Evaluating Plant Disease Detection Mobile Applications: Quality and Limitations
Abstract
:1. Introduction
- 1.
- We have examined the existing apps accessible in the three major app stores (i.e., Google Play store, Apple App store, and Microsoft store).
- 2.
- We have devised an app rating scale for analyzing plant disease detection apps by adopting and extending existing rating scales.
- 3.
- We have evaluated the selected apps through our devised app rating scale and identified their design issues.
- 4.
- We have analyzed app store user comments to understand users’ expectations and perspectives better.
- 5.
- We have provided design guidelines that emphasize using artificial intelligence for better plant disease detection app development.
2. Methodology
2.1. App Search Strategy
2.2. Raters
2.3. App Rating Scale for Plant Disease Detection
2.3.1. App Metadata
2.3.2. Aesthetics
2.3.3. General Features
2.3.4. Performance and Efficiency
2.3.5. Usability
2.3.6. Functionality
2.3.7. Transparency
2.3.8. Subjective Quality
2.3.9. Perceived Impact of Users
3. Results
3.1. Internal Consistency of Our App Rating Scale
3.2. Inter-Rater and Intra-Rater Reliability
3.3. Overall Assessment of Evaluated Apps
3.4. Assessment of App Functionality
3.5. Analysis of App Ratings from the App Store and the Developed Rating Scale
3.6. Analysis of User Reviews from the App Stores
4. Discussions
4.1. Principal Findings
4.2. Design Considerations
4.3. Limitations of This Study
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agrios, G.N. Plant Pathology, 5th ed.; Academic Press: Cambridge, MA, USA, 2005. [Google Scholar] [CrossRef]
- Sibiya, M.; Sumbwanyambe, M. An algorithm for severity estimation of plant leaf diseases by the use of colour threshold image segmentation and fuzzy logic inference: A proposed algorithm to update a “leaf doctor” application. AgriEngineering 2019, 1, 205–219. [Google Scholar] [CrossRef] [Green Version]
- Shurtleff, M.C.; Pelczar, R.M.; Pelczar, M.J.; Kelman, A. Plant Disease; Encyclopædia Britannica, Inc.: Chicago, IL, USA, 2021. [Google Scholar]
- Phadikar, S.; Sil, J. Rice disease identification using pattern recognition techniques. In Proceedings of the 2008 11th International Conference on Computer and Information Technology, Khulna, Bangladesh, 10–12 November 2008; pp. 420–423. [Google Scholar]
- Islam, M.; Dinh, A.; Wahid, K.; Bhowmik, P. Detection of potato diseases using image segmentation and multiclass support vector machine. In Proceedings of the IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor, ON, Canada, 30 April–3 May 2017; pp. 1–4. [Google Scholar]
- Huang, W.; Guan, Q.; Luo, J.; Zhang, J.; Zhao, J.; Liang, D.; Huang, L.; Zhang, D. New optimized spectral indices for identifying and monitoring winter wheat diseases. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2516–2524. [Google Scholar] [CrossRef]
- Ram, S.; Nazari, K.; Amanov, A.; Ziyaev, Z.; Jalilov, A. Reduction of Winter Wheat Yield Losses Caused by Stripe Rust through Fungicide Management. J. Phytopathol. 2016, 164, 671–677. [Google Scholar] [CrossRef] [Green Version]
- Meunkaewjinda, A.; Kumsawat, P.; Attakitmongcol, K.; Srikaew, A. Grape leaf disease detection from color imagery using hybrid intelligent system. In Proceedings of the 5th IEEE International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, Thailand, 14–17 May 2008; Volume 1, pp. 513–516. [Google Scholar]
