Stoichiometry of Soil, Microorganisms, and Extracellular Enzymes of Zanthoxylum planispinum var. dintanensis Plantations for Different Allocations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Research Site
2.2. Sample Plot Setting and Sample Collection
2.3. Index Analysis Methods
2.3.1. Soil Chemical Properties Analysis
2.3.2. Soil Biological Properties Analysis
2.4. Data Processing and Analysis
3. Results
3.1. Soil Elements and Stoichiometry of Z. planispinum Plantations
3.2. Soil Biological Properties and Stoichiometry of Z. planispinum Plantations
3.3. Effects of Plantation Types and Soil Depth on Soil Properties
3.4. Correlation of Soil Element, Microorganism, and Extracellular Enzyme C:N:P of Z. planispinum Plantations
3.5. Internal Stability Analysis of Soil Elements and Microbial Biomass of Z. planispinum Plantations
4. Discussion
4.1. Soil Element Contents and Stoichiometry of Z. planispinum Plantations
4.2. Soil Microbial Properties and Stoichiometry of Z. planispinum Plantations
4.3. Correlation and Internal Stability Analysis of Soil Stoichiometry of Z. planispinum Plantations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.J.; Wang, P.; Sheng, M.Y.; Tian, J. Ecological stoichiometry and environmental influencing factors of soil nutrients in the karst rocky desertification ecosystem, southwest China. Glob. Ecol. Conserv. 2018, 16, e00449. [Google Scholar] [CrossRef]
- Wang, M.M.; Chen, H.S.; Zhang, W.; Wang, K.L. Soil nutrients and stoichiometric ratios as affected by land use and lithology at county scale in a karst area, southwest China. Sci. Total Environ. 2018, 619, 1299–1307. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.H.; Wang, L.; Chen, H.; Chen, G.L.; Wang, S.Q.; Zhao, X.; Wang, Y. Responses of soil phosphorus pools accompanied with carbon composition and microorganism changes to phosphorus-input reduction in paddy soils. Pedosphere 2021, 31, 83–93. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Shi, L.L.; Wen, D.Z.; Yu, K.L. Soil potential labile but not occluded phosphorus forms increase with forest succession. Biol. Fertil. Soils 2016, 52, 41–51. [Google Scholar] [CrossRef]
- Anderson, T.R.; Boersma, M.; Raubenheimer, D. Stoichiometry: Linking elements to biochemical. Ecology 2004, 85, 1193–1202. [Google Scholar] [CrossRef] [Green Version]
- Elser, J.J.; Fagan, W.F.; Denno, R.F.; Dobberfuhl, D.R.; Folarin, A.; Huberty, A.; Interlandi, S.; Kilham, S.S.; McCauley, E.; Schulz, K.L.; et al. Nutritional constraints in terrestrial and freshwater food webs. Nature 2000, 408, 578–580. [Google Scholar] [CrossRef]
- Ren, C.J.; Zhao, F.Z.; Kang, D.; Yang, G.H.; Han, X.H.; Tong, X.G.; Feng, Y.Z.; Ren, G.X. Linkages of C:N:P stoichiometry and bacterial community in soil following afforestation of former farmland. For. Ecol. Manag. 2016, 376, 59–66. [Google Scholar] [CrossRef]
- Wang, J.P.; Wu, Y.H.; Li, J.J.; He, Q.Q.; Bing, H.J. Soil enzyme stoichiometry is tightly linked to microbial community composition in successional ecosystems after glacier retreat. Soil Biol. Biochem. 2021, 162, 108429. [Google Scholar] [CrossRef]
