Insect Pest Image Recognition: A Few-Shot Machine Learning Approach including Maturity Stages Classification
Abstract
:1. Introduction
Learning from a Small Amount of Data: Few-Shot Learning
2. Materials and Methods
2.1. The Meta IP-FSL Data Set
2.2. Metric-Based Multi-Class Networks
2.2.1. Matching Networks
2.2.2. Prototypical Networks
2.3. Leveraging FSL with Other Divergences
2.3.1. Squared Mahalanobis Divergence
2.3.2. Kullback–Leibler Divergence
2.3.3. Itakura–Saito Divergence
3. Experiments
3.1. Episode Training Process
3.1.1. Prototypical Nets
3.1.2. Matching Nets
3.2. Experiment I
3.3. Experiment II
3.4. Experiment III
3.5. Experiments Setups
4. Results
4.1. Experiment I: Mini-ImageNet Classification
4.2. Experiment II: Adult Stage Insect Classification
4.3. Experiment III: Early Stage Insect Classification
5. Discussion
- The IP-FSL data set with 6817 insect pest images, divided into species maturity stages (97 of adults, 45 of early stage samples);
- A few-shot leveraged prototypical network for classification, which achieved 86.33%, and 87.91% accuracy for adults and early categories, respectively.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNN | Convolutional neural networks |
FSL | Few-shot learning |
References
- Deutsch, C.A.; Tewksbury, J.J.; Tigchelaar, M.; Battisti, D.S.; Merrill, S.C.; Huey, R.B.; Naylor, R.L. Increase in crop losses to insect pests in a warming climate. Science 2018, 361, 916–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dent, D.; Binks, R.H. Insect Pest Management; Cabi: Wallingford, UK, 2020. [Google Scholar]
- Barzman, M.; Bàrberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kudsk, P.; et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Høye, T.T.; Ärje, J.; Bjerge, K.; Hansen, O.L.; Iosifidis, A.; Leese, F.; Mann, H.M.; Meissner, K.; Melvad, C.; Raitoharju, J. Deep learning and computer vision will transform entomology. Proc. Natl. Acad. Sci. USA 2021, 118, e2002545117. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.C.F.; de Almeida Leandro, M.E.D.; Valero, C.; Coronel, L.C.P.; Bazzo, C.O.G. Automatic detection and monitoring of insect pests—A review. Agriculture 2020, 10, 161. [Google Scholar] [CrossRef]
- Li, W.; Zheng, T.; Yang, Z.; Li, M.; Sun, C.; Yang, X. Classification and detection of insects from field images using deep learning for smart pest management: A systematic review. Ecol. Inform. 2021, 66, 101460. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Dang, L.M.; Sadeghi-Niaraki, A.; Moon, H. Crop pest recognition in natural scenes using convolutional neural networks. Comput. Electron. Agric. 2020, 169, 105174. [Google Scholar] [CrossRef]
- Alves, A.N.; Souza, W.S.; Borges, D.L. Cotton pests classification in field-based images using deep residual networks. Comput. Electron. Agric. 2020, 174, 105488. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X. Tomato diseases and pests detection based on improved Yolo V3 convolutional neural network. Front. Plant Sci. 2020, 11, 898. [Google Scholar] [CrossRef]
- Kasinathan, T.; Singaraju, D.; Uyyala, S.R. Insect classification and detection in field crops using modern machine learning techniques. Inf. Process. Agric. 2021, 8, 446–457. [Google Scholar] [CrossRef]
- Stork, N.E. World of insects. Nature 2007, 448, 657–658. [Google Scholar] [CrossRef]
- Karar, M.E.; Alsunaydi, F.; Albusaymi, S.; Alotaibi, S. A new mobile application of agricultural pests recognition using deep learning in cloud computing system. Alex. Eng. J. 2021, 60, 4423–4432. [Google Scholar] [CrossRef]
- Chen, C.J.; Huang, Y.Y.; Li, Y.S.; Chen, Y.C.; Chang, C.Y.; Huang, Y.M. Identification of Fruit Tree Pests With Deep Learning on Embedded Drone to Achieve Accurate Pesticide Spraying. IEEE Access 2021, 9, 21986–21997. [Google Scholar] [CrossRef]
- Thenmozhi, K.; Reddy, U.S. Crop pest classification based on deep convolutional neural network and transfer learning. Comput. Electron. Agric. 2019, 164, 104906. [Google Scholar] [CrossRef]
- Wu, X.; Zhan, C.; Lai, Y.K.; Cheng, M.M.; Yang, J. Ip102: A large-scale benchmark dataset for insect pest recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 8787–8796. [Google Scholar]
- Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of Machine Learning; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Fei-Fei, L.; Fergus, R.; Perona, P. One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 594–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv. (CSUR) 2020, 53, 1–34. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J. Meta-learning baselines and database for few-shot classification in agriculture. Comput. Electron. Agric. 2021, 182, 106055. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Chaudhari, P.; Ravichandran, A.; Soatto, S. A Baseline for Few-Shot Image Classification. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020; p. 20. [Google Scholar]
- Kang, B.; Liu, Z.; Wang, X.; Yu, F.; Feng, J.; Darrell, T. Few-shot object detection via feature reweighting. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 8420–8429. [Google Scholar]
- Li, Y.; Yang, J. Few-shot cotton pest recognition and terminal realization. Comput. Electron. Agric. 2020, 169, 105240. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, X.; Li, M.; Li, W. Small-sample learning with salient-region detection and center neighbor loss for insect recognition in real-world complex scenarios. Comput. Electron. Agric. 2021, 185, 106122. [Google Scholar] [CrossRef]
- Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D. Matching networks for one shot learning. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Barcelona, Spain, 2016; Volume 29, pp. 3630–3638. [Google Scholar]
- Snell, J.; Swersky, K.; Zemel, R.S. Prototypical networks for few-shot learning. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2017; Volume 30, pp. 4077–4087. [Google Scholar]
- Siahkamari, A.; Xia, X.; Saligrama, V.; Castañón, D.; Kulis, B. Learning to approximate a Bregman divergence. In Proceedings of the Advances in Neural Information Processing Systems, Virtual, 6–12 December 2020; Volume 33, pp. 3603–3612. [Google Scholar]
- Brécheteau, C.; Fischer, A.; Levrard, C. Robust bregman clustering. Ann. Stat. 2021, 49, 1679–1701. [Google Scholar] [CrossRef]
- Cilingir, H.K.; Manzelli, R.; Kulis, B. Deep Divergence Learning. In Proceedings of the 37th International Conference on Machine Learning, Virtual Conference, 13–18 July 2020; Proceedings of Machine Learning Research; Volume 119, pp. 2027–2037.
- Banerjee, A.; Merugu, S.; Dhillon, I.S.; Ghosh, J.; Lafferty, J. Clustering with Bregman divergences. J. Mach. Learn. Res. 2005, 6, 1705–1749. [Google Scholar]
- Ren, F.; Liu, W.; Wu, G. Feature reuse residual networks for insect pest recognition. IEEE Access 2019, 7, 122758–122768. [Google Scholar] [CrossRef]
- Nanni, L.; Manfè, A.; Maguolo, G.; Lumini, A.; Brahnam, S. High performing ensemble of convolutional neural networks for insect pest image detection. Ecol. Inform. 2022, 67, 101515. [Google Scholar] [CrossRef]
- Xie, C.; Wang, R.; Zhang, J.; Chen, P.; Dong, W.; Li, R.; Chen, T.; Chen, H. Multi-level learning features for automatic classification of field crop pests. Comput. Electron. Agric. 2018, 152, 233–241. [Google Scholar] [CrossRef]
- Ayan, E.; Erbay, H.; Varçın, F. Crop pest classification with a genetic algorithm-based weighted ensemble of deep convolutional neural networks. Comput. Electron. Agric. 2020, 179, 105809. [Google Scholar] [CrossRef]
- Deng, L.; Wang, Y.; Han, Z.; Yu, R. Research on insect pest image detection and recognition based on bio-inspired methods. Biosyst. Eng. 2018, 169, 139–148. [Google Scholar] [CrossRef]
Category Name | #Adult/#Early | Category Name | #Adult/#Early | Category Name | #Adult/#Early |
---|---|---|---|---|---|
1 rice leaf roller | 50/50 | 35 wheat sawfly | 50/50 | 69 Xylotrechus | 50/- |
2 rice leaf caterpillar | 50/50 | 36 cerodonta denticornis | 50/32 | 70 Cicadella viridis | 50/- |
3 paddy stem maggot | 50/50 | 37 beet fly | 50/- | 71 Miridae | 50/- |
4 asiatic rice borer | 50/50 | 38 flea beetle | 50/- | 72 Trialeurodes vaporariorum | 50/- |
5 yellow rice borer | 50/50 | 39 cabbage army worm | 50/50 | 73 Erythroneura apicalis | 42/- |
6 rice gall midge | 50/31 | 40 beet army worm | 50/50 | 74 Papilio xuthus | 50/50 |
7 rice stemfly | 50/47 | 41 Beet spot flies | 50/50 | 75 Panonchus citri McGregor | 50/- |
8 brown plant hopper | 50/17 | 42 meadow moth | 50/25 | 76 Phyllocoptes oleiverus ashmead | -/50 |