- Sannakki, S.S.; Rajpurohit, V.S.; Nargund, V.; Kulkarni, P. Diagnosis and classification of grape leaf diseases using neural networks. In Proceedings of the 4th IEEE International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India, 4–6 July 2013; pp. 1–5. [Google Scholar]
- Jhuria, M.; Kumar, A.; Borse, R. Image processing for smart farming: Detection of disease and fruit grading. In Proceedings of the 2nd IEEE International Conference on Image Information Processing (ICIIP-2013), Shimla, India, 9–11 December 2013; pp. 521–526. [Google Scholar] [CrossRef]
- Xie, X.; Ma, Y.; Bin, L.; He, J.; Li, S.; Wang, H. A Deep-Learning-Based Real-Time Detector for Grape Leaf Diseases Using Improved Convolutional Neural Networks. Front. Plant Sci. 2020, 11, 751. [Google Scholar] [CrossRef]
- Karlekar, A.; Seal, A. SoyNet: Soybean leaf diseases classification. Comput. Electron. Agric. 2020, 172, 105342. [Google Scholar] [CrossRef]
- Al-Hiary, H.; Bani-Ahmad, S.; Reyalat, M.; Braik, M.; Alrahamneh, Z. Fast and accurate detection and classification of plant diseases. Int. J. Comput. Appl. 2011, 17, 31–38. [Google Scholar] [CrossRef]
- Khirade, S.D.; Patil, A. Plant disease detection using image processing. In Proceedings of the 2015 IEEE International Conference on Computing Communication Control and Automation, Pune, India, 26–27 February 2015; pp. 768–771. [Google Scholar]
- Ramcharan, A.; McCloskey, P.; Baranowski, K.; Mbilinyi, N.; Mrisho, L.; Ndalahwa, M.; Legg, J.; Hughes, D.P. A mobile-based deep learning model for cassava disease diagnosis. Front. Plant Sci. 2019, 10, 272. [Google Scholar] [CrossRef] [Green Version]
- Dutot, M.; Nelson, L.; Tyson, R. Predicting the spread of postharvest disease in stored fruit, with application to apples. Postharvest Biol. Technol. 2013, 85, 45–56. [Google Scholar] [CrossRef]
- Francis, J.; Anto Sahaya Dhas, D.; Anoop, B.K. Identification of leaf diseases in pepper plants using soft computing techniques. In Proceedings of the 2016 IEEE Conference on Emerging Devices and Smart Systems (ICEDSS), Namakkal, India, 4–5 March 2016; pp. 168–173. [Google Scholar]
- Petrellis, N. Mobile application for plant disease classification based on symptom signatures. In Proceedings of the 21st Pan-Hellenic Conference on Informatics, Larissa, Greece, 28–30 September 2017; pp. 1–6. [Google Scholar]
- Riley, M.; Williamson, M.; Maloy, O. Plant disease diagnosis. Plant Health Instr. 2002, 1021. [Google Scholar] [CrossRef]
- Bedi, P.; Gole, P. Plant disease detection using hybrid model based on convolutional autoencoder and convolutional neural network. Artif. Intell. Agric. 2021, 5, 90–101. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Reddy, G.H. A Mobile-Based System for Detecting Plant Leaf Diseases Using Deep Learning. AgriEngineering 2021, 3, 478–493. [Google Scholar] [CrossRef]
- Prasad, S.; Peddoju, S.K.; Ghosh, D. AgroMobile: A cloud-based framework for agriculturists on mobile platform. Int. J. Adv. Sci. Technol. 2013, 59, 41–52. [Google Scholar] [CrossRef]
- Singh, A.K.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A. Deep learning for plant stress phenotyping: Trends and future perspectives. Trends Plant Sci. 2018, 23, 883–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Zhang, S.; Wang, B. Plant Disease Detection and Classification by Deep Learning—A Review. IEEE Access 2021, 9, 56683–56698. [Google Scholar] [CrossRef]
- Cotton Farming. Plant Disease Detection Using Smartphone Goes High Tech. 2019. Available online: https://www.cottonfarming.com/production-2/plant-disease-detection-using-smartphone-goes-high-tech/ (accessed on 30 June 2021).
