Distribution of Molecular Weight of Humic Substances Isolated from Soils of Tallgrass Temperate Rainforests (Chernevaya Taiga)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
Sample ID | Soil ID | Horizon * | Depth, cm | Description | Coordinates and Terrestrial Biome | Soil Name * |
---|---|---|---|---|---|---|
N1 | 1 | A1 | 0–10 | Organo-mineral horizon is characterized by active accumulation of organic matter | N 54.14070° E 84.9495° Boreal forest (Chernevaya taiga), Altay region | Umbric Retisols |
2 | A2 | 20–30 | Organo-mineral horizon is characterized by active accumulation of organic matter | |||
3 | B/E | 30–40 | Transitional horizon with loss of silicate clay | |||
N2 | 4 | A | 10–20 | Organo-mineral horizon is characterized by active accumulation of organic matter | N 54.37083° E 82.4393° Boreal forest (transitional ecotone forest), Novosibirsk region | Albic Retisols |
N3 | 5 | A | 3–10 | Organo-mineral horizon is characterized by active accumulation of organic matter | N 54.40810° E 82.18420° Boreal forest (Coniferous forest), Novosibirsk region | Albic Retisols |
T1 | 6 | A | 0–15 | Organo-mineral horizon is characterized by active accumulation of organic matter | N 56.30693° E 85.47063° Boreal forest (Chernevaya taiga), Tomsk region | Umbric Retisols |
7 | Bt | 70–110 | Mineral horizon with accumulation of illuvial clay particles | |||
T2 | 8 | A | 0–3 | Organo-mineral horizon is characterized by active accumulation of organic matter | N 55.88619° E 86.00433° Boreal forest (transitional ecotone forest), Kemerovo region | Albic Retisols |
T3 | 9 | A | 10–20 | Organo-mineral horizon is characterized by active accumulation of organic matter | N 56.48106° E 84.79860° Boreal forest (Coniferous forest), Tomsk region | Albic Retisols |
2.2. MW Distribution of HAs
3. Results
4. Discussion
4.1. Carbon Sequestration to the Soil Organic Matter
4.2. Statistical Relationship between the MW Distribution and the Content of Structural Fragments by 13C NMR Spectroscopy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ponomareva, V.V.; Plotnikova, T.A. Humus and Soil Formation; Nauka: Leningrad, Russia, 1980. [Google Scholar]
- Orlov, D.S. Soil Humic Acids and General Theory Humification; Moscov state University: Moscow, Russia, 1990; p. 325. [Google Scholar]
- Schimel, D.S. Terrestrial ecosystems and the carbon cycle. Glob. Change Biol. 1995, 1, 77–91. [Google Scholar] [CrossRef]
- Semenov, V.M.; Ivannikov, L.A.; Tulina, A.S. Stabilization of organic matter in the soil. Agrochimia 2009, 10, 77–96. [Google Scholar]
- Dobrovolsky, G.V. Structural and Functional Role of Soils and Soil Biota in the Biosphere; Nauka: Moscow, Russia, 2003. [Google Scholar]
- Lefèvre, C.; Rekik, F.; Alcantara, V.; Wiese, L. Soil Organic Carbon—The Hidden Potential; FAO: Rome, Italy, 2017; p. 90. [Google Scholar]
- FAO; ITPS. Volume 2—Hot spots and bright spots of soil organic carbon. In Recarbonizing Global Soils; FAO: Rome, Italy, 2021. [Google Scholar]
- FAO. Global Forest Resources Assessment 2020; FAO: Rome, Italy, 2020. [Google Scholar]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, O.V.; Shashkov, M.P.; Korotkov, V.N.; Shirokov, A.I. Forest Islands of South Yamal. Priroda 2008, 12, 20–24. [Google Scholar]
