantitative LAMP Assay. Plant Dis. 2017, 101, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Bühlmann, A.; Pothier, J.F.; Rezzonico, F.; Smits, T.H.M.; Andreou, M.; Boonham, N.; Duffy, B.; Frey, J.E. Erwinia Amylovora Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Pathogen Detection and on-Site Diagnosis of Fire Blight. J. Microbiol. Methods 2013, 92, 332–339. [Google Scholar] [CrossRef]
- Mekuria, T.A.; Zhang, S.; Eastwell, K.C. Rapid and Sensitive Detection of Little Cherry Virus 2 Using Isothermal Reverse Transcription-Recombinase Polymerase Amplification. J. Virol. Methods 2014, 205, 24–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigano, L.A.; Malamud, F.; Orce, I.G.; Filippone, M.P.; Marano, M.R.; Do Amaral, A.M.; Castagnaro, A.P.; Vojnov, A.A. Rapid and Sensitive Detection of Candidatus Liberibacter Asiaticus by Loop Mediated Isothermal Amplification Combined with a Lateral Flow Dipstick. BMC Microbiol. 2014, 14, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA Detection Using Recombination Proteins. PLoS Biol. 2006, 4, e204. [Google Scholar] [CrossRef] [PubMed]
- Abd El Wahed, A.; Patel, P.; Faye, O.; Thaloengsok, S.; Heidenreich, D.; Matangkasombut, P.; Manopwisedjaroen, K.; Sakuntabhai, A.; Sall, A.A.; Hufert, F.T.; et al. Recombinase Polymerase Amplification Assay for Rapid Diagnostics of Dengue Infection. PLoS ONE 2015, 10, e0129682. [Google Scholar] [CrossRef] [PubMed]
- Wahed, A.A.E.; Sanabani, S.S.; Faye, O.; Pessôa, R.; Patriota, V.; Rodrigues Giorgi, R.; Patel, P.; Böhlken, S.; Landt, O.; Niedrig, M.; et al. Rapid Molecular Detection of Zika Virus in Urine Using the Recombinase Polymerase Amplification Assay. PLoS Curr. 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Boyle, D.S.; McNerney, R.; Teng Low, H.; Leader, B.T.; Pérez-Osorio, A.C.; Meyer, J.C.; O’Sullivan, D.M.; Brooks, D.G.; Piepenburg, O.; Forrest, M.S. Rapid Detection of Mycobacterium Tuberculosis by Recombinase Polymerase Amplification. PLoS ONE 2014, 9, e103091. [Google Scholar] [CrossRef] [PubMed]
- Daher, R.K.; Stewart, G.; Boissinot, M.; Bergeron, M.G. Recombinase Polymerase Amplification for Diagnostic Applications. Clin. Chem. 2016, 62, 947–958. [Google Scholar] [CrossRef]
- Euler, M.; Wang, Y.; Heidenreich, D.; Patel, P.; Strohmeier, O.; Hakenberg, S.; Niedrig, M.; Hufert, F.T.; Weidmann, M. Development of a Panel of Recombinase Polymerase Amplification Assays for Detection of Biothreat Agents. J. Clin. Microbiol. 2013, 51, 1110–1117. [Google Scholar] [CrossRef] [Green Version]
- Hill-Cawthorne, G.A.; Hudson, L.O.; El Ghany, F.M.A.; Piepenburg, O.; Nair, M.; Dodgson, A.; Forrest, M.S.; Clark, T.G.; Arnab, P. Recombinations in Staphylococcal Cassette ChromosomeElements Compromise the Molecular Detection of Methicillin Resistance InStaphylococcus Aureus. PLoS ONE 2014, 9, e101419. [Google Scholar]