- Petrellis, N. Plant disease diagnosis for smart phone applications with extensible set of diseases. Appl. Sci. 2019, 9, 1952. [Google Scholar] [CrossRef] [Green Version]
- Ashok, S.; Kishore, G.; Rajesh, V.; Suchitra, S.; Sophia, S.G.; Pavithra, B. Tomato Leaf Disease Detection Using Deep Learning Techniques. In Proceedings of the 5th IEEE International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020; pp. 979–983. [Google Scholar]
- Weizheng, S.; Yachun, W.; Zhanliang, C.; Hongda, W. Grading method of leaf spot disease based on image processing. In Proceedings of the 2008 IEEE International Conference on Computer Science and Software Engineering, Wuhan, China, 12–14 December 2008; Volume 6, pp. 491–494. [Google Scholar]
- Al Bashish, D.; Braik, M.; Bani-Ahmad, S. A framework for detection and classification of plant leaf and stem diseases. In Proceedings of the International Conference on Signal and Image Processing, Chennai, India, 15–17 December 2010; pp. 113–118. [Google Scholar] [CrossRef]
- Arsenovic, M.; Karanovic, M.; Sladojevic, S.; Anderla, A.; Stefanovic, D. Solving current limitations of deep learning based approaches for plant disease detection. Symmetry 2019, 11, 939. [Google Scholar] [CrossRef] [Green Version]
- Orchi, H.; Sadik, M.; Khaldoun, M. On Using Artificial Intelligence and the Internet of Things for Crop Disease Detection: A Contemporary Survey. Agriculture 2022, 12, 9. [Google Scholar] [CrossRef]
- Picon, A.; Alvarez-Gila, A.; Seitz, M.; Ortiz-Barredo, A.; Echazarra, J.; Johannes, A. Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Comput. Electron. Agric. 2019, 161, 280–290. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, L.; Wu, H.; Li, L. Advanced agricultural disease image recognition technologies: A review. Inf. Process. Agric. 2022, 9, 48–59. [Google Scholar] [CrossRef]
- Che’Ya, N.N.; Mohidem, N.A.; Roslin, N.A.; Saberioon, M.; Tarmidi, M.Z.; Arif Shah, J.; Fazlil Ilahi, W.F.; Man, N. Mobile Computing for Pest and Disease Management Using Spectral Signature Analysis: A Review. Agronomy 2022, 12, 967. [Google Scholar] [CrossRef]
- Sibanda, B.K.; Iyawa, G.E.; Gamundani, A.M. Systematic Review of Plant Pest and Disease Identification Strategies and Techniques in Mobile Apps. In Proceedings of the World Conference on Information Systems and Technologies; Springer: Berlin/Heidelberg, Germany, 2021; pp. 491–502. [Google Scholar]
- Patel, H.; Patel, D. Survey of android apps for agriculture sector. Int. J. Inf. Sci. Tech. 2016, 6, 61–67. [Google Scholar] [CrossRef]
- Bhavsar Shreyaben, B. Multilingual Multimedia Based Crop Disease Management System Using Mobile Technology. Ph.D. Thesis, Sardar Patel University, Gujarat, India, 2019. [Google Scholar]
- Rivera, J.; McPherson, A.; Hamilton, J.; Birken, C.; Coons, M.; Iyer, S.; Agarwal, A.; Lalloo, C.; Stinson, J. Mobile apps for weight management: A scoping review. JMIR mHealth uHealth 2016, 4, e5115. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.A.; Rahman, S.S.; Islam, M.M.; Ahmed, S.; Laird, C. Mobile Apps for Foot Measurement in Pedorthic Practice: Scoping Review. JMIR mHealth uHealth 2021, 9, e24202. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [Green Version]
- Stoyanov, S.R.; Hides, L.; Kavanagh, D.J.; Zelenko, O.; Tjondronegoro, D.; Mani, M. Mobile app rating scale: A new tool for assessing the quality of health mobile apps. JMIR mHealth uHealth 2015, 3, e27. [Google Scholar] [CrossRef] [Green Version]
- Stoyanov, S.R.; Hides, L.; Kavanagh, D.J.; Wilson, H. Development and validation of the user version of the Mobile Application Rating Scale (uMARS). JMIR mHealth uHealth 2016, 4, e72. [Google Scholar] [CrossRef] [Green Version]
- Huebner, J.; Schmid, C.; Bouguerra, M.; Ilic, A. FinMARS: A Mobile App Rating Scale for Finance Apps. In Proceedings of the 9th International Conference on Information Communication and Management, Prague, Czech Republic, 23–26 August 2019; pp. 6–11. [Google Scholar]
- Wu, C.H. An empirical study on the transformation of Likert-scale data to numerical scores. Appl. Math. Sci. 2007, 1, 2851–2862. [Google Scholar]
- Silvennoinen, J.; Vogel, M.; Kujala, S. Experiencing visual usability and aesthetics in two mobile application contexts. J. Usability Stud. 2014, 10, 46–62. [Google Scholar]
- von Wangenheim, C.G.; Porto, J.V.A.; Hauck, J.C.; Borgatto, A.F. Do we agree on user interface aesthetics of Android apps? arXiv 2018, arXiv:1812.09049. [Google Scholar]
- ISO/IEC 25010:2011; Systems and Software Engineering—Systems and Software Quality Requirements and Evaluation (SQuaRE)—System and Software Quality Models. ISO: London, UK, 2011. Available online: https://www.iso.org/standard/35733.html (accessed on 30 June 2021).