- Gai, X.; Zhong, Z.K.; Zhang, X.P.; Bian, F.Y.; Yang, C.B. Effects of chicken farming on soil organic carbon fractions and fungal communities in a Lei bamboo (Phyllostachys praecox) forest in subtropical China. For. Ecol. Manag. 2021, 479, 118603. [Google Scholar] [CrossRef]
- Zhong, Z.K.; Li, W.J.; Lu, X.Q.; Gu, Y.Q.; Wu, S.J.; Shen, Z.Y.; Han, X.H.; Yang, G.H.; Ren, C.J. Adaptive pathways of soil microorganisms to stoichiometric imbalances regulate microbial respiration following afforestation in the Loess Plateau, China. Soil Biol. Biochem. 2020, 151, 108048. [Google Scholar] [CrossRef]
- Huang, R.; Lan, T.; Song, X.; Li, J.; Ling, J.; Deng, O.P.; Wang, C.Q.; Gao, X.S.; Li, Q.Q.; Tang, X.Y.; et al. Soil labile organic carbon impacts C:N:P stoichiometry in urban park green spaces depending on vegetation types and time after planting. Appl. Soil Ecol. 2021, 163, 103926. [Google Scholar] [CrossRef]
- Fang, Z.; Li, D.D.; Jiao, F.; Yao, J.; Du, H.T. The Latitudinal Patterns of Leaf and Soil C:N:P Stoichiometry in the Loess Plateau of China. Front. Plant Sci. 2019, 10, 85. [Google Scholar] [CrossRef] [Green Version]
- Hu, N.; Li, H.; Tang, Z.; Li, Z.F.; Li, G.C.; Jiang, Y.; Hu, X.M.; Lou, Y.L. Community size, activity and C:N stoichiometry of soil microorganisms following reforestation in a karst region. Eur. J. Soil Biol. 2016, 73, 77–83. [Google Scholar] [CrossRef]
- Ravindran, A.; Yang, S.S. Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils. J. Microbiol. Immunol. Infect. 2015, 48, 362–369. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, Z.; Ma, P.P.; Wang, Z.M.; Niu, D.C.; Fu, H.; Elser, J.J. Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau. Sci. Total Environ. 2020, 722, 137910. [Google Scholar] [CrossRef]
- Dai, X.L.; Zhou, W.; Liu, G.R.; Liang, G.Q.; He, P.; Liu, Z.B. Soil C/N and pH together as a comprehensive indicator for evaluating the effects of organic substitution management in subtropical paddy fields after application of high-quality amendments. Geoderma 2019, 337, 1116–1125. [Google Scholar] [CrossRef]
- Zechmeister-Boltenstern, S.; Keiblinger, K.M.; Mooshammer, M.; Penuelas, J.; Richter, A.; Sardans, J.; Wanek, W. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecol. Monogr. 2015, 85, 133–155. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.Z.; Yan, X.; Wang, B.; Liu, R.T.; An, H. Effects of desertification on the C:N:P stoichiometry of soil, microbes, and extracellular enzymes in a desert grassland. Chin. J. Plant Ecol. 2018, 42, 1022–1032. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Wang, C.K.; Jin, Y.; Zhou, Z.H. Changes in soil-microbe-exoenzyme C:N:P stoichiometry along an altitudinal gradient in Mt. Datudingzi, Northeast China. Chin. J. Plant Ecol. 2019, 43, 999–1009. (In Chinese) [Google Scholar] [CrossRef]
- Chen, H.; Chen, M.L.; Li, D.J.; Mao, Q.G.; Zhang, W.; Mo, J.M. Responses of soil phosphorus availability to nitrogen addition in a legume and a non-legume plantation. Geoderma 2018, 322, 12–18. [Google Scholar] [CrossRef]
