Exogenously Applied Salicylic Acid Boosts Morpho-Physiological Traits, Yield, and Water Productivity of Lowland Rice under Normal and Deficit Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Climatic Data
2.2. Soil Characteristics of the Experiment Field
2.3. Experimental Design and Treatment Details
2.4. Agronomical Management Practices
2.5. Agronomic Traits and Yield Components
2.6. The Photosynthetic Pigments (Chlorophyll A and B as Well as Carotenoids)
2.7. Drought Tolerance Indices
2.8. Statistical Analysis
3. Results
3.1. Combined ANOVA
3.2. Main Effects of Three Factors and Their Second-Order Interaction on Rice Traits
3.3. Drought Tolerance Indices
3.4. Pearson’s Correlation Coefficient
3.5. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Hashash, E.F.; EL-Agoury, R.Y. Comparison of grain yield-based drought tolerance indices under normal and stress conditions of rice in Egypt. Sch. J. Agric. Vet. Sci. 2019, 6, 41–54. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). World Agricultural Production. April 2022. Available online: https://apps.fas.usda.gov/psdonline/circulars/production.pdf (accessed on 11 May 2022).
- Yuan, S.; Linquist, B.A.; Wilson, L.T. Sustainable intensification for a larger global rice bowl. Nat. Commun. 2021, 12, 7163. [Google Scholar] [CrossRef] [PubMed]
- Bouman, B.A.M.; Humphreys, E.; Tuong, T.P.; Barker, R. Rice and water. Adv. Agron. 2007, 92, 187–237. [Google Scholar] [CrossRef]
- El-Mageed, A.; Taia, A.; El-Mageed, A.; Shimaa, A.; El-Saadony, M.T.; Abdelaziz, S.; Abdou, N.M. Plant growth-promoting rhizobacteria improve growth, morph-physiological responses, water productivity, and yield of rice plants under full and deficit drip irrigation. Rice 2022, 15, 16. [Google Scholar] [CrossRef] [PubMed]
- Boretti, A.; Rosa, L. Reassessing the projections of the world water development report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual Setting the Global Standard the Water Footprint Assessment Manual; Routledge: Oxfordshire, UK, 2011. [Google Scholar] [CrossRef]
- El-Hashash, E.F.; Agwa, A.M. Genetic parameters and stress tolerance index for quantitative traits in barley under different drought stress severities. Asian J. Res. Crop Sci. 2018, 1, 1–16. [Google Scholar] [CrossRef]
- Lafitte, H.R.; Yongsheng, G.; Yan, S.; Li, Z.K. Whole plant responses, key processes, and adaptation to drought stress: The case of rice. J. Exp. Bot. 2007, 58, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Bernier Verulkar, S.; Lafitte, H.R.; Atlin, G.N. Breeding for drought tolerance: Direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Res. 2008, 107, 221–231. [Google Scholar] [CrossRef]
- Hall, A.E. Is dehydration tolerance relevant to genotypic differences in leaf senescence and crop adaptation to dry environments? In Proceedings of the 16th Annual Riverside Symposium in Plant Physiology, Riverside, CA, USA, 28–30 January 1993; pp. 1–10. [Google Scholar]
- Solis, J.; Gutierrez, A.; Mangu, V.; Sanchez, E.; Bedre, R.; Linscombe, S.; Baisakh, N. Genetic napping of quantitative trait loci for grain yield under drought in rice under controlled greenhouse conditions. Front. Chem. 2018, 5, 129. [Google Scholar] [CrossRef]
- Blum, A.; Jordan, W.R. Breeding crop for stress environments. Crit. Rev. Plant Sci. 1985, 2, 199–238. [Google Scholar] [CrossRef]
- Hayat, Q.; Hayat, S.; Irfan, M.; Ahmad, A. Effect of exogenous salicylic acid under changing environment. Environ. Exp. Bot. 2010, 68, 14–25. [Google Scholar] [CrossRef]
- Nazar, R.; Umar, S.; Khan, N.A.; Sareer, O. Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. S. Afr. J. Bot. 2015, 98, 84–94. [Google Scholar] [CrossRef]