- Kauppi, P.; Posch, M.; Pirinen, P. Large Impacts of Climatic Warming on Growth of Boreal Forests since 1960. PLoS ONE 2014, 9, e111340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradshaw, C.J.A.; Warkentin, I.G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 2015, 128, 24–30. [Google Scholar] [CrossRef]
- Pisani, O.; Frey, S.; Simpson, A.; Simpson, M. Soil warming and nitrogen deposition alter soil organic matter composition at the molecular-level. Biogeochemistry 2015, 123, 391–409. [Google Scholar] [CrossRef]
- Tyurin, I.V. On the characterization of the types of humus in forest soils. Eurasian Soil Sci. 1943, 1–2, 34–46. [Google Scholar]
- Polyakov, V.I.; Chegodaeva, N.A.; Abakumov, E.V. Molecular and elemental composition of humic acids isolated from selected soils of the Russian Arctic. Vestn. Tomsk. Gos. Univ. Biol. 2019, 47, 6–21. [Google Scholar] [CrossRef] [Green Version]
- Lodygin, E.; Beznosikov, V.; Abakumov, E. Humic substances elemental composition of selected taiga and tundra soils from Russian European North-East. Pol. Polar Res. 2017, 38, 125–147. [Google Scholar] [CrossRef] [Green Version]
- Ejarque, E.; Abakumov, E. Stability and biodegradability of organic matter from Arctic soils of Western Siberia: Insights from 13C-NMR spectroscopy and elemental analysis. Solid Earth 2016, 7, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Lodygin, E.D.; Beznosikov, V.A.; Vasilevich, R.S. Molecular Composition of Humic Substances in Tundra Soils (C-13-NMR Spectroscopic Study). Eurasian Soil Sci. 2014, 47, 400–406. [Google Scholar] [CrossRef]
- Lupachev, A.; Abakumov, E.; Gubin, S. The Influence of Cryogenic Mass Exchange on the Composition and Stabilization Rate of Soil Organic Matter in Cryosols of the Kolyma Lowland (North Yakutia, Russia). Geosciences 2017, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Dergacheva, M.I.; Nekrasova, O.A.; Okoneshnikova, M.V.; Vasileva, D.I.; Gavrilov, D.A.; Ochur, K.O.; Ondar, E.E. Ratio of elements in humic acids as a source of information on the environment of soil formation. Contemp. Probl. Ecol. 2012, 5, 497–504. [Google Scholar] [CrossRef]
- Kononova, M.M. Soil Organic Matter. Its Nature, Properties and Methods of Study; Publishing House of the Academy of Sciences of the USSR: Moscow, Russia, 1963. [Google Scholar]
- Piccolo, A.; Spaccini, R.; Savy, D.; Drosos, M.; Cozzolino, V. The Soil Humeome: Chemical Structure, Functions and Technological Perspectives. In Sustainable Agrochemistry; Springer: Cham, Switzerland, 2019; pp. 183–222. [Google Scholar] [CrossRef]
- Vasilevich, R.S.; Beznosikov, V.A.; Lodygin, E.D. Molecular Structure of Humus Substances in Permafrost Peat Mounds in Forest-Tundra. Eurasian Soil Sci. 2019, 52, 283–295. [Google Scholar] [CrossRef]
- Wells, M.J.M. Supramolecular Answers to the Organic Matter Controversy. J. Environ. Qual. 2019, 48, 1644–1651. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Polyakov, V.; Loiko, S.; Istigechev, G.; Lapidus, A.; Abakumov, E. Elemental and Molecular Composition of Humic Acids Isolated from Soils of Tallgrass Temperate Rainforests (Chernevaya taiga) by 1H-13C HECTCOR NMR Spectroscopy. Agronomy 2021, 11, 1998. [Google Scholar] [CrossRef]
