Evaluating Chemical Suppression Treatments to Alter the Red: Far-Red Ratio in Perennial Groundcovers for Maize Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Management
2.2. Measurement Procedures
2.3. Statistical Analysis
2.4. Weather Conditions
3. Results
3.1. Perennial Groundcover Persistence and R:FR Ratio
3.1.1. Frequency of Perennial Groundcover (End of Season)
3.1.2. R:FR Ratio (Reflectance above Cover and Crop Canopy Weekly)
3.2. Maize Maturity, Plant Density, and Plant Height
3.2.1. Maize Maturity
3.2.2. Maize Plant Density
3.2.3. Maize Plant Height
3.3. Maize Grain Yield, Stover Yield, Total Aboveground Biomass, Yield Components, and Harvest Index
3.3.1. Maize Grain Yield
3.3.2. Maize Stover Yield
3.3.3. Maize Total Aboveground Biomass
3.3.4. Maize Yield Components and Harvest Index
3.4. Weed Community
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Treatment | RE | Kernel Weight | KE | KR |
---|---|---|---|---|
no. ear−1 | g kernel−1 | no. ear−1 | no. row−1 | |
2020 | ||||
DOP-P | 14.5 | 0.24 | 482 | 33.4 |
DOP-P + G | 14.6 | 0.25 | 467 | 33.0 |
VE-P | 15.1 | 0.27 | 529 | 33.8 |
VE-P + G | 14.9 | 0.28 | 495 | 33.6 |
V2-P | 14.6 | 0.28 | 520 | 35.1 |
V2-P + G | 15.0 | 0.28 | 515 | 33.8 |
V3-P | 13.8 | 0.29 | 490 | 35.7 |
V3-P + G | 14.1 | 0.27 | 487 | 34.0 |
V4-P | 13.7 | 0.28 | 443 | 32.6 |
V4-P + G | 13.8 | 0.28 | 459 | 34.2 |
sV5-P | 14.5 | 0.27 | 486 | 33.8 |
V5-P + G | 14.2 | 0.27 | 478 | 33.8 |
V6-P | 13.7 | 0.26 | 475 | 35.2 |
V6-P + G | 13.7 | 0.26 | 437 | 32.0 |
C | 13.9 | 0.22 | 421 | 30.5 |
SE | 0.27 | 0.01 | 17.84 | 0.93 |
Pr > F | ||||
Treatment | 0.0009 | <0.0001 | 0.0003 | 0.0020 |
P vs. P + G | 0.7378 | 0.7975 | 0.2009 | 0.1655 |
P vs. C DOP | 0.0570 | 0.1466 | 0.0051 | 0.0121 |
P + G vs. C DOP | 0.0452 | 0.0043 | 0.0330 | 0.0250 |
P vs. C VE | 0.0004 | <0.0001 | <0.0001 | 0.0041 |
P + G vs. C VE | 0.0031 | <0.0001 | 0.0009 | 0.0064 |
P vs. C V2 | 0.0264 | <0.0001 | <0.0001 | 0.0001 |
P + G vs. C V2 | 0.0009 | <0.0001 | <0.0001 | 0.0038 |
P vs. C V3 | 0.6641 | <0.0001 | 0.0019 | <0.0001 |
P + G vs. C V3 | 0.4611 | <0.0001 | 0.0027 | 0.0022 |
P vs. C V4 | 0.5934 | <0.0001 | 0.2892 | 0.0651 |
P + G vs. C V4 | 0.8042 | <0.0001 | 0.0734 | 0.0014 |
P vs. C V5 | 0.0566 | 0.0002 | 0.0030 | 0.0041 |
P + G vs. C V5 | 0.3641 | <0.0001 | 0.0089 | 0.004 |
P vs. C V6 | 0.5025 | 0.0002 | 0.0131 | <0.0001 |
P + G vs. C V6 | 0.4915 | 0.0013 | 0.4556 | 0.1715 |
Treatment | RE | Kernel Weight | KE | KR | Ear Length |
---|---|---|---|---|---|
no. ear−1 | g kernel−1 | no. ear−1 | no. row−1 | cm | |
2021 | |||||
DOP-P | 12.8 | 0.25 | 388 | 31.1 | 13.2 |
DOP-P + G | 13.4 | 0.24 | 403 | 31.6 | 13.5 |
V2-P | 13.8 | 0.26 | 465 | 34.3 | 14.4 |
V2-P + G | 13.9 | 0.27 | 480 | 35.4 | 15.2 |
V3-P | 13.6 | 0.26 | 450 | 33.9 | 14.4 |
V3-P + G | 14.2 | 0.30 | 449 | 35.2 | 15.0 |
V4-P | 13.7 | 0.27 | 456 | 34.8 | 14.7 |
V4-P + G | 13.6 | 0.28 | 456 | 34.2 | 14.7 |
V5-P | 12.9 | 0.28 | 416 | 33.5 | 14.3 |
V5-P + G | 13.7 | 0.29 | 436 | 32.7 | 14.4 |
V6-P | 13.2 | 0.27 | 415 | 32.3 | 13.8 |
V6-P + G | 12.5 | 0.28 | 405 | 32.1 | 13.7 |