- Zen, M.; Vanderdonckt, J. Assessing user interface aesthetics based on the inter-subjectivity of judgment. In Proceedings of the 30th International BCS Human Computer Interaction Conference 30, Poole, UK, 11–15 July 2016; pp. 1–12. [Google Scholar]
- Tractinsky, N.; Katz, A.S.; Ikar, D. What is beautiful is usable. Interact. Comput. 2000, 13, 127–145. [Google Scholar] [CrossRef] [Green Version]
- Chan, S. 5-Year Market Forecast: App Spending Will Climb to $270 Billion by 2025. 2021. Available online: https://sensortower.com/blog/sensor-tower-app-market-forecast-2025 (accessed on 15 July 2021).
- Wei, Q.; Chang, Z.; Cheng, Q. Usability study of the mobile library App: An example from Chongqing University. Libr. Hi Tech 2015, 33, 340–355. [Google Scholar] [CrossRef]
- Payne, H.E.; Lister, C.; West, J.H.; Bernhardt, J.M. Behavioral functionality of mobile apps in health interventions: A systematic review of the literature. JMIR mHealth uHealth 2015, 3, e3335. [Google Scholar] [CrossRef] [PubMed]
- Kaikkonen, A.; Kekäläinen, A.; Cankar, M.; Kallio, T.; Kankainen, A. Usability testing of mobile applications: A comparison between laboratory and field testing. J. Usability Stud. 2005, 1, 4–16. [Google Scholar]
- Nayebi, M.; Marbouti, M.; Quapp, R.; Maurer, F.; Ruhe, G. Crowdsourced Exploration of Mobile App Features: A Case Study of the Fort McMurray Wildfire. In Proceedings of the IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Society Track (ICSE-SEIS), Buenos Aires, Argentina, 20–28 May 2017; pp. 57–66. [Google Scholar] [CrossRef]
- Miller, S.A.; Beed, F.D.; Harmon, C.L. Plant disease diagnostic capabilities and networks. Annu. Rev. Phytopathol. 2009, 47, 15–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahlein, A.K. Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis. 2016, 100, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Wäldchen, J.; Rzanny, M.; Seeland, M.; Mäder, P. Automated plant species identification—Trends and future directions. PLoS Comput. Biol. 2018, 14, e1005993. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Li, H.; Zhu, Y.; Xu, T. Review of plant identification based on image processing. Arch. Comput. Methods Eng. 2017, 24, 637–654. [Google Scholar] [CrossRef]
- Nijalingappa, P.; Madhumathi, V. Plant identification system using its leaf features. In Proceedings of the 2015 IEEE International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Davangere, India, 29–31 October 2015; pp. 338–343. [Google Scholar] [CrossRef]
- Agarwal, S.; Jalal, A.S.; Khan, M. Plant Identification using Leaf Image Analysis. In Proceedings of the 3rd International Conference on Internet of Things and Connected Technologies (ICIoTCT), Jaipur, India, 26–27 March 2018; pp. 26–27. [Google Scholar] [CrossRef]
- Le Huy Hien, N.; Van Hieu, N. Recognition of Plant Species using Deep Convolutional Feature Extraction. Int. J. Emerg. Technol. 2020, 11, 904–910. [Google Scholar]
- Bodhwani, V.; Acharjya, D.; Bodhwani, U. Deep residual networks for plant identification. Procedia Comput. Sci. 2019, 152, 186–194. [Google Scholar] [CrossRef]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Hughes, D.; Salathé, M. An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv 2015, arXiv:1511.08060. [Google Scholar]
