Root Reserves Ascertain Postharvest Sensitivity to Water Deficit of Nectarine Trees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. Irrigation Periods and Treatments
- Stress 1 (T-1 treatment): during early postharvest (from 28 May to 30 July 2020).
- Stress 2 (T-2 treatment): during late postharvest (from 30 July to 24 September 2020).
- Stress 3 (T-3 treatment): during the whole postharvest (from 28 May to 24 September 2020).
2.3. Soil Water Status
2.4. Tree Water Status
2.5. Leaf Gas Exchange
2.6. Leaf Mineral Content
2.7. Winter Root Reserves
2.8. Phenological Stages
2.9. Yield Measurements
2.10. Fruit Quality Measurements
2.11. NMR-Based Metabolite Analysis
2.12. Statistical Analysis
3. Results
3.1. Meteorological Conditions and Water Applied
3.2. Soil and Plant Water Relations
3.3. Leaf Mineral Content
3.4. L-arginine, Starch, and Phosphorous Content in Roots
3.5. Phenology, Yield, and Irrigation Water Use Efficiency (IWUE)
3.6. Nectarine Fruit Quality and Metabolites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varela-Ortega, C.; Blanco-Gutiérrez, I.; Esteve, P.; Bharwani, S.; Fronzek, S.; Downing, T.E. How can irrigated agriculture adapt to climate change? Insights from the Guadiana Basin in Spain. Reg. Environ. Chang. 2016, 16, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Fernández-García, I.; Lecina, S.; Ruiz-Sánchez, M.C.; Vera, J.; Conejero, W.; Conesa, M.R.; Domínguez, A.; Pardo, J.J.; Llélis, B.C.; Montesinos, P. Trends and challenges in irrigation scheduling in the semi-arid area of Spain. Water 2020, 12, 785. [Google Scholar] [CrossRef] [Green Version]
- AEMET. State Meteorological Agency. Available online: https://www.aemet.es/en (accessed on 15 March 2022).
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAST. Food and Agriculture Organization Statistical Data. Available online: https://www.fao.org/statistics/en/ (accessed on 22 August 2020).
- Alcobendas, R.; Mirás-Avalos, J.M.; Alarcón, J.J.; Pedrero, F.; Nicolás, E. Combined effects of irrigation, crop load and fruit position on size, color and firmness of fruits in an extra-early cultivar of peach. Sci. Hortic. 2012, 142, 128–135. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Domingo, R.; Gómez-Montiel, J.; Pérez-Pastor, A. Implementing deficit irrigation scheduling through plant water stress indicators in early nectarine trees. Agric. Water Manag. 2015, 152, 207–216. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Conesa, M.R.; Domingo, R.; Aguayo, E.; Falagán, E.; Pérez-Pastor, A. Combined effects of deficit irrigation and crop level on early nectarine trees. Agric. Water Manag. 2016, 170, 120–132. [Google Scholar] [CrossRef] [Green Version]
- Conesa, M.R.; Conejero, W.; Vera, J.; Agulló, V.; García-Viguera, C.; Ruiz-Sánchez, M.C. Irrigation management practices in nectarine fruit quality at harvest and after cold storage. Agric. Water Manag. 2021, 243, 106519. [Google Scholar] [CrossRef]
- Pérez-Pastor, A.; Ruiz-Sánchez, M.C.; Conesa, M.R. Drought stress effect on woody tree yield. In Water Stress and Crop Plants: A Sustainable Approach; Ahmad, P., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2016; Volume 2, Chapter 22; pp. 356–374. ISBN 9781119054368. [Google Scholar] [CrossRef]
- Ruiz-Sánchez, M.C.; Domingo, R.; Castel, J.R. Review. Deficit irrigation in fruit trees and vines in Spain. Span. J. Agric. Res. 2010, 8 (Suppl. 2), 5–20. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Sánchez, M.C.; Abrisqueta, I.; Conejero, W.; Vera, J. Deficit irrigation management in early-maturing peach crop. In Water Scarcity and Sustainable Agriculture in Semiarid Environment. Tools, Strategies, and Challenges for Woody Crops; Elsevier: Amsterdam, The Netherlands, 2018; Chapter 6; pp. 111–126. ISBN 978-0-12-813164-0. [Google Scholar] [CrossRef]