C | 12.6 | 0.25 | 376 | 30.4 | 13.3 |
SE | 0.29 | 0.01 | 19.47 | 1.03 | 0.38 |
Pr > F | |||||
Treatment | 0.0001 | 0.0305 | 0.0007 | 0.0022 | 0.0022 |
P vs. P + G | 0.2569 | 0.0824 | 0.5634 | 0.7139 | 0.2042 |
P vs. C DOP | 0.4806 | 0.8988 | 0.5852 | 0.5658 | 0.8378 |
P + G vs. C DOP | 0.0209 | 0.4297 | 0.2233 | 0.3087 | 0.6057 |
P vs. C V2 | 0.0004 | 0.5591 | 0.0002 | 0.0021 | 0.0143 |
P + G vs. C V2 | 0.0002 | 0.1467 | <0.0001 | 0.0001 | 0.0001 |
P vs. C V3 | 0.0035 | 0.4384 | 0.0014 | 0.0050 | 0.0154 |
P + G vs. C V3 | <0.0001 | 0.0012 | 0.0018 | 0.0002 | 0.0003 |
P vs. C V4 | 0.0013 | 0.1648 | 0.0007 | 0.0006 | 0.0025 |
P + G vs. C V4 | 0.0045 | 0.0206 | 0.0007 | 0.0027 | 0.0032 |
P vs. C V5 | 0.2784 | 0.0583 | 0.0727 | 0.0120 | 0.0274 |
P + G vs. C V5 | 0.0018 | 0.0095 | 0.0087 | 0.0642 | 0.0149 |
P vs. C V6 | 0.0888 | 0.2270 | 0.0818 | 0.1166 | 0.3069 |
P + G vs. C V6 | 0.7338 | 0.0611 | 0.1928 | 0.1671 | 0.3547 |
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Follett, R.F. Soil management concepts and carbon sequestration in cropland soils. Soil Tillage Res. 2001, 71, 77–92. [Google Scholar] [CrossRef]
- Reicosky, D.C.; Forcella, F. Cover crop and soil quality interactions in agroecosystems. J. Soil Water Conserv. 1998, 53, 224–229. [Google Scholar]
- Perfect, E.; Kay, B.D.; van Loon, W.K.P.; Sheard, R.W.; Posajok, T. Rates of change in soil structural stability under forages compared to corn. Soil Sci. Soc. Am. J. 1990, 54, 179–186. [Google Scholar] [CrossRef]
- Johnson, J.M.-F.; Allmaras, R.R.; Reicosky, D.C. Estimating Source Carbon from Crop Residues, Roots and Rhizodeposits Using the National Grain-Yield Database. Agron. J. 2006, 98, 622–636. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, W.W.; Johnson, J.M.F.; Hatfield, J.L.; Voorhees, W.B.; Linden, D.R. Crop and soil productivity response to maize residue removal: A literature review. Agron. J. 2004, 96, 1–17. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Bharati, L.; Lee, K.-H.; Isenhart, T.M.; Schultz, R.C. Soil-water infiltration under crops, pasture, and established riparian buffer in Midwestern USA. Agrofor. Syst. 2002, 56, 249–257. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res. 2001, 66, 197–205. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Corn stover removal for expanded uses reduces soil fertility and structural stability. Soil Sci. Soc. Am. J. 2009, 73, 418–426. [Google Scholar] [CrossRef]
- Kim, S.; Dale, B.E. Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel. Biomass Bioenerg. 2005, 29, 426–439. [Google Scholar] [CrossRef]
- Bartel, C.A.; Banik, C.; Lenssen, A.W.; Moore, K.J.; Laird, D.A.; Archontoulis, S.V.; Lamkey, K.R. Living mulch for sustainable maize stover biomass harvest. Crop Sci. 2017, 57, 3273–3290. [Google Scholar] [CrossRef] [Green Version]
- Bartel, C.A.; Banik, C.; Lenssen, A.W.; Moore, K.J.; Laird, D.A.; Archontoulis, S.V.; Lamkey, K.R. Establishment of perennial groundcovers for maize-based bioenergy production systems. Agron. J. 2017, 109, 822–835. [Google Scholar] [CrossRef] [Green Version]