9 white backed plant hopper | 50/18 | 43 beet weevil | 50/- | 77 Icerya purchasi Maskell | 50/- |
10 small brown plant hopper | 50/- | 44 sericaorient alismots chulsky | 50/- | 78 Unaspis yanonensis | 50/- |
11 rice water weevil | 50/50 | 45 alfalfa weevil | 50/50 | 79 Ceroplastes rubens | 50/- |
12 rice leafhopper | 50/- | 46 flax budworm | 50/50 | 80 Chrysomphalus aonidum | 50/- |
13 grain spreader thrips | 50/- | 47 alfalfa plant bug | 50/- | 81 Parlatoria zizyphus Lucus | 44/- |
14 rice shell pest | 50/50 | 48 tarnished plant bug | 50/- | 82 Nipaecoccus vastalor | 50/- |
15 grub | -/50 | 49 Locustoidea | 50/- | 83 Aleurocanthus spiniferus | -/50 |
16 mole cricket | 50/- | 50 lytta polita | 50/- | 84 Tetradacus c Bactrocera minax | 50/50 |
17 wireworm | 50/50 | 51 legume blister beetle | 50/- | 85 Dacus dorsalis (Hendel) | 50/40 |
18 white margined moth | 26/50 | 52 blister beetle | 50/- | 86 Bactrocera tsuneonis | 50/20 |
19 black cutworm | 50/50 | 53 therioaphis maculata Buckton | 50/- | 87 Prodenia litura | 50/50 |
20 large cutworm | 50/50 | 54 odontothrips loti | 50/- | 88 Adristyrannus | 50/40 |
21 yellow cutworm | 50/50 | 55 Thrips | 50/- | 89 Phyllocnistis citrella Stainton | 50/50 |
22 red spider | 50/- | 56 alfalfa seed chalcid | 50/- | 90 Toxoptera citricidus | 50/- |
23 corn borer | 50/50 | 57 Pieris canidia | 50/- | 91 Toxoptera aurantii | 50/- |
24 army worm | 35/50 | 58 Apolygus lucorum | 50/- | 92 Aphis citricola Vander Goot | 50/- |
25 aphids | 50/- | 59 Limacodidae | 50/50 | 93 Scirtothrips dorsalis Hood | 50/- |
26 Potosiabre vitarsis | 50/- | 60 Viteus vitifoliae | -/50 | 94 Dasineura sp. | 33/50 |
27 peach borer | 50/50 | 61 Colomerus vitis | -/50 | 95 Lawana imitata Melichar | 50/- |
28 english grain aphid | 50/- | 62 Brevipoalpus lewisi McGregor | 47/- | 96 Salurnis marginella Guerr | 50/- |
29 green bug | 50/- | 63 oides decempunctata | 50/- | 97 Deporaus marginatus Pascoe | 50/- |
30 bird cherry-oataphid | 50/- | 64 Polyphagotars onemus latus | 50/- | 98 Chlumetia transversa | 50/50 |
31 wheat blossom midge | 50/50 | 65 Pseudococcus comstocki Kuwana | 50/- | 99 Mango flat beak leafhopper | 50/- |
32 penthaleus major | 50/- | 66 parathrene regalis | 40/30 | 100 Rhytidodera bowrinii white | 50/- |
33 longlegged spider mite | 50/- | 67 Ampelophaga | 50/50 | 101 Sternochetus frigidus | 50/- |
34 wheat phloeothrips | 50/- | 68 Lycorma delicatula | 50/- | 102 Cicadellidae | 50/- |
TOTAL | 4767/2050 |
Model | One-Shot | Five-Shot | ||||||
---|---|---|---|---|---|---|---|---|
ED | MD | KL | IS | ED | MD | KL | IS | |
Prototypical networks | 0.4979 | 0.4389 | 0.5179 | 0.5008 | 0.6986 | 0.6270 | 0.7097 | 0.6984 |
Matching networks | 0.4900 | 0.5280 | 0.5260 | 0.5360 | 0.6480 | 0.6300 | 0.6620 | 0.6104 |
N-Way | One-Shot | Five-Shot | ||||||
---|---|---|---|---|---|---|---|---|
ED | MD | KL | IS | ED | MD | KL | IS | |
Three-way | 0.7434 | 0.7568 | 0.7797 | 0.7595 | 0.8435 | 0.8527 | 0.8633 | 0.8471 |
Five-way | 0.6216 | 0.6321 | 0.6694 | 0.6580 | 0.7615 | 0.7476 | 0.7743 | 0.7768 |
N-Way | One-Shot | Five-Shot | ||||||
---|---|---|---|---|---|---|---|---|
ED | MD | KL | IS | ED | MD | KL | IS | |
Three-way | 0.8045 | 0.7920 | 0.8167 | 0.8107 | 0.8621 | 0.8670 | 0.8791 | 0.8778 |
Five-way | 0.6758 | 0.6786 | 0.6906 | 0.6859 | 0.7722 | 0.7780 | 0.8072 | 0.8044 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, J.C.; Borges, D.L. Insect Pest Image Recognition: A Few-Shot Machine Learning Approach including Maturity Stages Classification. Agronomy 2022, 12, 1733. https://doi.org/10.3390/agronomy12081733
Gomes JC, Borges DL. Insect Pest Image Recognition: A Few-Shot Machine Learning Approach including Maturity Stages Classification. Agronomy. 2022; 12(8):1733. https://doi.org/10.3390/agronomy12081733
Chicago/Turabian StyleGomes, Jacó C., and Díbio L. Borges. 2022. "Insect Pest Image Recognition: A Few-Shot Machine Learning Approach including Maturity Stages Classification" Agronomy 12, no. 8: 1733. https://doi.org/10.3390/agronomy12081733
APA StyleGomes, J. C., & Borges, D. L. (2022). Insect Pest Image Recognition: A Few-Shot Machine Learning Approach including Maturity Stages Classification. Agronomy, 12(8), 1733. https://doi.org/10.3390/agronomy12081733