- Katerji, N.; Mastrorilli, M.; Rana, G. Water use efficiency of crops cultivated in the Mediterranean regions: Review and analysis. Europ. J. Agron. 2008, 28, 493–507. [Google Scholar] [CrossRef]
- Chalmers, D.J.; Mitchell, P.D.; Van Heek, L. Control of peach tree growth and productivity by regulated water supply, tree density and summer pruning. J. Am. Soc. Hortic. Sci. 1981, 106, 307–312. [Google Scholar]
- Naor, A.; Stern, R.; Flaishman, M.; Gal, Y.; Peres, M. Effects pf post-harvest water stress on autumnal bloom and subsequent-season productivity in mid-season ‘Spadona’ pear. J. Hortic. Sci. Biotech. 2006, 81, 3651–3700. [Google Scholar] [CrossRef]
- Behboudian, M.H.; Mills, T.M. Deficit irrigation in deciduous orchards. Hortic. Rev. 1997, 21, 105–131. [Google Scholar] [CrossRef]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.L.; Waskom, R.M.; Niu, Y.; Siddique, K.H.M. Regulated deficit irrigation for crop production under drought stress: A review. Agron. Sustain. Dev. 2016, 36, 1. [Google Scholar] [CrossRef] [Green Version]
- Torrecillas, A.; Domingo, R.; Galego, R.; Ruiz-Sánchez, M.C. Apricot tree response to withholding irrigation at different phenological periods. Sci. Hortic. 2000, 85, 201–215. [Google Scholar] [CrossRef]
- Uriu, K. Effect of post-harvest soil moisture depletion on subsequent yield of apricot. Proc. Am. Soc. Hortic. Sci. 1964, 84, 93–97. [Google Scholar]
- Ruiz-Sánchez, M.C.; Egea, J.; Galego, R.; Torrecillas, A. Floral biology of ‘Búlida’ apricot trees subjected to postharvest drought stress. Ann. Appl. Biol. 1999, 135, 523–528. [Google Scholar] [CrossRef]
- Girona, J.; Mata, M.; Goldhamer, D.A.; Johnson, R.S.; DeJong, T.M. Patterns of soil and tree water status and leaf functioning during regulated deficit irrigation scheduling in peach. J. Am. Soc. Hortic. Sci. 1993, 118, 580–586. [Google Scholar] [CrossRef] [Green Version]
- Goldhamer, D.A.; Salinas, M.; Crisosto, C.; Day, K.R.; Soler, M.; Moriana, A. Effects of regulated deficit irrigation and partial root zone drying on late harvest peach tree performance. Acta Hortic. 2002, 592, 343–350. [Google Scholar] [CrossRef]
- Conejero, W.; Mellisho, C.M.; Ortuño, M.F.; Moriana, A.; Moreno, F.; Torrecillas, A. Using trunk diameter sensors for regulated deficit irrigation scheduling in early maturing peach trees. Environ. Exp. Bot. 2011, 71, 409–415. [Google Scholar] [CrossRef]
- Abrisqueta, I.; Tapia, L.M.; Conejero, W.; Sánchez-Toribio, M.I.; Abrisqueta, J.M.; Vera, J.; Ruiz-Sánchez, M.C. Response of early-maturing peach [Prunus persica (L.)] trees to deficit irrigation. Span. J. Agric. Res 2010, 8 (Suppl. 2), 30–39. [Google Scholar] [CrossRef]
- Vera, J.; Abrisqueta, I.; Abrisqueta, J.M.; Ruiz-Sánchez, M.C. Effect of deficit irrigation on early-maturing peach tree performance. Irrig. Sci. 2013, 31, 747–757. [Google Scholar] [CrossRef]
- Vera, J.; Conejero, W.; Conesa, M.R.; Ruiz-Sánchez, M.C. Irrigation factor approach based on soil water content: A nectarine orchard case study. Water 2019, 11, 589. [Google Scholar] [CrossRef] [Green Version]
- Conesa, M.R.; Conejero, W.; Vera, J.; Ramírez-Cuesta, J.M.; Ruiz-Sánchez, M.C. Terrestrial and remote indexes to assess moderate deficit irrigation in early-maturing nectarine trees. Agronomy 2019, 9, 630. [Google Scholar] [CrossRef] [Green Version]
- Kliewer, W.M.; Cook, J.A. Arginine levels in grape canes and fruits as an indicator of nitrogen status of vineyards. Am. J. Enol. Vitic. 1974, 2, 111–118. [Google Scholar]