- Agami, R.A.; Alamri, S.A.; El-Mageed, T.A.; Abousekken, M.S.M.; Hashem, M. Salicylic acid and proline enhance water use efficiency, antioxidant defense system and tissues’ anatomy of wheat plants under field deficit irrigation stress. J. Appl. Bot. Food Qual. 2019, 92, 360–370. [Google Scholar]
- Hosain, M.T.; Kamrunnahar, M.; Rahman, M.; Hossain, M.; Munshi, M.; Rahman, S. Drought stress response of rice yield (Oryza sativa L.) and role of exogenous salicylic acid. Int. J. Biosci. 2020, 16, 222–230. [Google Scholar] [CrossRef]
- Kimbembe, R.E.R.; Li, G.; Fu, G.; Feng, B.; Fu, W.; Tao, L.; Chen, T. Proteomic analysis of salicylic acid regulation of grain filling of two near-isogenic rice (Oryza sativa L.) under soil drying condition. Plant Physiol. Biochem. 2020, 151, 659–672. [Google Scholar] [CrossRef]
- Ali, L.G.; Nulit, R.; Ibrahim, M.H.; Yien, C. Efficacy of KNO3, SiO2 and SA priming for improving emergence, seedling growth and antioxidant enzymes of rice (Oryza sativa L.), under drought. Sci. Rep. 2021, 11, 3864. [Google Scholar] [CrossRef]
- Sheha, A.M.; Abou El-Enin, M.M.; El-Hashash, E.F.; Rady, M.M.; El-Serafy, R.S.; Shaaban, A. The productivity and overall benefits of faba bean-sugar beet intercropping systems interacted with foliar-applied nutrients. J. Plant Nutr. 2022, 1–18. [Google Scholar] [CrossRef]
- Rafiq, C.M.; Raza, Q.; Riaz, A.; Hanif, M.; Saeed, W.; Iqbal, S.; Awan, T.H.; Ali, S.S.; Sabar, M. Salicylic acid improves rice seed germination under induced drought stress. J. Innov. Sci. 2021, 7, 152–160. [Google Scholar] [CrossRef]
- Betran, F.J.; Beck, D.; Banziger, M.; Edmeades, G.O. Genetic analysis of inbred and hybrid grain yield under stress and non-stress environments in tropical maize. Crop Sci. 2003, 43, 807–817. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S. Selection environment and environmental sensitivity in barley. Euphytica 1991, 57, 157–167. [Google Scholar] [CrossRef]
- Clarke, J.M.; Depauw, R.M.; Townley-Smith, T.F. Evaluation of methods for quantification of drought tolerance in wheat. Crop Sci. 1992, 32, 728–732. [Google Scholar] [CrossRef]
- Fernandez, G.C. Effective selection criteria for assessing plant stress tolerance. In Proceedings of the Adaptation of Food Crops to Temperature and Water Stress, Shanhua, Taiwan, 13–16 August 1992; Volume 27, pp. 257–270. [Google Scholar]
- Clarke, J.M.; Towenley-Smith, T.M.; McCaig, T.N.; Green, D.G. Growth analysis of spring wheat cultivars of varying drought resistance. Crop Sci. 1984, 24, 537–541. [Google Scholar] [CrossRef]
- Fischer, R.A.; Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield response. Aust. J. Agric. Res. 1978, 29, 897–912. [Google Scholar] [CrossRef]
- Rosielle, A.A.; Hamblin, J. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Sci. 1981, 21, 943–946. [Google Scholar] [CrossRef]
- Gavuzzi, P.; Rizza, F.; Palumbo, M.; Campaline, R.G.; Ricciardi, G.L.; Borghi, B. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Plant Sci. 1997, 77, 523–531. [Google Scholar] [CrossRef]
- Bouslama, M.; Schapaugh, W.T. Stress tolerance in soybean. Part 1: Evaluation of three screening techniques for heat and drought tolerance. Crop Sci. 1984, 24, 933–937. [Google Scholar] [CrossRef]
- Lan, J. Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agric. Bor. Sin. 1998, 7, 85–87. [Google Scholar]
- Golestani-Araghi, S.; Assad, M.T. Evaluation of four screening techniques for drought resistance and their relationship to yield reduction ratio in wheat. Euphytica 1998, 103, 293–299. [Google Scholar] [CrossRef]
- Hossain, A.B.S.; Sears, R.G.; Cox, T.S.; Paulsen, G.M. Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Sci. 1990, 30, 622–627. [Google Scholar] [CrossRef]