- Hernández, J.; del Pino, A.; Vance, E.D.; Califra, Á.; Del Giorgio, F.; Martínez, L.; González-Barrios, P. Eucalyptus and Pinus stand density effects on soil carbon sequestration. For. Ecol. Manag. 2016, 368, 28–38. [Google Scholar] [CrossRef]
- Yu, Y.H.; Wang, Z.Y.; Ying, B.; Yang, D.L. Management Principle and Technology of Ecological Industry in Karst Plateau Canyon, 1st ed.; China Environmental Science Press: Beijing, China, 2021; pp. 28–30. (In Chinese) [Google Scholar]
- Yu, Y.; Song, Y.P.; Zhong, X.P.; Li, Y.T.; Ying, B. Growth decline mechanism of Zanthoxylum planispinum var. dintanensis in the canyon area of Guizhou karst plateau. Agron. J. 2021, 113, 852–862. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000; pp. 22–173. (In Chinese) [Google Scholar]
- Shen, P.; Fan, X.R.; Li, G.H. Microbiology Experiment, 3rd ed.; Higher Education Press: Beijing, China, 1999; pp. 92–95. (In Chinese) [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Bell, C.W.; Fricks, B.E.; Rocca, J.D.; Steinweg, J.M.; McMahon, S.K.; Wallenstein, M.D. High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities. J. Vis. Exp. 2013, 81, e50961. Available online: https://www.jove.com/video/50961 (accessed on 26 October 2021). [CrossRef]
- Hu, Z.Y.; Li, J.T.; Shi, K.W.; Ren, G.Q.; Dai, Z.C.; Sun, J.F.; Zheng, X.J.; Zhou, Y.W.; Zhang, J.Q.; Li, G.L.; et al. Effects of Canada Goldenrod Invasion on Soil Extracellular Enzyme Activities and Ecoenzymatic Stoichiometry. Sustainability 2021, 13, 3768. [Google Scholar] [CrossRef]
- Wang, L.D.; Yao, T.; Wang, F.L.; Wei, L.Y.; Guo, C.X. Soil microbial and soil enzyme activity in a discontinued farmland by the Lower Shiyang River. Acta Ecol. Sin. 2016, 36, 4769–4779. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Hill, B.H.; Shah, J.J.F. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 2009, 462, 795–798. [Google Scholar] [CrossRef]
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere, 1st ed.; Princeton University Press: Princeton, NJ, USA, 2002; pp. 117–795. [Google Scholar]
- Persson, J.; Fink, P.; Goto, A.; Hood, J.M.; Jonas, J.; Kato, S. To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 2010, 119, 741–751. [Google Scholar] [CrossRef]
- Ding, Y.; Huang, X.; Li, Y.; Liu, H.Y.; Zhang, Q.C.; Liu, X.M.; Xu, J.M.; Di, H.J. Nitrate leaching losses mitigated with intercropping of deep-rooted and shallow-rooted plants. J. Soils Sediments 2021, 21, 364–375. [Google Scholar] [CrossRef]
- Stinca, A.; Chirico, G.B.; Incerti, G.; Bonanomi, G. Regime Shift by an Exotic Nitrogen-Fixing Shrub Mediates Plant Facilitation in Primary Succession. PLoS ONE 2015, 10, e0123128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Png, G.K.; Turner, B.L.; Albornoz, F.E.; Hayes, P.E.; Lambers, H.; Laliberte, E. Greater root phosphatase activity in nitrogen-fixing rhizobial but not actinorhizal plants with declining phosphorus availability. J. Ecol. 2017, 105, 1246–1255. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.J.; Dai, Q.H.; Jin, L.; Wang, X.D. Geometric morphology and soil properties of shallow Karst fissures in an area of karst rocky desertification in SW China. Catena 2019, 174, 48–58. [Google Scholar] [CrossRef]