- Geetharamani, G.; Pandian, A. Identification of plant leaf diseases using a nine-layer deep convolutional neural network. Comput. Electr. Eng. 2019, 76, 323–338. [Google Scholar]
- Abade, A.; Ferreira, P.A.; de Barros Vidal, F. Plant diseases recognition on images using convolutional neural networks: A systematic review. Comput. Electron. Agric. 2021, 185, 106125. [Google Scholar] [CrossRef]
- Bischoff, V.; Farias, K.; Menzen, J.P.; Pessin, G. Technological support for detection and prediction of plant diseases: A systematic mapping study. Comput. Electron. Agric. 2021, 181, 105922. [Google Scholar] [CrossRef]
- Lee, S.H.; Goëau, H.; Bonnet, P.; Joly, A. New perspectives on plant disease characterization based on deep learning. Comput. Electron. Agric. 2020, 170, 105220. [Google Scholar] [CrossRef]
- Wspanialy, P.; Moussa, M. A detection and severity estimation system for generic diseases of tomato greenhouse plants. Comput. Electron. Agric. 2020, 178, 105701. [Google Scholar] [CrossRef]
- Arivazhagan, S.; Shebiah, R.N.; Ananthi, S.; Varthini, S.V. Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agric. Eng. Int. CIGR J. 2013, 15, 211–217. [Google Scholar]
- Liang, Q.; Xiang, S.; Hu, Y.; Coppola, G.; Zhang, D.; Sun, W. PD2SE-Net: Computer-assisted plant disease diagnosis and severity estimation network. Comput. Electron. Agric. 2019, 157, 518–529. [Google Scholar] [CrossRef]
- Betzing, J.H.; Tietz, M.; vom Brocke, J.; Becker, J. The impact of transparency on mobile privacy decision making. Electron. Mark. 2020, 30, 607–625. [Google Scholar] [CrossRef] [Green Version]
- Beresford, A.; Rice, A.; Skehin, N.; Sohan, R. MockDroid: Trading privacy for application functionality on smartphones. In Proceedings of the HotMobile 2011: The 12th Workshop on Mobile Computing Systems and Applications, Phoenix, AZ, USA, 1–3 March 2011. [Google Scholar] [CrossRef]
- Christmann, A.; Van Aelst, S. Robust estimation of Cronbach’s alpha. J. Multivar. Anal. 2006, 97, 1660–1674. [Google Scholar] [CrossRef] [Green Version]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Gliem, J.; Gliem, R. Calculating, Interpreting, And Reporting Cronbach’s Alpha Reliability Coefficient For Likert-Type Scales. In Proceedings of the 2003 Midwest Research to Practice Conference in Adult, Continuing, and Community Education, Columbus, OH, USA, 8–10 October 2003. [Google Scholar]
- Lange, R. Inter-rater reliability. In Encyclopedia of Clinical Neuropsychology; Springer: New York, NY, USA, 2011; p. 1348. [Google Scholar]
- Sawa, J.; Morikawa, T. Interrater reliability for multiple raters in clinical trials of ordinal scale. Drug Inf. J. DIJ/Drug Inf. Assoc. 2007, 41, 595–605. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Pethybridge, S.J.; Nelson, S.C. Leaf Doctor: A new portable application for quantifying plant disease severity. Plant Dis. 2015, 99, 1310–1316. [Google Scholar] [CrossRef] [Green Version]
- Pagano, D.; Maalej, W. User feedback in the appstore: An empirical study. In Proceedings of the 21st IEEE International Requirements Engineering Conference (RE), Rio de Janeiro, Brasil, 15–19 July 2013; pp. 125–134. [Google Scholar] [CrossRef]
- Lepki, L. How to Use Word Clouds for Business, Fiction and Copywriting. 2020. Available online: https://prowritingaid.com/art/425/What-the-Heck-is-a-Word-Cloud-and-Why-Would-I-Use-One.aspx (accessed on 5 July 2021).