- Flynn, E.S.; Moore, K.J.; Singer, J.W.; Lamkey, K.R. Evaluation of grass and legume species as perennial ground covers in corn production. Crop Sci. 2013, 53, 1–10. [Google Scholar] [CrossRef]
- Elkins, D.M.; Vandeventer, J.W.; Xapusta, G.; Anderson, M.R. No-tillage maize production in chemically suppressed grass sod. Agron. J. 1979, 71, 101–105. [Google Scholar] [CrossRef]
- Wiggans, D.R.; Singer, J.W.; Moore, K.J.; Lamkey, K.R. Response of continuous maize with stover removal to living mulches. Agron. J. 2012, 104, 917–925. [Google Scholar] [CrossRef] [Green Version]
- Bartel, C.A.; Archontoulis, S.V.; Lenssen, A.W.; Moore, K.J.; Huber, I.L.; Laird, D.A.; Dixon, P.M. Modeling perennial groundcover effects on annual maize grain crop growth with APSIM. Agron. J. 2020, 112, 1895–1910. [Google Scholar] [CrossRef]
- Wenig, C. Differing selection in alternative competitive environments: Shade-avoidance responses and germination timing. Evolution 2000, 54, 124–136. [Google Scholar] [CrossRef]
- Ruberti, I.; Sessa, G.; Ciolfi, A.; Possenti, M.; Carabelli, M.; Morelli, G. Plant adaptation to dynamically changing environment: The shade avoidance response. Biotechnol. Adv. 2012, 30, 1047–1058. [Google Scholar] [CrossRef]
- Devlin, P.F. Plants wait for the lights to change to red. Proc. Natl. Acad. Sci. USA 2016, 116, 7301–7303. [Google Scholar] [CrossRef] [Green Version]
- Wille, W.; Pipper, C.B.; Rosenqvist, E.; Andersen, S.B.; Weiner, J. Reducing shade avoidance responses in a cereal crop. AoB Plants 2017, 9, plx039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballaré, C.L.; Sanchez, R.A.; Scopel, A.L.; Casal, J.J.; Ghersa, C.M. Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight. Plant Cell Environ. 1987, 10, 551–557. [Google Scholar]
- Ballaré, C.L.; Scopel, A.L.; Sanchez, R.A. Far-red radiation reflected from adjacent leaves: An early signal of competition in plant canopies. Science 1990, 247, 329–331. [Google Scholar] [CrossRef]
- Rajcan, I.; Chandler, K.J.; Swanton, C.J. Red–far-red ratio of reflected light: A hypothesis of why early-season weed control is important in corn. Weed Sci. 2004, 52, 774–778. [Google Scholar] [CrossRef]
- Page, E.R.; Tollenaar, M.; Lee, E.A.; Lukens, L.; Swanton, C.J. Does the shade avoidance response contribute to the critical period for weed control in maize (Zea mays)? Weed Res. 2009, 49, 563–571. [Google Scholar] [CrossRef]
- Page, E.R.; Cerrudo, D.; Westra, P.; Loux, M.; Smith, K.; Foresman, C.; Wright, H.; Swanton, C.J. Why early season weed control is important in maize. Weed Sci. 2012, 60, 423–430. [Google Scholar] [CrossRef]
- Hall, M.R.; Swanton, C.J.; Anderson, G.W. The critical period of weed control in grain corn (Zea mays). Weed Sci. 1992, 40, 441–447. [Google Scholar] [CrossRef]
- Knezevic, S.Z.; Evans, S.P.; Blankenship, E.E.; Van Acker, R.C.; Lindquist, J.L. Critical period for weed control: The concept and data analysis. Weed Sci. 2002, 50, 773–786. [Google Scholar] [CrossRef] [Green Version]
- Dekker, J.; Duke, S.O. Herbicide-resistant field crops. Adv. Agron. 1995, 54, 69–116. [Google Scholar] [CrossRef] [Green Version]