- Moradi, H.; Akbari, G.A.; Khorasani, S.K.; Ramshini, H.A. Evaluation of drought tolerance in corn (Zea mays L.) new hybrids with using stress tolerance indices. Eur. J. Sustain. Dev. 2012, 1, 543–560. [Google Scholar]
- Moosavi, S.S.; Yazdi Samadi, B.; Naghavi, M.R.; Zali, A.A.; Dashti, H.; Pourshahbazi, A. Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes. Desert 2008, 12, 165–178. [Google Scholar]
- El-Hashash, E.F.; EL-Agoury, R.Y.A.; El-Absy, K.M.; Sakr, S.M.I. Genetic parameters, multivariate analysis and tolerance indices of rice genotypes under normal and drought stress environments. Asian J. Res. Crop Sci. 2018, 1, 1–18. [Google Scholar] [CrossRef]
- Bii, L.C.; Ngugi, K.; Kimani, J.M.; Cheminingwa, G.N. Genotype by environment analysis of rice (Oryza sativa L.) populations under drought stressed and well-watered environments. Aust. J. Crop Sci. 2020, 14, 259–262. [Google Scholar] [CrossRef]
- Ahmad, H.; Zafar, S.A.; Naeem, M.K.; Shokat, S.; Inam, S.; Naveed, A.S.; Xu, J.; Li, Z.; Ali, G.M.; Khan, M.R. Impact of pre-anthesis drought stress on physiology, yield-related traits and drought responsive genes in green super rice. Front. Genet. 2022, 13, 832542. [Google Scholar] [CrossRef] [PubMed]
- El-Mageed, T.A.A.; Mekdad, A.A.A.; Rady, M.O.A.; Abdelbaky, A.S.; Saudy, H.S.; Shaaban, A. Physio-biochemical and agronomic changes of two sugar beet cultivars grown in saline soil as influenced by potassium fertilizer. J. Soil Sci. Plant Nutr. 2022, 1–19. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle Size Analysis. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, 3rd ed.; Klute, A., Ed.; American Society of Agronomy/Soil Science Society of America: Madison, WI, USA, 1996; pp. 383–409. [Google Scholar]
- Page, A.I.; Miller, R.H.; Keeny, D.R. Methods of Soil Analysis. Part II. Chemical and Microbiological Methods, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 225–246. [Google Scholar]
- Sun, H.; Shen, Y.; Yu, Q.; Flerchinger, G.N.; Zhang, Y.; Liu, C.; Zhang, X. Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain. Agric. Water Manag. 2010, 97, 1139–1145. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biometrical Approach, 3rd ed.; McGraw Hill: New York, NY, USA, 1997. [Google Scholar]
- Gomes, F.P. Curso de Estatística Experimental, 15th ed.; Esalq: Piracicaba, Brazil, 2009; p. 477. [Google Scholar]
- Yang, X.; Wang, B.; Chen, L.; Cao, C. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Sci. Rep. 2019, 9, 3742. [Google Scholar] [CrossRef]
- El-Mouhamady, A.B.A.; Gad, A.A.M.; Karim, G.S.A.A. Improvement of drought tolerance in rice using line x tester mating design and biochemical molecular markers. Bull. Natl. Res. Cent. 2022, 46, 1. [Google Scholar] [CrossRef]
- Garg, H.S.; Kumari, P.; Bhattacharya, C.; Panja, S.; Kumar, R. Genetic parameters estimation for yield and yield related traits in rice (Oryza sativa L.) with drought tolerance trait under stress condition. J. Crop Weed 2017, 13, 83–88. [Google Scholar]
- Rasheed, A.; Hassan, M.U.; Aamer, M.; Batool, M.; Fang, S.; Wu, Z.; Li, H. A critical review on the improvement of drought stress tolerance in rice (Oryza sativa L.). Not. Bot. Horti Agrobot. Cluj Napoca 2020, 48, 1756–1788. [Google Scholar] [CrossRef]
- Torres, R.O.; Henry, A. Yield stability of selected rice breeding lines and donors across conditions of mild to moderately severe drought stress. Field Crops Res. 2018, 220, 37–45. [Google Scholar] [CrossRef]
- Sohag, A.A.M.; Tahjib-Ul-Arif, M.; Brestic, M.; Afrin, S.; Sakil, M.A.; Hossain, M.T.; Hossain, M.A.; Hossain, M.A. Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant Soil Environ. 2020, 66, 7–13. [Google Scholar] [CrossRef]
