Exploring the Genetic Diversity of Carrot Genotypes through Phenotypically and Genetically Detailed Germplasm Collection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material under Study
2.2. Traits under Study
2.3. Statistical Analysis
- Total Sum of Squares:SSTot = ∑y2ij(l) − CF
- Unadjusted treatment sum of squares:SSTrtU = ∑T2j − CFr
- Replication sum of squares:SSR = ∑R2i − CFk2
- For computing the adjusted block sum of squares, SSBAdj, several quantities are required to be computed. Let Bj denote the sum of block totals for the blocks with treatment j, j = 1, 2, …, t, Tj denote the total of the jth treatment total from all replications, and Wj denote the weight for the jth treatment, which is used for adjustment for block,Wj = kTj − (k + 1)Bj + GSSBAdj = ∑W2jk3(k + 1)
- Intra-block error sum of squares:SSE = SST − SSR − SSTrtu − SSBAdj
3. Results
3.1. Assessment of Quantitative and Biochemical Traits
3.2. Phenotypic Variability
3.3. Multivariate Analysis
3.3.1. Cluster Analysis
3.3.2. Estimation of Cluster Mean and Genetic Distance
3.3.3. Percent Contribution and Principal Component Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arscott, S.A.; Tanumihardjo, S.A. Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. Compr. Rev. Food Sci. Food Saf. 2010, 9, 223–239. [Google Scholar] [CrossRef]
- Nicolle, C.; Simon, G.; Rock, E.; Amouroux, P.; Rémésy, C. Genetic variability influences carotenoid, vitamin, phenolic, and mineral content in white, yellow, purple, orange, and dark-orange carrot cultivars. J. Am. Soc. Hortic. Sci. 2004, 129, 523–529. [Google Scholar] [CrossRef]
- Peterson, C.E.; Simon, P.W. Carrot Breeding. In Breeding Vegetable Crops; Basset, M.J., Ed.; AVI Publishing Co., Inc.: London, KY, USA, 1986. [Google Scholar]
- Vaughan, J.; Geissler, C. The New Oxford Book of Food Plants; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Iorizzo, M.; Ellison, S.; Senalik, D.; Zeng, P.; Satapoomin, P.; Huang, J.; Bowman, M.; Iovene, M.; Sanseverino, W.; Cavagnaro, P.; et al. A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat. Genet. 2016, 48, 657–666. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuang, F.; Zhao, Z. Mitotic karyotyping and meiotic observation in carrot (Daucus carota L.). Acta Agric. Shanghai 2005, 21, 26–28. [Google Scholar]
- Brothwell, D.; Brothwell, P.P. Food in Antiquity: A Surveyof the Diet of Early Peoples; Praeger Publishers: London, UK, 1969. [Google Scholar]
- Banga, O. Origin and distribution of the western cultivated carrot. Genet. Agrar. 1963, 17, 357–370. [Google Scholar]
- Simon, P.W. Breeding of Carrot. Plant Breed. Rev. 2010, 19, 157. [Google Scholar]
- Clotault, J.; Geoffriau, E.; Lionneton, E.; Briard, M.; Peltier, D. Carotenoid biosynthesis genes provide evidence of geographical subdivision and extensive linkage disequilibrium in the carrot. Theor. Appl. Genet. 2010, 121, 659–672. [Google Scholar] [CrossRef] [PubMed]
- Rubatzky, V.E.; Quiros, C.F.; Simon, P.W. Carrots and Related Vegetable Umbelliferae; CABI Publishing: Wallingford, UK, 1999. [Google Scholar]
- Vavilov, N.I. The Origin, Variation, Immunity and Breeding of Cultivated Plants; LWW: Philadelphia, PA, USA, 1951; Volume 72. [Google Scholar]
- Rong, J.; Janson, S.; Umehara, M.; Ono, M.; Vrieling, K. Historical and contemporary gene dispersal in wild carrot (Daucus carota ssp. carota) populations. Ann. Bot. 2010, 106, 285–296. [Google Scholar] [CrossRef]