- Masclaux-Daubresse, C.; Daniel-Vedele, F.; Dechorgnat, J.; Chardon, F.; Gaufichon, L.; Suzuki, A. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. Bot. 2010, 105, 1141–1157. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Xiaorong, F.; Miller, A.J. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duke, S.O. Biotechnology: Herbicide-resistant crops. In Encyclopedia of Agriculture and Food Systems; Van Alfen, N., Ed.; Elsevier: San Diego, CA, USA, 2014; Volume 2, pp. 94–116. [Google Scholar]
- Burke, I.C.; Bell, J.L. Plant health management: Herbicides. Encycl. Agric. Food Syst. 2014, 4, 425–440. [Google Scholar]
- US EPA. Paraquat Dichloride. Available online: https://www.epa.gov/ingredients-used-pesticide-products/paraquat-dichloride (accessed on 2 January 2022).
- Mehler, A.H. Studies on reactions of illuminated chloroplasts. II. Stimulation and inhibition of the reaction with molecular oxygen. Arch. Biochem. Biophys. 1951, 33, 339–351. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [Green Version]
- Duke, S.O.; Pan, Z.; Bajsa-Hirschel, J. Proving the mode of action of phytotoxic phytochemicals. Plants 2020, 9, 1756. [Google Scholar] [CrossRef]
- Iowa Environmental Mesonet Network. National Weather Service Cooperative Observer Program. Iowa Environ. Mesonet Network. 2021. Available online: https://mesonet.agron.iastate.edu/COOP/ (accessed on 1 November 2021).
- Pioneer.com. 18D-1182 Northern Iowa Product Guide. Available online: www.pioneer.com/corn (accessed on 1 May 2020).
- Pioneer. Product Spotlight P0574AM and P0574AMXT. 2018. Available online: https://www.youtube.com/watch?v=dISMb9x2Tiw (accessed on 1 May 2020).
- Abendroth, L.J.; Elmore, R.W.; Boyer, M.J.; Marlay, S.K. Corn Growth and Development; Ext. Publ. PMR-1009; Iowa State University: Ames, IA, USA, 2011; Available online: https://store.extension.iastate.edu/Product/Corn-Growth-and-Development (accessed on 22 April 2022).
- Spectrum Technologies, Inc. Red/Far-Red Light Meter Product Manual Item # 3412. 2018. Available online: https://www.specmeters.com/assets/1/22/3412_Red_-_Far_Red_Meter_(Web)2.pdf (accessed on 2 April 2020).
- Smith, H. Light quality, photoperception, and plant strategy. Annu. Rev. Plant Physiol. 1982, 33, 481–518. [Google Scholar] [CrossRef]
- Dobermann, A. Procedure for Measuring Dry Matter, Nutrient Uptake, Yield and Components of Yield in Maize. Researchgate. 2005. Available online: https://www.researchgate.net/file.PostFileLoader.html?id=56a89ca57eddd3b3618b45aa&assetKey=AS%3A322455225208832%401453890724796 (accessed on 22 April 2022).
- Vogel, K.P.; Masters, R.A. Frequency grid: A simple tool for measuring grassland establishment. J. Range Manag. 2001, 54, 653–655. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT 9.3 User’s Guide; SAS Institute: Cary, NC, USA, 2011. [Google Scholar]
- National Drought Mitigation Center. US Drought Monitor Comparison Slider. 2021. Available online: https://droughtmonitor.unl.edu/Maps/ComparisonSlider.aspx (accessed on 3 January 2022).