- Fox, R.L. External Phosphorus requirement of crops. In Chemistry in the Soil Environment; Special Publication 40; Dowdy, R.H., Ed.; American Society of Agronomy: Madison, WI, USA, 1981; pp. 223–239. [Google Scholar] [CrossRef]
- Kozolowski, T.T. Carbohydrate sources and sinks in woody plants. Bot. Rev. 1992, 58, 208–222. [Google Scholar] [CrossRef]
- Ebel, R.; Proebsting, E.L.; Evans, R.G. Apple tree and fruit responses to early termination of irrigation in a semi-arid environment. HortScience 2001, 36, 1197–1201. [Google Scholar] [CrossRef] [Green Version]
- López, G.; Mata, M.; Arbonés, A.; Solans, J.R.; Girona, J.; Marsal, J. Mitigation of effects of extreme drought during stage III of peach fruit development by summer pruning and fruit thinning. Tree Physiol. 2006, 26, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Sattar, M.; Kotb, H.R.M. Nutritional status and productivity of Anna apple trees in the year following autumn irrigation determent. Agric. Water Manag. 2021, 252, 106882. [Google Scholar] [CrossRef]
- Lopez, G.; Girona, J.; Marsal, J. Response of winter root starch concentration to severe water stress and fruit load and its subsequent effects on early peach fruit development. Tree Physiol. 2007, 27, 1619–1626. [Google Scholar] [CrossRef] [Green Version]
- Vera, J.; de la Peña, J.M. FERTIGA: Programa de Fertirrigación de Frutales; CEBAS-CSIC: Murcia, Spain, 1994; p. 69. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Smith, M.; Raes, D.; Wright, J.L. FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. J. Irrig. Drain. Eng. 2005, 131, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Abrisqueta, I.; Abrisqueta, J.; Tapia, L.M.; Munguía, J.; Conejero, W.; Vera, J.; Ruiz-Sánchez, M.C. Basal crop coefficients for early-season peach trees. Agric. Water Manag. 2013, 121, 158–163. [Google Scholar] [CrossRef]
- Balsalobre, N.; Koptsyukh, E.; Ruiz-Sánchez, M.C.; Vera, J.; Conejero, W.; Nicolás, M.J. Riego deficitario y raíces de nectarinos. In Proceedings of the V Congreso IDIES “I+D en Institutos de Enseñanza Secundaria”, Murcia, Spain, 26 June 2018; ISBN 978-84-09-03063-7. [Google Scholar]
- Vera, J.; Conejero, W.; Mira-García, A.B.; Conesa, M.R.; Ruiz-Sánchez, M.C. Towards irrigation automation based on dielectric soil sensors. J. Hortic. Sci. Biotech. 2021, 96, 696–707. [Google Scholar] [CrossRef]
- Hsiao, T.C. Measurement of tree water status. In Irrigation of Agricultural Crops. Agronomy Monograph No. 30; Steward, B.A., Nielsen, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1990; pp. 243–279. [Google Scholar]
- Myers, B.J. Water stress integral-A link between short-term stress and long-term growth. Tree Physiol. 1988, 4, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, S. A new method for the colorimetric determination of arginine. J. Biochem. 1950, 37, 231–236. [Google Scholar] [CrossRef]
- Clegg, K.M. The application of the an-throne reagent to the estimation of starch in cereals. J. Sci. Food Agric. 1956, 7, 40–44. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Donagemma, A.; Fontana, W.G.G.K. Manual de Métodos de Análise de Solos, 3rd ed.; DF: Embrapa, Brasilia, 2017; p. 574. ISBN 978-85-7035-771-7. [Google Scholar]
- Baggiolini, M. Stades Repères du Cerisier. Stades Repères du Prunier. Stades Repères del’Abricotier. Stades Repères du Pêcher; Guide Pratique de Défense des Cultures; ACTA: Paris, France, 1980. [Google Scholar]