- El-Mowafi, H.F.; AlKahtani, M.D.F.; Abdallah, R.M.; Reda, A.M.; Attia, K.A.; El-Hity, M.A.; El-Dabaawy, H.E.; Husnain, L.A.; Al-Ateeq, T.K.; EL-Esawi, M.A. Combining ability and gene action for yield characteristics in novel aromatic cytoplasmic male sterile hybrid rice under water-stress conditions. Agriculture 2021, 11, 226. [Google Scholar] [CrossRef]
- Abdou, N.M.; Abdel-Razek, M.A.; El-Mageed, S.A.A.; Semida, W.M.; Leilah, A.A.A.; El-Mageed, T.A.A.; Ali, E.F.; Majrashi, A.; Rady, M.O.A. High nitrogen fertilization modulates morpho-physiological responses, yield, and water productivity of lowland rice under deficit irrigation. Agronomy 2021, 11, 1291. [Google Scholar] [CrossRef]
- Abdalla, M.M.; El-Khoshiban, N.H. The influence of water stress on growth, relative water content, photosynthetic pigments, some metabolic and hormonal contents of two Triticium aestivum cultuivars. J. Appl. Sci. Res. 2007, 3, 2062–2074. [Google Scholar]
- Abdelaal, K.A.A.; Attia, K.A.; Alamery, S.F.; El-Afry, M.M.; Ghazy, A.I.; Tantawy, D.S.; Al-Doss, A.A.; El-Shawy, E.S.; Abu-Elsaoud, A.; Hafez, Y.M. Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters. Sustainability 2020, 12, 1736. [Google Scholar] [CrossRef]
- Boyer, J.S. Cell enlargement and growth-induced water potentials. Physiol. Plant 1988, 73, 311–316. [Google Scholar] [CrossRef]
- Gaballah, M.M.; Metwally, A.M.; Skalicky, M.; Hassan, M.M.; Brestic, M.; El Sabagh, A.; Fayed, A.M. Genetic diversity of selected rice genotypes under water stress conditions. Plants 2021, 10, 27. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Water-Use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 2019, 10, 103. [Google Scholar] [CrossRef]
- Grzesiak, S.; Hordyńska, N.; Maciej, P.S.; Grzesiak, T.; Noga, A.; Hebda, M.S. Variation among wheat (Triticum easativum L.) genotypes in response to the drought stress: I-selection approaches. J. Plant Interact. 2019, 14, 30–44. [Google Scholar] [CrossRef]
- Issak, M.; Khatun, M.M.; Sultana, A. Role of salicylic acid as foliar spray on hydride rice (BRRI Hybrid dhan3) cultivation in Bangladesh. Res. Agric. Livest. Fish. 2017, 4, 157–164. [Google Scholar] [CrossRef]
- Khalvandi, M.; Siosemardeh, A.; Roohi, E.; Keramati, S. Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon 2021, 7, e05908. [Google Scholar] [CrossRef]
- Hayat, S.; Ali, B.; Ahmad, A. Salicylic acid: Biosynthesis, metabolism and physiological role in plants. In Salicylic Acid: A Plant Hormone; Springer: Dordrecht, The Netherlands, 2007; pp. 1–14. [Google Scholar]
- Mutlu, S.; Atıcı, O.; Nalbantoğlu, B.; Mete, E. Exogenous salicylic acid alleviates cold damage by regulating antioxidative system in two barley (Hordeum vulgare L.) cultivars. Front. Life Sci. 2016, 9, 99–109. [Google Scholar] [CrossRef]
- Pirasteh-Anosheh, H.; Emam, Y.; Sepaskhah, A. Improving barley performance by proper foliar applied salicylic-acid under saline conditions. Int. J. Plant Prod. 2015, 9, 467–486. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Wang, Y.; Li, G.Z.; Hao, L. Salicylic acid-altering Arabidopsis plant response to cadmium exposure: Underlying mechanisms affecting antioxidation and photosynthesis-related processes. Ecotoxicol. Environ. Saf. 2019, 169, 645–653. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Q.; Hussain, S.; Mei, J.; Dong, H.; Peng, S.; Huang, J.; Cui, K.; Nie, L. Pre-sowing seed treatments in direct-seeded early rice: Consequences for emergence, seedling growth and associated metabolic events under chilling stress. Sci. Rep. 2016, 6, 19637. [Google Scholar] [CrossRef]
- Chaeikar, S.S.; Rabiei, B.; Rahimi, M. Evaluation of drought tolerance indices in rice genotypes (Oryza sativa L.). J. Crop Breed. 2018, 10, 7–18. Available online: http://jcb.sanru.ac.ir/article-1-448-en.html (accessed on 25 August 2020).