- Abakumov, E.V.; Loiko, S.V.; Istigechev, G.I.; Kulemzina, A.I.; Lashchinsky, N.N.; Andronov, E.E.; Lapidus, A.L. Soils of the black taiga of Western Siberia—morphology, agrochemical features, microbiota. Agric. Biol. 2020, 55, 1018–1039. [Google Scholar]
- Loiko, S.V.; Geras’ko, L.I.; Kulizhskii, S.P.; Istigechev, G.I.; Amelin, I.I. Soil cover patterns in the northern part of the area of aspen-fir taiga in the southeast of Western Siberia. Eurasian Soil Sci. 2015, 48, 359–372. [Google Scholar] [CrossRef]
- Gudoshnikov, S.V. Moss Flora of the Chernevaya Taiga Subbelt in South Siberian Mountains and a Problem of the Chernevaya Taiga Origin; Tomsk, Russia, 1968. [Google Scholar]
- Ermakov, N.B. Boreal Vegetation Diversity in North Asia. Hemiboreal Forests. Classification and Ordination; Siberian Branch of the Russian Academy of Sciences: Novosibirsk, Russia, 2003. [Google Scholar]
- Babenko, A.S.; Nefediev, P.S.; Nefedeva, Y.S. Fauna and population dynamics of bipedal centipedes (Diplopoda) in the black taiga of Salair. Tomsk State Univ. Bull. 2009, 319, 182–185. [Google Scholar]
- Lashchinsky, N.N.; Korolyuk, A.Y. Syntaxonomy of dark coniferous zonal forests of the southern taiga of the West Siberian Plain and humid lowlands of the Altai-Sayan mountain region. Veg. Russ. 2015, 26, 85–107. [Google Scholar] [CrossRef]
- Jahn, R.; Blume, H.P.; Spaargaren, O.; Schad, P. Guidelines for Soil Description; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; update 2015; FAO: Rome, Italy, 2015. [Google Scholar]
- Swift, R.S. Organic Matter Characterization. Methods Soil Anal. 1996, 5, 1011–1069. [Google Scholar] [CrossRef]
- Dawson, R.M.C.; Elliott, D.C.; Elliott, W.H.; Jones, K.M. Data for Biochemical Research; Oxford University Press: Oxford, UK, 1959. [Google Scholar]
- Striegel, A. Size-exclusion chromatography. In Liquid Chromatography; Elsevier: Amsterdam, The Netherlands, 2017; pp. 245–273. [Google Scholar] [CrossRef]
- Vasilevich, R.; Vezhov, K.; Lodygin, E. Molecular-mass distribution of humic acids of permafrost peat mounds from the European North–East of Russia. Bull. Tomsk Polytech. Univ. 2019, 330, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, A. Chapter 5—Humus and Soil Conservation. In Humic Substances in Terrestrial Ecosystems; Piccolo, A., Ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 1996; pp. 225–264. [Google Scholar] [CrossRef]
- Abakumov, E.; Loiko, S.; Lashchinsky, N.; Georgyi, I.; Kulemzina, A.; Smirnov, A.; Rayko, M.; Lapidus, A. Highly Productive Boreal Ecosystem Chernevaya Taiga—Unique Rainforest in Siberia. Preprints 2020, 2020090340. [Google Scholar] [CrossRef]
- Abakumov, E.; Polyakov, V. Carbon Polygons and Carbon Offsets: Current State, Key Challenges and Pedological Aspects. Agronomy 2021, 11, 2013. [Google Scholar] [CrossRef]
- Ivanov, A.L.; Savin, I.Y.; Stolbovoy, V.S.; Dukhanin, Y.A.; Kozlov, D.N. Methodological approaches to the formation of a unified national system of monitoring and accounting of carbon balance and greenhouse gas emissions on lands of the agricultural fund of the Russian Federation. Dokuchaev Soil Bull. 2021, 108, 175–218. [Google Scholar] [CrossRef]
- Morkovina, S.S.; Panyavina, E.A.; Shanin, I.I.; Avdeeva, I.A. Economic aspects of the organization of carbon farms on forest site. Curr. Dir. Sci. Res. XXI Century Theory Pract. 2021, 1, 17–26. [Google Scholar] [CrossRef]