- Alessandro, M.S.; Galmarini, C.R.; Iorizzo, M.; Simon, P.W. Molecular mapping of vernalization requirement and fertility restoration genes in carrot. Theor. Appl. Genet. 2013, 126, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Falcón, J.; Torriglia, A.; Attia, D.; Viénot, F.; Gronfier, C.; Behar-Cohen, F.; Martinsons, C.; Hicks, D. Exposure to artificial light at night and the consequences for flora, fauna and ecosystems. Front. Neurosci. 2020, 14, 1183. [Google Scholar] [CrossRef]
- Simon, P.W.; Freeman, R.E.; Vieira, J.V.; Boiteux, L.S.; Briard, M.; Nothnagel, T.; Michalik, B.; Kwon, Y.-S. Carrot. In Vegetables II; Springer: Berlin/Heidelberg, Germany, 2008; pp. 327–357. [Google Scholar]
- Alasalvar, C.; Grigor, J.M.; Zhang, D.; Quantick, P.C.; Shahidi, F. Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J. Agric. Food Chem. 2001, 49, 1410–1416. [Google Scholar] [CrossRef]
- Gill, H.S.; Kataria, A.S. Some biochemical studies in European and Asiatic varieties of carrot (Daucus carota). Curr. Sci. 1974, 43, 184–185. [Google Scholar]
- Sun, M.S.; Mihyang, K.; Song, J.B. Cytotoxicity and quinine reductase induced effects of Daucas carrot leaf extracts on human cancer cells. Kor. J. Food Sci. 2001, 30, 86–91. [Google Scholar]
- Kalra, C.L.; Kulkarni, S.G.; Berry, S.K. The carrot—A most popular root vegetable. Indian Food Pack. 1987, 41, 46–73. [Google Scholar]
- Suman, M.; Krishna Kumari, K. A study on sensory evaluation, β-carotene retention and shelf-life of dehydrated carrot products. J. Food Sci. Technol. 2002, 39, 677–681. [Google Scholar]
- Stoll, T.; Schieber, A.; Carle, R. Carrot pomace-an underestimated by-product? In Biologically-Active Phytochemicals in Food: Analysis, Metabolism, Bioavailability and Function, Proceedings of the EuroFoodChem XI Meeting, Norwich, UK, 26–28 September 2001; Royal Society of Chemistry: London, UK, 2001; pp. 525–527. [Google Scholar]
- Tabussam, N.; Rana, R.M.; Wattoo, F.M.; Khan, A.I.; Amir, R.M.; Javed, T.; Ahmar, S.; Dessoky, E.S.; Abdelsalam, N.R. Single nucleotide polymorphism based assessment of genetic diversity in local and exotic onion genotypes. Mol. Biol. Rep. 2022, 49, 5511–5520. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, N.R.; Hasan, M.E.; Javed, T.; Rabie, S.M.A.; El-Wakeel, H.E.-D.M.F.; Zaitoun, A.F.; Abdelsalam, A.Z.; Aly, H.M.; Ghareeb, R.Y.; Hemeida, A.A.; et al. Endorsement and phylogenetic analysis of some Fabaceae plants based on DNA barcoding. Mol. Biol. Rep. 2022, 49, 5645–5657. [Google Scholar] [CrossRef] [PubMed]
- Javed, T.; Zhou, J.-R.; Li, J.; Hu, Z.-T.; Wang, Q.-N.; Gao, S.-J. Identification and Expression Profiling of WRKY Family Genes in Sugarcane in Response to Bacterial Pathogen Infection and Nitrogen Implantation Dosage. Front. Plant Sci. 2022, 13, 917953. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, R.; Javed, T.; Hussain, S.; Ahmar, S.; Naz, M.; Zafar, H.; Pandey, S.; Chauhan, J.; Siddiqui, M.H.; Pinghua, C. Calcium homeostasis and potential roles to combat environmental stresses in plants. S. Afr. J. Bot. 2022, 148, 683–693. [Google Scholar] [CrossRef]
- Afzal, I.; Imran, S.; Javed, T.; Basra, S.M.A. Evaluating the integrative response of moringa leaf extract with synthetic growth promoting substances in maize under early spring conditions. S. Afr. J. Bot. 2020, 132, 378–387. [Google Scholar] [CrossRef]
- Abbas, A.; Shah, A.N.; Shah, A.A.; Nadeem, M.A.; Alsaleh, A.; Javed, T.; Abdelsalam, N.R. Genome-Wide Analysis of Invertase Gene Family, and Expression Profiling under Abiotic Stress Conditions in Potato. Biology 2022, 11, 539. [Google Scholar] [CrossRef]