- Basavaraj, P.S.; Gireesh, C.; Bharamappanavara, M.; Manoj, C.A.; Ishwarya, L.V.G.; Honnappa, A.V.; Senguttuvel, P.; Sundaram, R.M.; Anantha, M.S. Stress tolerance indices for the identification of low phosphorus tolerant introgression lines derived from Oryza rufipogon Griff. Plant Genet. Res. Charact. Util. 2021, 19, 328–338. [Google Scholar] [CrossRef]
- Yehia, W.M.B.; El-Hashash, E.F. Correlation and multivariate analysis across non-segregation and segregation generations in two cotton crosses. Egypt. J. Agric. Res. 2021, 99, 354–364. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Longmans Green: Harlow, UK, 1996. [Google Scholar]
- Laraswati, A.A.; Padjung, M.; Farid, N.; Nasaruddin, M.F.; Anshori, A.; Nur, A.; Sakinah, A.I. Image Based-Phenotyping and selection index based on multivariate analysis for rice hydroponic screening under drought stress. Plant Breed. Biotechnol. 2021, 9, 272–286. [Google Scholar] [CrossRef]
- Khan, F.; Upreti, P.; Singh, R.; Shukla, P.K.; Shirke, P.A. Physiological performance of two contrasting rice under water stress. Physiol. Mol. Biol. Plants 2017, 23, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, A.; Al-Elwany, O.A.; Abdou, N.M.; Hemida, K.A.; El-Sherif, A.; Abdel-Razek, M.A.; Semida, W.M.; Mohamed, G.F.; El-Mageed, T.A.A. Filter mud enhanced yield and soil properties of water-stressed Lupinus termis L. in saline calcareous soil. J. Soil Sci. Plant Nutr. 2022, 22, 1572–1588. [Google Scholar] [CrossRef]
Property | Unit | 2019 | 2020 | Average | |
---|---|---|---|---|---|
Particle size distribution | Clay | (%) | 55.20 | 55.10 | 55.15 |
Silt | 32.30 | 32.30 | 32.3 | ||
Sand | 12.50 | 12.60 | 12.55 | ||
Texture | Clayey | ||||
Organic matter | (%) | 1.37 | 1.37 | 1.37 | |
pH | 8.20 | 8.20 | 8.20 | ||
Electrical conductivity ECe | (dS m−1) | 3.33 | 3.31 | 3.32 | |
Total N | (ppm) | 513.00 | 516.00 | 514.50 | |
Available P | 15.39 | 15.83 | 15.60 | ||
K+ | 16.00 | 15.00 | 15.50 | ||
Fe2+ | 4.55 | 4.53 | 4.54 | ||
Mn2+ | 3.20 | 3.40 | 3.30 |
Treatments | Description |
---|---|
Irrigations (I) | |
Normal | Rice plants were irrigated with full irrigation (10,710 m3 ha−1), every 4 days (595 m3 ha−1 per one irrigation) through a surface irrigation system (n = 18 irrigation) |
Drought | Rice plants were irrigated with flush irrigation (4510 m3 ha−1), every 10 days (643 m3 ha−1 per one irrigation) through a surface irrigation system (n = 7 irrigation) |
Cultivars (C) | |
Giza177 | Giza171/YomjoNo.1//PiNo.4 (Japonica type, sensitive to drought) |
Giza179 | GZ6296/GZ1368 (Indica/Japonica type, moderate to drought) |
Salicylic acid (SA) | |
SA0 | Distilled water (control) was foliar sprayed three times at 15, 30, and 45 days after transplantation. |
SA1 | 400 µM of SA was foliar sprayed three times at 15, 30, and 45 days after transplantation. |
SA2 | 700 µM of SA was foliar sprayed three times at 15, 30, and 45 days after transplantation. |
SA3 | 1000 µM of SA was foliar sprayed three times at 15, 30, and 45 days after transplantation. |
No. | Index | Equation | Reference |
---|---|---|---|
1 | Stress susceptibility index (SSI) | Fischer and Maurer [27] | |
2 | Tolerance index (TOL) | Rosielle and Hamblin [28] | |
3 | Mean productivity (MP) | ||
4 | Geometric mean productivity (GMP) | Fernandez [25] | |
5 | Stress tolerance index (STI) | ||
6 | Yield index (YI) | Gavuzzi et al. [29] | |
7 | Yield stability index (YSI) | Bouslama and Schapaugh [30] | |
8 | Drought resistance index (DI) | Lan [31] | |
9 | Yield reduction ratio (YR) | Golestani–Araghi and Assad [32] | |
10 | Harmonic mean (HM) | Hossain et al. [33] | |