- Tursun, N.; Datta, A.; Sakinmaz, M.S.; Kantarci, Z.; Knezevic, S.Z.; Chauhan, B.S. The critical period for weed control in three corn (Zea mays L.) types. Crop Prot. 2016, 90, 59–65. [Google Scholar] [CrossRef]
- Elkins, D.; Frederking, D.; Marashi, R.; McVay, B. Living mulch for no-till corn and soybeans. J. Soil Water Conserv. 1983, 38, 431–433. [Google Scholar]
- Kasperbauer, M.J. Far-red reflection from green leaves and effects on phytochrome-mediated assimilate partitioning under field conditions. Plant Phys. 1987, 85, 350–354. [Google Scholar] [CrossRef] [Green Version]
- Matthews, S. Phytochrome-mediated development in land plants: Red light sensing evolves to meet the challenges of changing light environments. Mol. Ecol. 2006, 15, 3483–3503. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.M.; Swanton, C.J.; Hall, J.C.; Mersey, B.G. The influence of temperature and relative humidity on the efficacy of glufosinate-ammonium. Weed Res. 1993, 33, 139–147. [Google Scholar] [CrossRef]
- Coetzer, E.; Al-Khatib, K.; Loughin, T.M. Glufosinate efficacy, absorption, and translocation in Amaranth as affected by relative humidity and temperature. Weed Sci. 2001, 49, 8–13. [Google Scholar] [CrossRef]
- Page, E.R.; Tollenaar, M.; Lee, E.A.; Lukens, L.; Swanton, C.J. Shade avoidance: An integral component of crop–weed competition. Weed Res. 2010, 50, 281–288. [Google Scholar] [CrossRef]
- Hartzler, R.G.; Early-Season Weed Competition in Corn. Iowa State Research Farm Progress Reports. 2009. Available online: http://lib.dr.iastate.edu/farms_reports/582 (accessed on 17 May 2022).
- Borrás, L.; Gambín, B.L. Trait dissection of maize kernel weight: Towards integrating hierarchical scales using a plant growth approach. Field Crops Res. 2010, 118, 1–12. [Google Scholar] [CrossRef]
- Cerrudo, D.; Page, E.R.; Tollenaar, M.; Stewart, G.; Swanton, C.J. Mechanisms of yield loss in maize caused by weed competition. Weed Sci. 2012, 60, 225–232. [Google Scholar] [CrossRef]
- Ateh, C.M.; Doll, J.D. Spring-planted winter rye (Secale cereale) as a living mulch to control weeds in soybean (Glycine max). Weed Technol. 1996, 10, 347–353. [Google Scholar] [CrossRef]
- Echtenkamp, G.W.; Moomaw, R.S. No-till corn production in a living mulch system. Weed Technol. 1989, 3, 261–266. [Google Scholar] [CrossRef]
- Duke, S.O. Why have no new herbicide modes of action appeared in recent years? Pest Manag. Sci. 2012, 68, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Green, J.M. Current state of herbicides in herbicide-resistant crops. Pest Manag. Sci. 2014, 70, 1351–1357. [Google Scholar] [CrossRef]