- Mata-Nicolás, E.; Montero-Pau, J.; Gimeno-Paez, E.; García-Pérez, A.; Ziarsolo, P.; Blanca, J.; Cañizares, J. Discovery of a major QTL controlling trichome IV density in tomato using K-seq genotyping. Genes 2021, 12, 243. [Google Scholar] [CrossRef]
- Luby, C.H.; Dawson, J.C.; Goldman, I.L. Assessment and accessibility of phenotypic and genotypic diversity of carrot (Daucus carota L. var. sativus) cultivars commercially available in the United States. PLoS ONE 2016, 11, e0167865. [Google Scholar] [CrossRef]
- Chaitra, K.C.; Sarvamangala, C.; Manikanta, D.S.; Chaitra, P.A.; Fakrudin, B. Insights into genetic diversity and population structure of Indian carrot (Daucus carota L.) accessions. J. Appl. Genet. 2020, 61, 303–312. [Google Scholar] [CrossRef]
- Varshney, R.K.; Baum, M.; Guo, P.; Grando, S.; Ceccarelli, S.; Graner, A. Features of SNP and SSR diversity in a set of ICARDA barley germplasm collection. Mol. Breed. 2010, 26, 229–242. [Google Scholar] [CrossRef]
- Hussain, K.; Singh, D.K.; Ahmed, N.; Nazir, G.; Rasool, R. Genetic variability for qualitative and quantitative traits in carrot (Daucus carota L.). Environ. Ecol. 2005, 23, 644. [Google Scholar]
- Huasen, W.; Chao, Y.; Hongli, L.; Chang, Y.X. Quality differences in carrot genotypes determined by cluster analysis. Acta Hortic. 2007, 736, 347–358. [Google Scholar] [CrossRef]
- Foolad, M.R. Genome mapping and molecular breeding of tomato. Int. J. Plant Genom. 2007, 2007, 64358. [Google Scholar] [CrossRef]
- Singh, S.R.; Ahmed, N.; Srivastva, K.K.; Singh, D.B.; Singh, A.; Yousuf, S. Genetic diversity assessment in European carrot genotypes. Hortic. Soc. India 2017, 74, 56–61. [Google Scholar] [CrossRef]
- Rashidi, M.; Khabbaz, B.G. Prediction of total soluble solids and firmness of carrot based on carrot water content. In Proceedings of the XVIIth World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR 2010), Quebec City, QC, Canada, 13–17 June 2010; Canadian Society for Bioengineering: Winnipeg, MB, Canada, 2010; pp. 1–8. [Google Scholar]
- Rabino, I.; Mancinelli, A.L.; Kuzmanoff, K.M. Photocontrol of anthocyanin synthesis: VI. Spectral sensitivity, irradiance dependence, and reciprocity relationships. Plant Physiol. 1977, 59, 569–573. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417. [Google Scholar] [CrossRef]
- Kumar, U.; Saqib, H.S.A.; Islam, W.; Prashant, P.; Patel, N.; Chen, W.; Yang, F.; You, M.; He, W. Landscape Composition and Soil Physical–Chemical Properties Drive the Assemblages of Bacteria and Fungi in Conventional Vegetable Fields. Microorganisms 2022, 10, 1202. [Google Scholar] [CrossRef]
- Mahalanobis, P.C. On the Generalized Distance in Statistics; National Institute of Science of India: Bengaluru, India, 1936. [Google Scholar]
- Rao, C.R. Advanced Statistical Methods in Biometric Research; John Wiley & Sons: Hoboken, NJ, USA, 1952. [Google Scholar]
- Meena, O.P.; Bahadur, V. Breeding potential of indeterminate tomato (Solanum lycopersicum L.) accessions using D2 analysis. SABRAO J. Breed. Genet. 2015, 47, 49–59. [Google Scholar]
- Grzebelus, D.; Iorizzo, M.; Senalik, D.; Ellison, S.; Cavagnaro, P.; Podgorni, A.M.; Heller-Uszynska, K.; Kilian, A.; Nothnagel, T.; Allender, C.; et al. Diversity, genetic mapping, and signatures of domestication in the carrot (Daucuscarota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers. Mol. Breed. 2014, 33, 625–637. [Google Scholar] [CrossRef]