- Vasilevitch, R.; Lodygin, E.; Beznosikov, V. Molecular-mass distribution of tundra soils humic substances from the European northeast of Russia. Biol. Commun. 2015, 4, 103–111. [Google Scholar] [CrossRef]
Soil ID | High Molecular Fraction | Medium Molecular Fraction | Low Molecular Fraction | Mn, kDa | S | Mw, kDa | S | Mz, kDa | S | Mw/Mn | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mr, kDa | S | Molar Fraction, % | Mr, kDa | S | Molar Fraction, % | Mr, kDa | S | Molar Fraction, % | |||||||||||
x | S | x | S | x | S | ||||||||||||||
1 | 319 | 4 | 4.3 | 0.3 | 21.5 | 0.1 | 29.1 | 1.3 | 1.38 | 0.04 | 66.7 | 1.6 | 20.8 | 1.3 | 216 | 4 | 310 | 4 | 10.4 |
2 | 319 | 1 | 3.9 | 0.2 | 19.8 | 0.2 | 26.3 | 1.8 | 1.31 | 0.04 | 69.7 | 2.1 | 18.7 | 1.2 | 220 | 1 | 311 | 1 | 11.8 |
3 | 308 | 1 | 3.3 | 0.4 | 18.8 | 0.4 | 26.8 | 1.8 | 1.36 | 0.05 | 70.1 | 2.2 | 16.1 | 1.7 | 200 | 4 | 299 | 2 | 12.4 |
4 | 360 | 3 | 16.1 | 0.5 | 30.2 | 0.3 | 33.8 | 0.4 | 1.59 | 0.04 | 50.2 | 0.1 | 68.5 | 2.1 | 307 | 4 | 355 | 3 | 4.4 |
5 | 329 | 1 | 10.1 | 0.4 | 27.9 | 0.3 | 36.1 | 0.3 | 1.61 | 0.03 | 54.3 | 0.1 | 43.8 | 1.3 | 254 | 3 | 321 | 1 | 5.8 |
6 | 376 | 5 | 10.3 | 0.3 | 21.1 | 0.1 | 26.1 | 0.8 | 1.36 | 0.04 | 63.5 | 1.1 | 45.2 | 1.9 | 326 | 5 | 373 | 5 | 7.2 |
7 | 312 | 3 | 7.1 | 0.7 | 29.1 | 1.6 | 33.2 | 1.2 | 1.13 | 0.01 | 59.7 | 2 | 32 | 3 | 221 | 2 | 301 | 1 | 6.8 |
8 | 344 | 3 | 12.1 | 0.7 | 28.9 | 0.4 | 32.5 | 0.5 | 1.49 | 0.02 | 55.5 | 0.2 | 51.6 | 2.2 | 281 | 4 | 338 | 1 | 5.5 |
9 | 347 | 3 | 7.5 | 0.1 | 28.5 | 0.1 | 31.1 | 0.4 | 1.27 | 0.03 | 61.7 | 0.2 | 34.6 | 0.25 | 267 | 1 | 340 | 1 | 7.7 |
n/n | C,H-Alkyl ((CH2)n/CH/C and CH3) | O,N-Alkyl (NCH/OCH3) | CCOH | Aromatic Compounds (C=C/C–H, C=O) | Carboxyl (COO/N-C=O) | Quinone (R(C=O)R′/RCHO) |
---|---|---|---|---|---|---|
Low molecular fraction | −0.64 | −0.79 | −0.52 | 0.75 | 0.78 | −0.14 |
Middle molecular fraction | 0.45 | 0.66 | 0.35 | −0.54 | −0.64 | −0.01 |
High molecular fraction | 0.69 | 0.76 | 0.56 | −0.79 | −0.76 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyakov, V.; Abakumov, E.; Lodygin, E.; Vasilevich, R.; Lapidus, A. Distribution of Molecular Weight of Humic Substances Isolated from Soils of Tallgrass Temperate Rainforests (Chernevaya Taiga). Agronomy 2022, 12, 1760. https://doi.org/10.3390/agronomy12081760
Polyakov V, Abakumov E, Lodygin E, Vasilevich R, Lapidus A. Distribution of Molecular Weight of Humic Substances Isolated from Soils of Tallgrass Temperate Rainforests (Chernevaya Taiga). Agronomy. 2022; 12(8):1760. https://doi.org/10.3390/agronomy12081760
Chicago/Turabian StylePolyakov, Vyacheslav, Evgeny Abakumov, Evgeny Lodygin, Roman Vasilevich, and Alla Lapidus. 2022. "Distribution of Molecular Weight of Humic Substances Isolated from Soils of Tallgrass Temperate Rainforests (Chernevaya Taiga)" Agronomy 12, no. 8: 1760. https://doi.org/10.3390/agronomy12081760
APA StylePolyakov, V., Abakumov, E., Lodygin, E., Vasilevich, R., & Lapidus, A. (2022). Distribution of Molecular Weight of Humic Substances Isolated from Soils of Tallgrass Temperate Rainforests (Chernevaya Taiga). Agronomy, 12(8), 1760. https://doi.org/10.3390/agronomy12081760