11 | Golden mean (GOL) | Moradi et al. [34] | |
12 | Abiotic tolerance index (ATI) | Moosavi et al. [35] | |
13 | Stress susceptibility percentage index (SSPI) |
Trait | Mean Square | CV (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Replicates | Irrigation (I) | Cultivars (C) | I × C | Salicylic Acid (SA) | I × SA | C × SA | I × C × SA | Error | ||
df | 2 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 30 | |
RL | 0.26 ns | 598.90 ** | 195.42 ** | 44.18 ** | 48.54 ** | 1.96 ns | 3.78 ns | 1.23 ns | 2.71 | 7.03 |
PH | 2.73 ns | 3998.93 ** | 8.77 ns | 35.23 ** | 114.96 ** | 82.22 ** | 15.57 * | 8.74 ns | 3.69 | 2.23 |
RV | 2.94 ns | 3206.32 ** | 2203.30 ** | 216.77 ** | 52.83 ** | 3.18 ns | 0.26 ns | 0.25 ns | 1.85 | 3.89 |
NL | 11.85 ns | 3468.00 ** | 12,096.75 ** | 60.75 ns | 305.44 ** | 33.92 * | 11.89 ns | 20.17 ns | 11.38 | 5.90 |
FLA | 1.51 ns | 62.99 ** | 606.54 ** | 758.09 ** | 60.65 ** | 13.59 ** | 7.87 ns | 2.89 ns | 2.86 | 4.42 |
SDW | 0.12 ns | 826.56 ** | 537.98 ** | 66.99 ** | 38.61 ** | 2.55 ns | 0.43 ns | 1.91 ns | 1.57 | 6.15 |
RDW | 3.27 * | 300.73 ** | 336.74 ** | 10.65 ** | 31.22 ** | 0.16 ns | 4.36 ** | 0.15 ns | 0.80 | 6.28 |
Chl. A | 0.51 ns | 964.68 ** | 744.70 ** | 735.82 ** | 116.85 ** | 6.55 ** | 5.60 ns | 0.28 ns | 1.98 | 0.51 |
Chl. B | 6.61 * | 64.52 ** | 219.01 ** | 142.04 ** | 57.97 ** | 6.94 * | 3.90 ns | 4.28 ns | 1.81 | 5.27 |
Carotenoids | 0.54 ns | 1.09 ns | 165.61 ** | 76.10 ** | 44.23 ** | 6.39 ** | 2.05 ns | 4.82 * | 1.31 | 7.03 |
NP | 0.61 ns | 621.36 ** | 378.00 ** | 14.85 ** | 8.63 ** | 0.46 ns | 0.15 ns | 0.17 ns | 0.84 | 5.52 |
HD | 1.57 ns | 44.08 ** | 31.69 ** | 2.08 ns | 3.17 ns | 0.99 ns | 2.90 ns | 0.54 ns | 1.14 | 1.15 |
PL | 1.48 ns | 177.58 ** | 86.20 ** | 41.12 ** | 9.54 ** | 0.64 ns | 0.09 ns | 0.65 ns | 0.47 | 3.33 |
FGP | 13.09 ns | 18,161.44 ** | 62,040.71 ** | 544.56 ** | 840.58 ** | 22.80 ns | 14.16 ns | 17.76 ns | 26.63 | 4.14 |
IGP | 7.50 ns | 6210.75 ** | 1326.15 ** | 1419.19 ** | 415.12 ** | 62.67 * | 51.27 ns | 29.55 ns | 17.98 | 22.85 |
PW | 0.02 ns | 9.20 ** | 31.60 ** | 1.35 ** | 0.52 ** | 0.05 ns | 0.04 ns | 0.01 ns | 0.05 | 7.33 |
100-GW | 0.01 ns | 0.63 ** | 0.06 ** | 0.07 ** | 0.09 ** | 0.08 ** | 0.04 * | 0.02 ns | 0.01 | 1.30 |
GYP | 4.37 ns | 2544.29 ** | 171.63 ** | 148.46 ** | 78.01 ** | 0.63 ns | 3.81 ns | 0.04 ns | 4.07 | 5.00 |
GYH | 0.04 ns | 150.93 ** | 12.96 ** | 7.41 ** | 4.36 ** | 0.05 ns | 0.14 ns | 0.03 ns | 0.27 | 5.17 |
WP | 0.01 ns | 6.82 ** | 0.65 ** | 0.26 ** | 0.20 ** | 0.03 ns | 0.02 ns | 0.03 ns | 0.03 | 12.66 |
Factor | RL | PH | RV | NL | FLA | SDW | RDW | Chl. A | Chl. B | Carotenoids |
---|---|---|---|---|---|---|---|---|---|---|
(cm) | (mm3) | (cm2) | (g) | (mg g−1 FW) | ||||||
Irrigation (I) | ||||||||||
Normal | 26.94 ± 0.58 a | 95.35 ± 0.34 a | 43.09 ± 1.03 a | 65.71 ± 3.21 a | 39.44 ± 0.33 a | 24.48 ± 0.64 a | 16.72 ± 0.58 a | 51.40 ± 1.75 a | 26.69 ± 0.97 a | 16.13 ± 0.81 a |
Drought | 19.88 ± 0.74 b | 77.10 ± 1.17 b | 26.74 ± 1.94 b | 48.71 ± 3.79 b | 37.15 ± 1.73 b | 16.18 ± 1.00 b | 11.71 ± 0.74 b | 42.45 ± 0.67 b | 24.37 ± 0.48 b | 16.43 ± 0.42 a |
Cultivars (C) | ||||||||||
Giza177 | 21.39 ± 1.06 b | 85.80±2.33 b | 28.14 ± 2.19 b | 41.33 ± 2.24 b | 34.74 ± 1.26 b | 16.98 ± 1.19 b | 11.56 ± 0.75 b | 43.00 ± 0.54 b | 23.39 ± 0.50 b | 14.43 ± 0.52 b |
Giza179 | 25.43 ± 0.70 a | 86.65 ± 1.82 a | 41.69 ± 1.35 a | 73.08 ± 2.01 a | 41.85 ± 0.73 a | 23.68 ± 0.73 a | 16.86 ± 0.51 a | 50.85 ± 1.90 a | 27.66 ± 0.80 a | 18.14 ± 0.50 a |
Salicylic acid (SA) | ||||||||||
SA0 | 21.84 ± 1.23 b | 84.03 ± 3.59 b | 33.34 ± 3.28 c | 53.29 ± 5.49 c | 36.59 ± 1.89 c | 19.06 ± 1.66 c | 13.20 ± 1.21 b | 44.25 ± 2.01 c | 23.58 ± 0.72 c | 14.67 ± 0.63 c |