- CGIAR. Plant Disease Diagnosis Using Artificial Intelligence: A Case Study on Plantix. 2021. Available online: https://bigdata.cgiar.org/digital-intervention/plant-disease-diagnosis-using-artificial-intelligence-a-case-study-on-plantix/ (accessed on 22 October 2021).
App Name | Country of Origin | Free/Paid | Downloads | Platform |
---|---|---|---|---|
Pestoz Idenify Plant Diseases | India | Free | 10K+ | Android |
AgroAI—Plant Diseases Diagnosis (Early Access) | Africa | Free | 10+ | Android |
Cropalyser | Netherlands | Free | 10K+ | Android |
PDDApp: Plant Disease Detection | Russia | Free | 1K+ | Android |
Leafy | India | Free | 100+ | Android |
PlantDoctor | India | Free | 1K+ | Android |
Plantix–your crop doctor | Germany | Free | 100K+ | Android |
Plant Disease Detector | Unknown | Free | 10+ | Android |
Riceye | Unknown | Free | 5+ | Android |
Cassava Plant Disease Identify | Unknown | Paid | – | iOS |
Plants Disease Identification | Unknown | Paid | – | iOS |
Garden Plants Diseases Detector | Unknown | Paid | – | iOS |
Plant Disease Identifier | Unknown | Paid | – | iOS |
Plant Diseases and Pests | Unknown | Paid | – | iOS |
PlantifyDr | United States | Free | 10+ | Android and iOS |
Leaf Doctor | United States | Free | 10K+ | Android and iOS |
Agrio | United States | Free | 100K+ | Android and iOS |
Functionality Assessment Criteria | Rating 5 | Rating 3 | Rating 1 |
---|---|---|---|
Plant identification | Automatically from image | Manually | Not at all |
Plant coverage | 10+ | 1 to 10 | 0 |
Disease detection | Automatically from image | From questionnaire | Not at all |
Visualize infected area | Automatically | Required user input | Not at all |
Disease severity estimation | Automatically | Required user input | Not at all |
Treatment | Up to date suggestions | Fixed suggestions | Not at all |
Expert/community support | Expert and community | Expert or community | Not at all |
App Rating Sub-Scale | Cronbach’s Alpha () | Internal Consistency |
---|---|---|
Aesthetics | 0.93 | Excellent () |
Usability | 0.92 | Excellent () |
Performance | 0.85 | Good () |
Subjective | 0.94 | Excellent () |
Transparency | 0.85 | Good () |
Perceived impact | 0.95 | Excellent () |
Overall | 0.97 | Excellent () |
App Name | Aesthetics | General | Performance | Usability | Functionality | Subjective | Transparency | Impact | Mean (Std. Dev.) |
---|---|---|---|---|---|---|---|---|---|
Agrio | 4.75 | 2.25 | 4.67 | 4.00 | 3.57 | 2.83 | 2.80 | 3.83 | 3.53 (1.56) |
AgroAI—Plant Diseases Diagnosis (Early Access) | 4.75 | 2.13 | 4.83 | 3.67 | 3.00 | 4.83 | 3.80 | 4.15 | 3.81 (1.50) |
Cassava Plant Disease Identify | 2.25 | 3.25 | 4.33 | 1.83 | 1.67 | 1.33 | 2.20 | 3.00 | 2.48 (0.99) |