- Soltani, N.; Dille, J.; Burke, I.; Everman, W.; VanGessel, M.; Davis, V.; Sikkema, P. Potential corn yield losses from weeds in North America. Weed Technol. 2016, 30, 979–984. [Google Scholar] [CrossRef]
- Teasdale, J.R. Contribution of cover crops to weed management in sustainable agricultural systems. J. Prod. Agric. 1996, 9, 475–479. [Google Scholar] [CrossRef]
Treatment | Suppression and Maize Application Stage |
---|---|
1 | Paraquat at day of planting (DOP) |
2 | Paraquat + glufosinate at DOP |
3 | Paraquat at VE (not applied in Year 2) |
4 | Paraquat + glufosinate at VE (not applied in Year 2) |
5 | Paraquat at V1 (Year 1 + Year 2 control) |
6 | Paraquat + glufosinate at V1 (Year 1 + Year 2 control) |
7 | Paraquat at V2 |
8 | Paraquat + glufosinate at V2 |
9 | Paraquat at V3 |
10 | Paraquat + glufosinate at V3 |
11 | Paraquat at V4 |
12 | Paraquat + glufosinate at V4 |
13 | Paraquat at V5 |
14 | Paraquat + glufosinate at V5 |
15 | Paraquat at V6 |
16 | Paraquat + glufosinate at V6 |
17 | No Paraquat or glufosinate (year 1 + year 2 control) |
Treatment | R:FR Ratio | |||
---|---|---|---|---|
2020 | ||||
29 May V2 | 3 June V3 | 11 June V5 | 25 June V8 | |
DOP-P | 0.29 | 0.33 | 0.32 | 0.17 |
DOP-P + G | 0.29 | 0.34 | 0.31 | 0.17 |
VE-P | 0.40 | 0.45 | 0.47 | 0.19 |
VE-P + G | 0.41 | 0.44 | 0.41 | 0.20 |
V2-P | 0.24 | 0.43 | 0.41 | 0.23 |
V2-P + G | 0.24 | 0.44 | 0.42 | 0.21 |
V3-P | 0.27 | 0.28 | 0.42 | 0.26 |
V3-P + G | 0.29 | 0.33 | 0.41 | 0.22 |
V4-P | 0.25 | 0.29 | 0.39 | 0.24 |
V4-P + G | 0.23 | 0.27 | 0.39 | 0.25 |
V5-P | 0.25 | 0.29 | 0.30 | 0.23 |
V5-P + G | 0.25 | 0.34 | 0.31 | 0.24 |
V6-P | 0.22 | 0.26 | 0.26 | 0.25 |
V6-P + G | 0.24 | 0.28 | 0.29 | 0.26 |
C | 0.26 | 0.30 | 0.29 | 0.17 |
SE | 0.014 | 0.016 | 0.017 | 0.011 |
Pr > F | ||||
Treatment | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
P vs. P + G | 0.6281 | 0.0947 | 0.6781 | 0.4694 |
P vs. C DOP | 0.0261 | 0.0869 | 0.1311 | 0.6349 |
P + G vs. C DOP | 0.0261 | 0.0325 | 0.2609 | 0.5714 |
P vs. C VE | <0.0001 | <0.0001 | <0.0001 | 0.0151 |
P + G vs. C VE | <0.0001 | <0.0001 | <0.0001 | 0.0013 |
P vs. C V2 | 0.3856 | <0.0001 | <0.0001 | <0.0001 |
P + G vs. C V2 | 0.2115 | <0.0001 | <0.0001 | 0.0002 |
P vs. C V3 | 0.3542 | 0.4763 | <0.0001 | <0.0001 |
P + G vs. C V3 | 0.0154 | 0.1117 | <0.0001 | <0.0001 |
P vs. C V4 | 0.9899 | 0.7724 | <0.0001 | <0.0001 |
P + G vs. C V4 | 0.1135 | 0.2074 | <0.0001 | <0.0001 |
P vs. C V5 | 0.9019 | 0.8676 | 0.5644 | <0.0001 |
P + G vs. C V5 | 0.6081 | 0.0287 | 0.4040 | <0.0001 |
P vs. C V6 | 0.0238 | 0.0444 | 0.1450 | <0.0001 |
P + G vs. C V6 | 0.4112 | 0.4395 | 0.8894 | <0.0001 |