SA1 | 23.22 ± 1.35 b,c | 85.21 ± 3.13 b | 34.78 ± 3.29 b | 57.79 ± 5.74 b | 38.41 ± 1.50 b | 20.19 ± 1.68 b | 13.71 ± 1.15 b | 47.25 ± 1.98 b | 26.40 ± 1.07 b | 17.10 ± 0.81 b |
SA2 | 26.30 ± 1.37 a | 90.81 ± 1.73 a | 37.92 ± 3.18 a | 64.13 ± 5.22 a | 41.44 ± 1.41 a | 22.91 ± 1.74 a | 16.61 ± 0.92 a | 51.18 ± 2.35 a | 28.23 ± 0.84 a | 18.62 ± 0.67 a |
SA3 | 22.28 ± 1.38 b | 84.85 ± 2.88 b | 33.62 ± 3.39 c | 53.63 ± 5.69 c | 36.76 ± 2.06 c | 19.15 ± 1.65 c | 13.33 ± 1.27 b | 45.02 ± 2.40 c | 23.90 ± 1.31 c | 14.75 ± 0.98 c |
p-Value | ||||||||||
I | ** | ** | ** | ** | ** | ** | ** | ** | ** | NS |
C | ** | NS | ** | ** | ** | ** | ** | ** | ** | ** |
SA | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
I × C × SA | NS | NS | NS | NS | NS | NS | NS | NS | NS | * |
Factor | NP | HD | PL | FGP | IGP | PW | 100-GW | GY Plant−1 | GYH | WP |
---|---|---|---|---|---|---|---|---|---|---|
(day) | (cm) | (Panicle−1) | (g) | (t) | kg m3 | |||||
Irrigation (I) | ||||||||||
Normal | 20.25 ± 0.51 a | 93.73 ± 0.29 a | 22.63 ± 0.20 a | 144.25 ± 7.00 a | 7.18 ± 0.85 b | 3.49 ± 0.14 a | 2.72 ± 0.02 a | 47.81 ± 0.57 a | 11.83 ± 0.15 a | 1.07 ± 0.05 b |
Drought | 13.05 ± 0.74 b | 91.81 ± 0.30 b | 18.78 ± 0.53 b | 105.35 ± 8.41 b | 29.93 ± 2.88 a | 2.61 ± 0.21 b | 2.49 ± 0.02 b | 33.12 ± 0.94 b | 8.28 ± 0.24 b | 1.83 ± 0.06 a |
Cultivars (C) | ||||||||||
Giza177 | 13.85 ± 0.89 b | 91.96 ± 0.34 b | 19.37 ± 0.63 b | 88.85 ±4.99 b | 23.81 ± 3.92 a | 2.24 ± 0.13 b | 2.64 ± 0.04 a | 38.64 ± 2.01 b | 9.53 ± 0.48 b | 1.34 ± 0.08 b |
Giza179 | 19.46 ± 0.68 a | 93.58 ± 0.28 a | 22.05 ± 0.30 a | 160.75 ± 3.92 a | 13.30 ± 1.58 b | 3.86 ± 0.09 a | 2.57 ± 0.02 b | 42.30 ± 1.25 a | 10.57 ± 0.31 a | 1.57 ± 0.10 a |
Salicylic acid (SA) | ||||||||||
SA0 | 15.90 ± 1.46 b | 92.67 ± 0.60 a | 20.02 ± 0.82 b | 116.54 ± 11.85 d | 23.87 ± 5.05 c | 2.89 ± 0.28 b | 2.55 ± 0.05 c | 38.17 ± 2.45 c | 9.54 ± 0.61 c | 1.32 ± 0.15 b |
SA1 | 16.67 ± 1.38 b,c | 92.63 ± 0.46 a | 20.55 ± 0.82 b | 125.78 ± 12.72 b | 17.19 ± 3.69 b | 3.02 ± 0.28 b | 2.60 ± 0.04 b | 40.37 ± 2.44 b | 10.01 ± 0.59 b | 1.47 ± 0.12 b |
SA2 | 17.83 ± 1.34 a | 92.29 ± 0.37 a | 22.00 ± 0.71 a | 136.00 ± 12.50 a | 10.84 ± 3.06 a | 3.35 ± 0.30 a | 2.70 ± 0.03 a | 43.98 ± 2.28 a | 10.91 ± 0.54 a | 1.62 ± 0.14 a |
SA3 | 16.21 ± 1.45 b | 93.50 ± 0.51 a | 20.26 ± 0.78 b | 120.87 ± 12.68 c | 22.33 ± 5.18 c | 2.94 ± 0.29 b | 2.56 ± 0.04 c | 39.35 ± 2.41 bc | 9.75 ± 0.59 c | 1.39 ± 0.11 b |
p-Value | ||||||||||
I | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
C | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
SA | ** | NS | ** | ** | ** | ** | ** | ** | ** | ** |
I × C × SA | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Cultivar | Salicylic Acid (SA) | Index | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yp | Ys | SSI | TOL | MP | GMP | STI | YI | YSI | DI | YR | ATI | SSPI | HM | GOL | ||
Giza177 | SA0 | 11.21 | 6.65 | 1.36 | 4.56 | 8.93 | 8.63 | 0.53 | 0.80 | 0.59 | 0.48 | 0.41 | 11.09 | 19.28 | 8.35 | 3.92 |
SA1 | 11.65 | 7.28 | 1.25 | 4.37 | 9.47 | 9.21 | 0.61 | 0.88 | 0.62 | 0.55 | 0.38 | 11.34 | 18.47 | 8.96 | 4.33 | |
SA2 | 12.57 | 8.52 | 1.07 | 4.05 | 10.55 | 10.35 | 0.77 | 1.03 | 0.68 | 0.70 | 0.32 | 11.81 | 17.12 | 10.16 | 5.21 | |
SA3 | 11.38 | 7.02 | 1.28 | 4.36 | 9.20 | 8.94 | 0.57 | 0.85 | 0.62 | 0.52 | 0.38 | 10.98 | 18.43 | 8.68 | 4.22 | |
Giza179 | SA0 | 11.52 | 8.79 | 0.79 | 2.73 | 10.16 | 10.06 | 0.72 | 1.06 | 0.76 | 0.81 | 0.24 | 7.74 | 11.54 | 9.97 | 7.44 |
SA1 | 12.00 | 9.10 | 0.81 | 2.90 | 10.55 | 10.45 | 0.78 | 1.10 | 0.76 | 0.83 | 0.24 | 8.54 | 12.26 | 10.35 | 7.28 | |
SA2 | 12.62 | 9.94 | 0.71 | 2.68 | 11.28 | 11.20 | 0.90 | 1.20 | 0.79 | 0.95 | 0.21 | 8.46 | 11.33 | 11.12 | 8.42 | |