- Mounzer, O.; Conejero, W.; Nicolás, E.; Abrisqueta, I.; García-Orellana, Y.; Tapia, L.; Vera, J.; Abrisqueta, J.M.; Ruiz-Sánchez, M.C. Growth pattern and phenological stages of early-maturing peach trees under a Mediterranean climate. HortScience 2008, 43, 1813–1818. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.-K.; Choi, Y.H.; Verbene, M.; Lefeber, A.W.M.; Erkelens, C.; Verpoorte, R. Metabolic fingerprinting of wild type and transgenic tobacco plants by 1H NMR and multivariate analysis technique. Phytochemistry 2004, 65, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pastor, A.; Ruiz-Sánchez, M.C.; Domingo, R. Effects of timing and intensity of deficit irrigation on vegetative and fruit growth of apricot trees. Agric. Water Manag. 2014, 134, 110–118. [Google Scholar] [CrossRef]
- Girona, J.; Gelly, M.; Mata, M.; Arbonés, A.; Rufat, J.; Marsal, J. Peach tree response to single and combined deficit irrigation regimes in deep soils. Agric. Water Manag. 2005, 72, 97–108. [Google Scholar] [CrossRef]
- Rahmati, M.; Davarynejad, G.H.; Génard, M.; Bannayan, M.; Azizi, M.; Vercambre, G. Peach water relations, gas exchange, growth and shoot mortality under water deficit in semi-arid weather conditions. PLoS ONE 2015, 10, e0120246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shackel, K.; Lampinen, B.; Sibbett, S.; Olson, W. The relation of midday stem water potential to the growth and physiology of fruit trees under water limited conditions. Acta Hortic. 2000, 537, 425–430. [Google Scholar] [CrossRef]
- Abrisqueta, I.; Conejero, W.; Valdés-Vela, M.; Vera, J.; Ortuño, M.F.; Ruiz-Sánchez, M.C. Stem water potential estimation of drip-irrigated early-maturing peach trees under Mediterranean conditions. Comput. Electron. Agric. 2015, 114, 7–13. [Google Scholar] [CrossRef]
- Conesa, M.R.; Conejero, W.; Vera, J.; Ruiz-Sánchez, M.C. Effects of postharvest water deficits on the physiological behavior of early-maturing nectarine trees. Plants 2020, 9, 1104. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, T.A.; Davies, W.J. Stomata and stomatal mechanisms. In Physiology and Biochemistry of Drought Resistance in Plants; Paleg, L.G., Aspinall, D., Eds.; Academic Press: New York, NY, USA, 1981; pp. 315–346. [Google Scholar]
- Ruiz-Sánchez, M.C.; Domingo, R.; Torrecillas, A.; Pérez-Pastor, A. Water stress preconditioning to improve drought resistance in young apricot plants. Plant Sci. 2000, 156, 245–251. [Google Scholar] [CrossRef] [Green Version]
- De la Rosa, J.M.; Conesa, M.R.; Domingo, R.; Pérez-Pastor, A. A new approach to ascertain the sensitivity to water stress of different plant water indicators in extra-early nectarine trees. Sci. Hortic. 2014, 169, 147–153. [Google Scholar] [CrossRef]
- Esparza, G.; DeJong, T.M.; Weinbaum, S.A. Effects of irrigation deprivation during the harvest period on nonstructural carbohydrate and nitrogen contents of dormant, mature almond trees. Tree Physiol. 2001, 21, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Cantón, F.R.; Suárez, M.F.; Cánovas, F.M. Molecular aspects of nitrogen mobilization and recycling in trees. Photosyn. Res. 2005, 83, 265–278. [Google Scholar] [CrossRef]
- Gao, H.-J.; Yang, H.-Q.; Wang, J.-X. Arginine metabolism in roots and leaves of apple (Malus domestica Borkh.): The tissue-specific formation of both nitric oxide and polyamines. Sci. Hortic. 2009, 119, 147–152. [Google Scholar] [CrossRef]
- Kobashi, K.; Gemma, H.; Iwahori, S. Abscisic acid content and sugar metabolism of peaches grown under water stress. J. Am. Soc. Hort. Sci. 2001, 125, 425–428. [Google Scholar] [CrossRef]
- Thakur, A.; Zora, S. Responses of ‘Spring Bright’ and ‘Summer Bright’ nectarines to deficit irrigation: Fruit growth and concentration of sugars and organic acids. Sci. Horti. 2012, 135, 1–226. [Google Scholar] [CrossRef]
- Stefanelli, D.; Goodwin, I.; Jones, R. Minimal nitrogen and water use in horticulture: Effects on quality and content of selected nutrients. Food Res. Int. 2010, 43, 1833–1843. [Google Scholar] [CrossRef]