Treatment | R:FR Ratio | |||
---|---|---|---|---|
2021 | ||||
26 May V2 | 4 June V3 | 12 June V5 | 23 June V7 | |
DOP-P | 0.26 | 0.25 | 0.26 | 0.21 |
DOP-P + G | 0.31 | 0.30 | 0.28 | 0.22 |
V2-P | 0.37 | 0.38 | 0.32 | 0.22 |
V2-P + G | 0.37 | 0.38 | 0.33 | 0.22 |
V3-P | 0.25 | 0.34 | 0.31 | 0.23 |
V3-P + G | 0.28 | 0.39 | 0.33 | 0.22 |
V4-P | 0.27 | 0.28 | 0.31 | 0.24 |
V4-P + G | 0.28 | 0.27 | 0.34 | 0.25 |
V5-P | 0.28 | 0.27 | 0.32 | 0.24 |
V5-P + G | 0.30 | 0.29 | 0.33 | 0.25 |
V6-P | 0.26 | 0.27 | 0.26 | 0.25 |
V6-P + G | 0.27 | 0.27 | 0.26 | 0.25 |
C | 0.23 | 0.23 | 0.25 | 0.22 |
SE | 0.011 | 0.012 | 0.012 | 0.008 |
Pr > F | ||||
Treatment | <0.0001 | <0.0001 | <0.0001 | 0.0007 |
P vs. P + G | 0.0027 | 0.0124 | 0.0121 | 0.7861 |
P vs. C DOP | 0.0206 | 0.1098 | 0.3640 | 0.1693 |
P + G vs. C DOP | <0.0001 | <0.0001 | 0.0070 | 0.4887 |
P vs. C V2 | <0.0001 | <0.0001 | <0.0001 | 0.5741 |
P + G vs. C V2 | <0.0001 | <0.0001 | <0.0001 | 0.9434 |
P vs. C V3 | 0.0528 | <0.0001 | <0.0001 | 0.5041 |
P + G vs. C V3 | 0.0002 | <0.0001 | <0.0001 | 0.8376 |
P vs. C V4 | 0.0023 | 0.0003 | <0.0001 | 0.0328 |
P + G vs. C V4 | 0.0002 | 0.0077 | <0.0001 | 0.0039 |
P vs. C V5 | <0.0001 | 0.0013 | <0.0001 | 0.0276 |
P + G vs. C V5 | <0.0001 | <0.0001 | <0.0001 | 0.0095 |
P vs. C V6 | 0.0050 | 0.0012 | 0.3617 | 0.0009 |
P + G vs. C V6 | 0.0017 | 0.0014 | 0.1979 | 0.0074 |
Treatment | GY | Stover | TAB | HI | GY | Stover | TAB | HI |
---|---|---|---|---|---|---|---|---|
_______________ mg ha−1 _______________ | _______________ mg ha−1 _______________ | |||||||
__________________________ 2020 __________________________ | __________________________ 2021 __________________________ | |||||||
DOP-P | 9.58 | 5.54 | 13.69 | 0.72 | 7.82 | 5.26 | 11.91 | 0.66 |
DOP-P + G | 11.35 | 6.61 | 16.26 | 0.70 | 7.95 | 6.10 | 12.86 | 0.62 |
VE-P | 10.85 | 8.57 | 17.79 | 0.61 | - | - | - | - |
VE-P + G | 10.84 | 8.23 | 17.44 | 0.63 | - | - | - | - |
V2-P | 11.52 | 8.07 | 17.87 | 0.59 | 10.50 | 6.05 | 14.98 | 0.70 |
V2-P + G | 11.46 | 7.98 | 17.73 | 0.62 | 10.88 | 8.53 | 17.78 | 0.61 |
V3-P | 9.18 | 6.98 | 14.78 | 0.64 | 10.59 | 6.57 | 15.57 | 0.69 |
V3-P + G | 10.93 | 7.39 | 16.68 | 0.65 | 10.46 | 8.99 | 17.88 | 0.58 |
V4-P | 10.38 | 6.83 | 15.65 | 0.61 | 9.71 | 7.69 | 15.95 | 0.61 |
V4-P + G | 10.68 | 6.02 | 15.10 | 0.67 | 11.02 | 6.99 | 16.36 | 0.67 |
V5-P | 10.44 | 6.35 | 15.23 | 0.67 | 9.90 | 6.25 | 14.67 | 0.67 |
V5-P + G | 10.98 | 6.60 | 15.94 | 0.71 | 10.01 | 7.39 | 15.89 | 0.63 |
V6-P | 8.81 | 6.21 | 13.70 | 0.68 | 10.21 | 6.73 | 15.40 | 0.66 |
V6-P + G | 10.02 | 5.36 | 13.87 | 0.69 | 10.41 | 5.51 | 14.36 | 0.73 |