SA3 | 11.68 | 8.94 | 0.78 | 2.74 | 10.31 | 10.22 | 0.75 | 1.08 | 0.77 | 0.83 | 0.23 | 7.89 | 11.58 | 10.13 | 7.53 | |
Maximum | 12.62 | 12.62 | 9.94 | 1.36 | 4.56 | 11.28 | 11.20 | 0.90 | 1.20 | 0.79 | 0.95 | 0.41 | 11.81 | 19.28 | 11.12 | |
Minimum | 11.21 | 11.21 | 6.65 | 0.71 | 2.68 | 8.93 | 8.63 | 0.53 | 0.80 | 0.59 | 0.48 | 0.21 | 7.74 | 11.33 | 8.35 | |
Mean | 11.83 | 11.83 | 8.28 | 1.01 | 3.55 | 10.06 | 9.88 | 0.70 | 1.00 | 0.70 | 0.71 | 0.30 | 9.73 | 15.00 | 9.72 |
Trait | PC1 | PC2 | PC3 | PC4 | PC5 |
---|---|---|---|---|---|
RL | 0.25 | −0.05 | 0.12 | 0.04 | 0.28 |
PH | 0.21 | −0.29 | 0.20 | 0.27 | −0.03 |
RV | 0.25 | −0.03 | −0.16 | 0.08 | −0.24 |
NL | 0.23 | 0.19 | −0.18 | 0.06 | −0.15 |
FLA | 0.22 | 0.30 | 0.04 | 0.07 | 0.29 |
SDW | 0.25 | −0.01 | −0.04 | 0.15 | −0.11 |
RDW | 0.25 | 0.07 | −0.01 | 0.34 | 0.33 |
Chl. A | 0.25 | 0.05 | 0.08 | −0.14 | 0.15 |
Chl. B | 0.22 | 0.25 | 0.23 | −0.31 | −0.32 |
Carotenoids | 0.16 | 0.42 | 0.25 | −0.41 | −0.06 |
NP | 0.25 | −0.05 | −0.16 | −0.01 | −0.22 |
HD | 0.17 | −0.15 | −0.57 | −0.39 | 0.47 |
PL | 0.25 | −0.03 | 0.02 | 0.31 | −0.12 |
FGP | 0.23 | 0.17 | −0.26 | −0.02 | −0.08 |
IGP | −0.25 | 0.08 | −0.14 | 0.30 | 0.05 |
PW | 0.23 | 0.17 | −0.23 | 0.28 | −0.20 |
100-GW | 0.17 | −0.29 | 0.48 | 0.03 | 0.14 |
GYP | 0.23 | −0.21 | 0.10 | −0.15 | 0.13 |
GYH | 0.24 | −0.20 | 0.09 | −0.07 | 0.07 |
WP | −0.08 | 0.54 | 0.17 | 0.23 | 0.36 |
Eigenvalues | 15.58 | 2.90 | 1.39 | 0.08 | 0.04 |
Variance % | 77.92 | 14.50 | 6.96 | 0.40 | 0.22 |
Cumulative % | 77.92 | 92.42 | 99.38 | 99.78 | 100.00 |
Factors | PC1 | PC2 | PC3 | PC4 | PC5 |
---|---|---|---|---|---|
Irrigation | |||||
Normal | 5.26 | −2.21 | −0.09 | −0.01 | −0.04 |
Drought | −5.25 | 2.20 | 0.10 | 0.01 | 0.04 |
Cultivar | |||||
Giza177 | −4.14 | −1.96 | 1.22 | −0.03 | 0.03 |
Giza179 | 4.14 | 1.97 | −1.20 | 0.04 | −0.01 |
Salicylic acid (SA) | |||||
SA0 | −1.61 | −0.99 | −1.53 | −0.17 | 0.34 |
SA1 | 0.04 | 0.48 | 0.31 | −0.50 | −0.30 |
SA2 | 3.59 | 1.13 | 1.95 | 0.17 | 0.19 |
SA3 | −2.03 | −0.61 | −0.76 | 0.49 | −0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Sherbiny, H.A.; El-Hashash, E.F.; Abou El-Enin, M.M.; Nofal, R.S.; Abd El-Mageed, T.A.; Bleih, E.M.; El-Saadony, M.T.; El-Tarabily, K.A.; Shaaban, A. Exogenously Applied Salicylic Acid Boosts Morpho-Physiological Traits, Yield, and Water Productivity of Lowland Rice under Normal and Deficit Irrigation. Agronomy 2022, 12, 1860. https://doi.org/10.3390/agronomy12081860
El Sherbiny HA, El-Hashash EF, Abou El-Enin MM, Nofal RS, Abd El-Mageed TA, Bleih EM, El-Saadony MT, El-Tarabily KA, Shaaban A. Exogenously Applied Salicylic Acid Boosts Morpho-Physiological Traits, Yield, and Water Productivity of Lowland Rice under Normal and Deficit Irrigation. Agronomy. 2022; 12(8):1860. https://doi.org/10.3390/agronomy12081860
Chicago/Turabian StyleEl Sherbiny, Heba Abdelhamid, Essam F. El-Hashash, Moamen M. Abou El-Enin, Randa Samir Nofal, Taia A. Abd El-Mageed, Eman Mohamed Bleih, Mohamed T. El-Saadony, Khaled A. El-Tarabily, and Ahmed Shaaban. 2022. "Exogenously Applied Salicylic Acid Boosts Morpho-Physiological Traits, Yield, and Water Productivity of Lowland Rice under Normal and Deficit Irrigation" Agronomy 12, no. 8: 1860. https://doi.org/10.3390/agronomy12081860
APA StyleEl Sherbiny, H. A., El-Hashash, E. F., Abou El-Enin, M. M., Nofal, R. S., Abd El-Mageed, T. A., Bleih, E. M., El-Saadony, M. T., El-Tarabily, K. A., & Shaaban, A. (2022). Exogenously Applied Salicylic Acid Boosts Morpho-Physiological Traits, Yield, and Water Productivity of Lowland Rice under Normal and Deficit Irrigation. Agronomy, 12(8), 1860. https://doi.org/10.3390/agronomy12081860