- Cen, L.P.; Yan, Y.J.; Dai, Q.H.; Jiao, Q.; Hu, G.; Gao, R.X.; Fu, W.B. Occurrence characteristics of organic carbon and phosphorus in fissured soil under different land use types in Karst area. Acta Ecol. Sin. 2020, 40, 7567–7575. (In Chinese) [Google Scholar] [CrossRef]
- Li, Y.Q.; Zhao, X.Y.; Zhang, F.X.; Awada, T.; Wang, S.K.; Zhao, H.L.; Zhang, T.H.; Li, Y.L. Accumulation of soil organic carbon during natural restoration of desertified grassland in China’s Horqin Sandy Land. J. Arid Land 2015, 7, 328–340. [Google Scholar] [CrossRef]
- Chen, H.; Li, D.J.; Mao, Q.G.; Xiao, K.C.; Wang, K.L. Resource limitation of soil microbes in karst ecosystems. Sci. Total Environ. 2019, 650, 241–248. [Google Scholar] [CrossRef]
- Wolfe, B.E.; Klironomos, J.N. Breaking new ground: Soil communities and exotic plant invasion. Bioscience 2005, 55, 477–487. [Google Scholar] [CrossRef]
- Rousk, J.; Brookes, P.C.; Baath, E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl. Environ. Microbiol. 2009, 75, 1589–1596. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Lang, J.X.; Kong, D.J.; Guo, X.N.; Wei, Y.D.; Zhou, T. Effects of biochar and straw on the C:N:P stoichiometry of soil, microbes, and extracellular enzymes in an aeolian sandy soil. Acta Pratacult. Sin. 2021, 30, 29–39. (In Chinese) [Google Scholar] [CrossRef]
- Xu, X.F.; Thornton, P.E.; Post, W.M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob. Ecol. Biogeogr. 2013, 22, 737–749. [Google Scholar] [CrossRef]
- Zuo, Y.P.; Zhang, X.Y.; Zeng, H.; Wang, W. Spatiotemporal Dynamics of Soil Extracellular Enzyme Activity and Its Influence on Potential Mineralization Rate of Soil Organic Carbon in Forests of Daxing’an Mountain Range. Acta Sci. Nat. Univ. Pekin. 2018, 54, 1311–1324. (In Chinese) [Google Scholar] [CrossRef]
- Xu, Z.W.; Yu, G.R.; Zhang, X.Y.; He, N.P.; Wang, Q.F.; Wang, S.Z.; Wang, R.L.; Zhao, N.; Jia, Y.L.; Wang, C.Y. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biol. Biochem. 2017, 104, 152–163. [Google Scholar] [CrossRef]
- Peng, X.Q.; Wang, W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China. Soil Biol. Biochem. 2016, 98, 74–84. [Google Scholar] [CrossRef]
- Xie, M.Y.; Feng, X.X.; Ma, H.F.; Hu, H.; Wang, J.Y.; Guo, Y.X.; Ren, C.J.; Wang, J.; Zhao, F.Z. Characteristics of soil enzyme activities and stoichiometry and its influencing factors in Quercus aliena var. acuteserrata forests in the Qinling Mountains. Chin. J. Plant Ecol. 2020, 44, 885–894. (In Chinese) [Google Scholar] [CrossRef]
- Cleveland, C.C.; Liptzin, D. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 2007, 85, 235–252. [Google Scholar] [CrossRef]
- Hartman, W.H.; Richardson, C.J. Differential Nutrient Limitation of Soil Microbial Biomass and Metabolic Quotients (qCO2): Is There a Biological Stoichiometry of Soil Microbes? PLoS ONE 2013, 8, e57127. [Google Scholar] [CrossRef]
- Khan, K.S.; Joergensen, R.G. Stoichiometry of the soil microbial biomass in response to amendments with varying C/N/P/S ratios. Biol. Fertil. Soils 2019, 55, 265–274. [Google Scholar] [CrossRef]
Plantation Type | Longitude | Latitude | Altitude (m asl) | Slope (°) | Tree Age (a) | Density (m) | Height (m) | Crown Width (m) | Coverage (%) |