- ElShamey, E.A.; Ali, E.F.; Selim, M.E.; ElSayed, M.A.; Ahmed, M.; Alotaibi, F.M.; Kheir, A.M. Water deficit induced physiological and amino acid responses in some rice varieties using NMR-metabolic analysis. Agron. J. 2021, 113, 4690–4704. [Google Scholar] [CrossRef]
- Verbruggen, N.; Hermans, C. Proline accumulation in plants: A review. Amino Acids 2008, 35, 753–759. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, N.; Kumar, K.M.; Vlaskin, M.S.; Nanda, M.; Tripathi, M.; Sanjay-Kumar, S. Microalgae with a truncated light-harvesting antenna to maximize photosynthetic efficiency and biomass productivity: Recent advances and current challenges. Process Biochem. 2021, 104, 83–91. [Google Scholar] [CrossRef]
T-0 | T-1 | T-2 | T-3 | ANOVA | |
---|---|---|---|---|---|
Ntotal | 2.229 ab | 2.361 a | 2.176 b | 1.889 c | *** |
Ctotal | 46.086 a | 44.356 ab | 44.061 b | 42.064 c | *** |
F− | 0.515 a | 0.533 a | 0.507 a | 0.469 b | *** |
Cl− | 0.747 a | 0.562 bc | 0.547 c | 0.576 b | *** |
NO3− | 0.066 c | 0.068 bc | 0.069 ab | 0.072 a | *** |
PO43− | 0.374 | 0.589 | 0.695 | 0.716 | ns |
SO42− | 0.806 b | 1.394 a | 1.530 a | 1.449 a | *** |
Quality Traits | T-0 | T-1 | T-2 | T-3 | ANOVA |
---|---|---|---|---|---|
Fruit diameter (mm) | 65.56 | 65.76 | 63.89 | 63.96 | ns |
Firmness (N) | 88.94 | 90.04 | 85.94 | 87.08 | ns |
L* | 36.97 | 37.42 | 37.61 | 37.87 | ns |
C* | 36.14 | 37.33 | 36.16 | 38.11 | ns |
h° | 21.90 | 23.22 | 24.2 | 24.37 | ns |
TSS (°Brix) | 8.60 | 8.71 | 9.08 | 8.26 | ns |
TA (mg L−1) | 1.10 | 1.04 | 1.08 | 1.05 | ns |
MI | 7.83 | 8.41 | 8.38 | 7.91 | ns |
Sugars | |||||
Fructose (mg kg−1) | 22.39 | 23.57 | 23.24 | 22.47 | ns |
Glucose (mg kg−1) | 20.67 | 22.82 | 21.17 | 20.60 | ns |
myo-Inositol (mg kg−1) | 1.08 | 0.92 | 1.00 | 0.85 | ns |
Sucrose (mg kg−1) | 92.31 | 96.47 | 96.27 | 99.54 | ns |
UDP-glucose (mg kg−1) | 0.04 | 0.04 | 0.04 | 0.04 | ns |
Xylose (mg kg−1) | 0.47 | 0.48 | 0.41 | 0.46 | ns |
Free Amino Acids | T-0 | T-1 | T-2 | T-3 | ANOVA |
---|---|---|---|---|---|
GABA | 0.416 | 0.417 | 0.4064 | 0.449 | ns |
Alanine | 0.327 | 0.349 | 0.336 | 0.351 | ns |
L-Arginine | nd | nd | nd | nd | |
Asparagine | 17.702 | 21.908 | 18.763 | 21.257 | ns |
Aspartate | 51.075 a | 50.375 a | 43.463 b | 41.188 b | *** |
Glutamate | nd | nd | nd | nd | |
Glutamine | nd | nd | nd | nd | |
Isoleucine | 0.057 | 0.088 | 0.070 | 0.062 | ns |
Leucine | 0.058 | 0.066 | 0.052 | 0.050 | ns |
Phenylalanine | 0.030 | 0.035 | 0.036 | 0.033 | ns |
Proline | 0.076 c | 0.145 bc | 0.264 b | 0.652 a | *** |
Threonine | 0.169 | 0.219 | 0.202 | 0.192 | ns |
Tyrosine | nd | nd | nd | nd | |
Valine | 0.088 b | 0.125 a | 0.107 ab | 0.102 ab | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conesa, M.R.; Conejero, W.; Vera, J.; Ruiz-Sánchez, M.C. Root Reserves Ascertain Postharvest Sensitivity to Water Deficit of Nectarine Trees. Agronomy 2022, 12, 1805. https://doi.org/10.3390/agronomy12081805
Conesa MR, Conejero W, Vera J, Ruiz-Sánchez MC. Root Reserves Ascertain Postharvest Sensitivity to Water Deficit of Nectarine Trees. Agronomy. 2022; 12(8):1805. https://doi.org/10.3390/agronomy12081805
Chicago/Turabian StyleConesa, María R., Wenceslao Conejero, Juan Vera, and Mª Carmen Ruiz-Sánchez. 2022. "Root Reserves Ascertain Postharvest Sensitivity to Water Deficit of Nectarine Trees" Agronomy 12, no. 8: 1805. https://doi.org/10.3390/agronomy12081805
APA StyleConesa, M. R., Conejero, W., Vera, J., & Ruiz-Sánchez, M. C. (2022). Root Reserves Ascertain Postharvest Sensitivity to Water Deficit of Nectarine Trees. Agronomy, 12(8), 1805. https://doi.org/10.3390/agronomy12081805