Cropalyser | 5.00 | 3.13 | 4.83 | 3.17 | 2.14 | 3.33 | 4.40 | 3.83 | 3.65 (1.41) |
Garden Plants Diseases Detector | 3.00 | 3.25 | 4.33 | 2.83 | 2.71 | 2.50 | 3.40 | 3.17 | 3.19 (1.47) |
Leaf Doctor | 5.00 | 3.50 | 4.83 | 3.00 | 1.86 | 3.00 | 4.40 | 1.17 | 3.33 (1.77) |
Leafy | 3.75 | 2.38 | 5.00 | 4.00 | 3.29 | 3.00 | 2.80 | 2.33 | 3.26 (1.69) |
PDDApp: plant disease detection | 3.00 | 2.38 | 3.50 | 2.83 | 2.43 | 2.17 | 2.80 | 1.00 | 2.44 (1.55) |
Pestoz Identify Plant diseases | 4.75 | 2.38 | 4.67 | 5.00 | 2.71 | 4.00 | 3.40 | 3.33 | 3.56 (1.48) |
Plant Diseases and Pests | 1.00 | 2.75 | 4.50 | 1.50 | 3.00 | 1.83 | 2.60 | 1.67 | 2.42 (1.69) |
Plant Disease Detector | 4.75 | 2.50 | 3.33 | 3.00 | 2.71 | 1.67 | 1.80 | 1.00 | 2.63 (1.75) |
Plant Disease Identifier | 3.00 | 3.25 | 4.33 | 2.67 | 2.71 | 2.67 | 3.40 | 3.17 | 3.19 (1.47) |
PlantDoctor | 2.50 | 2.00 | 3.00 | 1.83 | 1.57 | 1.00 | 1.00 | 1.00 | 1.81 (1.35) |
PlantifyDr | 3.50 | 2.00 | 4.83 | 4.17 | 3.00 | 3.67 | 2.80 | 3.67 | 3.37 (1.65) |
Plantix—your crop doctor | 5.00 | 4.13 | 5.00 | 4.33 | 3.29 | 5.00 | 5.00 | 5.00 | 4.56 (1.16) |
Plants Disease Identification | 2.00 | 2.50 | 4.50 | 3.50 | 2.71 | 1.83 | 2.80 | 3.00 | 3.00 (1.53) |
Riceye | 3.00 | 2.25 | 4.83 | 2.50 | 2.43 | 1.83 | 2.20 | 1.00 | 2.53 (1.65) |
Functionality Assessment Criteria | Google Play (n = 9) n (%) | Apple App (n = 8) n (%) | Total (N = 17) N (%) |
---|---|---|---|
Plant identification | 8 (88.89) | 7 (87.50) | 15 (88.23) |
Plant coverage | 9 (100) | 7 (87.50) | 16 (94.12) |
Disease detection | 8 (88.89) | 7 (87.50) | 15 (88.23) |
Disease severity estimation | 2 (22.22) | 2 (25) | 4 (23.52) |
Visualize infected area | 0 (0) | 1 (12.50) | 1 (5.88) |
Treatment | 7 (77.78) | 4 (50) | 11 (64.71) |
Expert/Community support | 1 (11.11) | 1 (12.50) | 2 (11.76) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddiqua, A.; Kabir, M.A.; Ferdous, T.; Ali, I.B.; Weston, L.A. Evaluating Plant Disease Detection Mobile Applications: Quality and Limitations. Agronomy 2022, 12, 1869. https://doi.org/10.3390/agronomy12081869
Siddiqua A, Kabir MA, Ferdous T, Ali IB, Weston LA. Evaluating Plant Disease Detection Mobile Applications: Quality and Limitations. Agronomy. 2022; 12(8):1869. https://doi.org/10.3390/agronomy12081869
Chicago/Turabian StyleSiddiqua, Ayesha, Muhammad Ashad Kabir, Tanzina Ferdous, Israt Bintea Ali, and Leslie A. Weston. 2022. "Evaluating Plant Disease Detection Mobile Applications: Quality and Limitations" Agronomy 12, no. 8: 1869. https://doi.org/10.3390/agronomy12081869
APA StyleSiddiqua, A., Kabir, M. A., Ferdous, T., Ali, I. B., & Weston, L. A. (2022). Evaluating Plant Disease Detection Mobile Applications: Quality and Limitations. Agronomy, 12(8), 1869. https://doi.org/10.3390/agronomy12081869