- Londoño, M.A.; Harmon, C.L.; Polston, J.E. Evaluation of Recombinase Polymerase Amplification for Detection of Begomoviruses by Plant Diagnostic Clinics. Virol. J. 2016, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Silva, G.; Bömer, M.; Nkere, C.; Lava Kumar, P.; Seal, S.E. Rapid and Specific Detection of Yam Mosaic Virus by Reverse-Transcription Recombinase Polymerase Amplification. J. Virol. Methods 2015, 222, 138–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miles, T.D.; Martin, F.N.; Coffey, M.D. Development of Rapid Isothermal Amplification Assays for Detection of Phytophthora Spp. in Plant Tissue. Phytopathology 2015, 105, 265–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porebski, S.; Bailey, L.G.; Baum, B.R. Modification of a CTAB DNA Extraction Protocol for Plants Containing High Polysaccharide and Polyphenol Components. Plant Mol. Biol. Report. 1997, 15, 8–15. [Google Scholar] [CrossRef]
- Fukuta, S.; Ohishi, K.; Yoshida, K.; Mizukami, Y.; Ishida, A.; Kanbe, M. Development of Immunocapture Reverse Transcription Loop-Mediated Isothermal Amplification for the Detection of Tomato Spotted Wilt Virus from Chrysanthemum. J. Virol. Methods 2004, 121, 49–55. [Google Scholar] [CrossRef]
- Trematerra, P. Aspects Related to Decision Support Tools and Integrated Pest Management in Food Chains. Food Control 2013, 34, 733–742. [Google Scholar] [CrossRef]
- Rossi, V.; Caffi, T.; Salinari, F. Helping Farmers Face the Increasing Complexity of Decision-Making for Crop Protection. Phytopathol. Mediterr. 2012, 51, 457–479. [Google Scholar] [CrossRef]
- Ritchie, J.T. International Consortium for Agricultural Systems Applications (ICASA): Establishment and Purpose. Agric. Syst. 1995, 49, 329–335. [Google Scholar] [CrossRef]
- Magarey, R.; Travis, J. Decision Support Systems: Quenching the Thirst. Plant Dis. 2002, 86, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Rossi, V.; Caffi, T.; Legler, S.E.; Carotenuto, E.; Bigot, G.; Brunelli, A.; Collina, M. Large-Scale Application of a Web-Based Decision Support System for Sustainable Viticulture. IOBC/WPRS Bull. 2014, 105, 129–136. [Google Scholar]
- Rossi, V.; Meriggi, P.; Caffi, T.; Giosuè, S.; Bettati, T. A Web-Based Decision Support System for Managing Durum Wheat Crops Tito Caffi—Academia.Edu. In Proceedings of the Congress “Grains for Feeding the World”, Milano, Italy, 1–3 July 2015. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasanaliyeva, G.; Si Ammour, M.; Yaseen, T.; Rossi, V.; Caffi, T. Innovations in Disease Detection and Forecasting: A Digital Roadmap for Sustainable Management of Fruit and Foliar Disease. Agronomy 2022, 12, 1707. https://doi.org/10.3390/agronomy12071707
Hasanaliyeva G, Si Ammour M, Yaseen T, Rossi V, Caffi T. Innovations in Disease Detection and Forecasting: A Digital Roadmap for Sustainable Management of Fruit and Foliar Disease. Agronomy. 2022; 12(7):1707. https://doi.org/10.3390/agronomy12071707
Chicago/Turabian StyleHasanaliyeva, Gultakin, Melissa Si Ammour, Thaer Yaseen, Vittorio Rossi, and Tito Caffi. 2022. "Innovations in Disease Detection and Forecasting: A Digital Roadmap for Sustainable Management of Fruit and Foliar Disease" Agronomy 12, no. 7: 1707. https://doi.org/10.3390/agronomy12071707
APA StyleHasanaliyeva, G., Si Ammour, M., Yaseen, T., Rossi, V., & Caffi, T. (2022). Innovations in Disease Detection and Forecasting: A Digital Roadmap for Sustainable Management of Fruit and Foliar Disease. Agronomy, 12(7), 1707. https://doi.org/10.3390/agronomy12071707