C | 8.03 | 6.22 | 13.05 | 0.65 | 7.33 | 5.83 | 12.06 | 0.61 |
SE | 0.89 | 0.78 | 1.27 | 0.03 | 0.79 | 0.62 | 0.91 | 0.04 |
Pr > F | ||||||||
Treatment | 0.1378 | 0.0049 | <0.0001 | 0.1138 | <0.0001 | 0.0006 | <0.0001 | 0.0354 |
P vs. P + G | 0.0368 | 0.8692 | 0.1668 | - | 0.3849 | 0.0162 | 0.0283 | 0.1782 |
P vs. C DOP | 0.0549 | 0.3184 | 0.5032 | - | 0.5204 | 0.3941 | 0.8777 | 0.1367 |
P + G vs. C DOP | 0.0001 | 0.5702 | 0.0014 | - | 0.4201 | 0.6818 | 0.4194 | 0.8618 |
P vs. C VE | 0.0008 | 0.0011 | <0.0001 | - | - | - | - | - |
P + G vs. C VE | 0.0009 | 0.0048 | <0.0001 | - | - | - | - | - |
P vs. C V2 | <0.0001 | 0.0088 | <0.0001 | - | 0.0001 | 0.7404 | 0.0046 | 0.0142 |
P + G vs. C V2 | <0.0001 | 0.0125 | <0.0001 | - | <.0001 | 0.0002 | <0.0001 | 0.9248 |
P vs. C V3 | 0.1519 | 0.2719 | 0.0743 | - | <.0001 | 0.2716 | 0.0008 | 0.0377 |
P + G vs. C V3 | 0.0006 | 0.0922 | 0.0004 | - | 0.0002 | <0.0001 | <0.0001 | 0.4685 |
P vs. C V4 | 0.0046 | 0.3709 | 0.0084 | - | 0.0030 | 0.0072 | 0.0002 | 0.9331 |
P + G vs. C V4 | 0.0016 | 0.7677 | 0.0354 | - | <.0001 | 0.0856 | <0.0001 | 0.0744 |
P vs. C V5 | 0.0037 | 0.8552 | 0.0260 | - | 0.0014 | 0.5252 | 0.0106 | 0.0813 |
P + G vs. C V5 | 0.0005 | 0.5779 | 0.0037 | - | 0.0010 | 0.0231 | 0.0003 | 0.5717 |
P vs. C V6 | 0.3301 | 0.9879 | 0.4958 | - | 0.0004 | 0.1809 | 0.0013 | 0.1380 |
P + G vs. C V6 | 0.0153 | 0.2080 | 0.3880 | - | 0.0002 | 0.6284 | 0.0235 | 0.0015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartel, C.A.; Moore, K.J.; Fei, S.-z.; Lenssen, A.W.; Hintz, R.L.; Kling, S.M. Evaluating Chemical Suppression Treatments to Alter the Red: Far-Red Ratio in Perennial Groundcovers for Maize Production. Agronomy 2022, 12, 1854. https://doi.org/10.3390/agronomy12081854
Bartel CA, Moore KJ, Fei S-z, Lenssen AW, Hintz RL, Kling SM. Evaluating Chemical Suppression Treatments to Alter the Red: Far-Red Ratio in Perennial Groundcovers for Maize Production. Agronomy. 2022; 12(8):1854. https://doi.org/10.3390/agronomy12081854
Chicago/Turabian StyleBartel, Cynthia A., Kenneth J. Moore, Shui-zhang Fei, Andrew W. Lenssen, Roger L. Hintz, and Samantha M. Kling. 2022. "Evaluating Chemical Suppression Treatments to Alter the Red: Far-Red Ratio in Perennial Groundcovers for Maize Production" Agronomy 12, no. 8: 1854. https://doi.org/10.3390/agronomy12081854
APA StyleBartel, C. A., Moore, K. J., Fei, S. -z., Lenssen, A. W., Hintz, R. L., & Kling, S. M. (2022). Evaluating Chemical Suppression Treatments to Alter the Red: Far-Red Ratio in Perennial Groundcovers for Maize Production. Agronomy, 12(8), 1854. https://doi.org/10.3390/agronomy12081854