---|---|---|---|---|---|---|---|---|---|
YD1 | 105°40′28.33″ E | 25°37′57.41″ N | 764 | 10 | 8 | 3 × 3 | 3.5 | 2 × 2.3 | 70 |
YD2 | 105°40′19.79″ E | 25°39′25.75″ N | 728 | 10 | 8 | 2 × 2 | 2.0 | 1.2 × 1.8 | 60 |
TD3 | 105°38′36.32″ E | 25°39′23.64″ N | 791 | 10 | 8 | 2 × 2 | 2.5 | 2.5 × 2.8 | 85 |
YD4 | 105°38′36.35″ E | 25°39′22.29″ N | 814 | 10 | 8 | 3.5 × 3 | 2.5 | 1.5 × 2.5 | 70 |
YD5 | 105°38′35.64″ E | 25°39′23.35″ N | 788 | 10 | 8 | 3 × 4 | 2.2 | 2.5 × 2.3 | 65 |
Factors | SOC | TN | TP | TK | TCa | TMg | |||
A | 4.831 * | 12.521 *** | 5.389 * | 30.478 *** | 61.275 *** | 20.602 *** | |||
B | 1.326 | 1.678 | 5.200 * | 0.413 | 1.636 | 0.669 | |||
A × B | 0.750 | 0.696 | 0.322 | 1.423 | 0.059 | 1.312 | |||
C:N | C:P | N:P | C:K | N:K | P:K | C:Ca | Ca:Mg | ||
A | 0.804 | 6.671 ** | 5.434 * | 6.616 ** | 9.099 ** | 9.224 ** | 6.411 ** | 8.538 ** | |
B | 0.641 | 1.336 | 4.734 | 0.409 | 0.157 | 3.254 | 2.418 | 5.177 * | |
A × B | 0.576 | 0.697 | 0.848 | 0.676 | 0.383 | 0.595 | 0.357 | 0.950 | |
fungi | bacteria | actinomycetes | MBC | MBN | MBP | MBC:MBN | MBC:MBP | MBN:MBP | |
A | 1.570 | 5.432 * | 3.474 | 0.682 | 0.925 | 2.120 | 0.312 | 0.890 | 0.198 |
B | 0.551 | 0.022 | 0.033 | 0.003 | 1.235 | 0.106 | 0.510 | 0.215 | 0.798 |
A × B | 0.269 | 7.235 ** | 1.369 | 2.087 | 1.332 | 1.676 | 1.529 | 2.952 | 0.319 |
BG | NAG | LAP | AP | BG: (NAG + LAP) | BG:AP | (NAG + LAP):AP | |||
A | 1.473 | 1.472 | 2.805 | 1.472 | 1.478 | 1.325 | 1.574 | ||
B | 0.470 | 0.477 | 3.444 | 0.485 | 2.049 | 0.274 | 2.147 | ||
A × B | 1.393 | 1.390 | 2.298 | 1.406 | 1.325 | 1.156 | 1.383 |
Variable | n | r2 | p | Intercept | Slope | |
---|---|---|---|---|---|---|
X | Y | |||||
SOC | MBC | 30 | 0.003 | 0.828 | 2.792 | −0.2547 |
TN | MBN | 30 | 0.005 | 0.768 | 1.380 | −0.4954 |
TP | MBP | 30 | 0.001 | 0.924 | 2.126 | 0.3874 |
C:N | MBC:MBN | 30 | 0.009 | 0.693 | 2.405 | −1.114 |
C:P | MBC:MBP | 30 | 0.099 | 0.176 | 1.129 | −0.6038 |
N:P | MBN:MBP | 30 | 0.189 | 0.055 | −0.6543 | −0.8425 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yu, Y.; Song, Y. Stoichiometry of Soil, Microorganisms, and Extracellular Enzymes of Zanthoxylum planispinum var. dintanensis Plantations for Different Allocations. Agronomy 2022, 12, 1709. https://doi.org/10.3390/agronomy12071709
Li Y, Yu Y, Song Y. Stoichiometry of Soil, Microorganisms, and Extracellular Enzymes of Zanthoxylum planispinum var. dintanensis Plantations for Different Allocations. Agronomy. 2022; 12(7):1709. https://doi.org/10.3390/agronomy12071709
Chicago/Turabian StyleLi, Yitong, Yanghua Yu, and Yanping Song. 2022. "Stoichiometry of Soil, Microorganisms, and Extracellular Enzymes of Zanthoxylum planispinum var. dintanensis Plantations for Different Allocations" Agronomy 12, no. 7: 1709. https://doi.org/10.3390/agronomy12071709
APA StyleLi, Y., Yu, Y., & Song, Y. (2022). Stoichiometry of Soil, Microorganisms, and Extracellular Enzymes of Zanthoxylum planispinum var. dintanensis Plantations for Different Allocations. Agronomy, 12(7), 1709. https://doi.org/10.3390/agronomy12071709