- Hussain, K.; Ahmed, N.; Qadir, R. Cluster analysis in carrot genotypes under temperate conditions of Kashmir. Indian J. Hortic. 2008, 65, 362–365. [Google Scholar]
- Samal, K.M.; Jagaoev, P.N. Genetic divergence among chickpea cultivars. Indian J. Genet. Plant Breed. 1996, 56, 86–88. [Google Scholar]
- Singh, D.; Singh, R.; Sandhu, J.S.; Chunneja, P. Morphological and genetic diversity analysis of Citrullus landraces from India and their genetic inter relationship with continental watermelons. Sci. Hortic. 2017, 218, 240–248. [Google Scholar] [CrossRef]
- Dalsaniya, S.B.; Poshiya, V.K.; Savaliya, J.J.; Pansuriya, A.G.; Davada, B.K. Genetic divergence in cowpea [Vigna unguiculata (L.) Walp.]. Legume Res. 2009, 32, 250–254. [Google Scholar]
- Gangadhara, K.; Jagadeesaha, R.C.; Anushma, P.L. Genetic divergence studies in French bean (Phaseolus vulgaris L.). Plant Arch. 2014, 1, 225–227. [Google Scholar]
- Sharma, P.K.; Gupta, P.K.; Balyan, H.S. Genetic diversity in a large collection of wheats (Triticum spp.). Indian J. Genet. Plant Breed. 1998, 58, 271–278. [Google Scholar]
- Chahal, G.S.; Gosal, S.S. Principles and Procedures of Plant Breeding: Biotechnological and Conventional Approaches; Alpha Science Int. Ltd.: Oxford, UK, 2002. [Google Scholar]
- Pereira-Lorenzo, S.; dos Santos, A.R.F.; Ramos-Cabrer, A.M.; Sau, F.; Díaz-Hernández, M.B. Morphological variation in local pears from north-western Spain. Sci. Hortic. 2012, 138, 176–182. [Google Scholar] [CrossRef]
- Duran, C.; Appleby, N.; Edwards, D.; Batley, J. Molecular genetic markers: Discovery, applications, data storage and visualisation. Curr. Bioinform. 2009, 4, 16–27. [Google Scholar] [CrossRef]
- Yadav, M.; Tirkey, S.; Singh, D.B.; Chaudhary, R.; Roshan, R.K.; Pebam, N. Genetic variability, correlation coefficient and path analysis in carrot. Indian J. Hortic. 2009, 66, 315–318. [Google Scholar]
- Tewatia, A.S.; Khurana, S.C.; Dudi, B.S. Evaluation of carrot germplasm under tropical conditions. Haryana J. Hortic. Sci. 2000, 29, 104–107. [Google Scholar]
- Nisha, T.; Jamwal, R.S. Genetic variability study of European carrot (Daucus carota L.) genotypes. Ann. Agri-Bio Res. 2015, 20, 40–42. [Google Scholar]
- Teli, S.K.; Kaushik, R.A.; Ameta, K.D.; Kapuriya, V.K.; Mali, D.; Teli, L.K. Genetic variability, heritability and genetic advance in Carrot (Daucus carota var. sativa L.). Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2336–2342. [Google Scholar] [CrossRef]
- Nayak, B.R.; Nagre, P.K. Genetic Variability and Correlation Studies in Brinjal (Solanum melongena L.). Indian J. Agric. Res. 2013, 51, 112–119. [Google Scholar]
- Reshmika, P.K.; Gasti, V.D.; Evoor, S.; Jayappa, J.; Mulge, R. Genetic variability studies for growth, earliness, yield and quality parameters in brinjal (Solanum melongena L.). Environ. Ecol. 2015, 33, 761–766. [Google Scholar]
- Tirkey, M.; Saravana, S.; Pushpa, L. Studies on variability, heritability and genetic advance for yield and its attributes in brinjal (Solanum melongena L.). J. Pharmacogn. Phytochem. 2018, 1, 1181–1183. [Google Scholar]
- Banga, O. Origin of the European Cultivated Carrot; Instituutvoor de Veredeling van Tuinbouwgewassen: Enkhuizen, The Netherlands, 1957. [Google Scholar]
- Simon, P.W. Genetic improvement of vegetable carotene content. In Biotechnology and Nutrition, Third International Symposium; Agriculture Research Service: Beltsville, MD, USA, 1992; Volume 1, pp. 293–300. [Google Scholar]
- Simon, P.W.; Lindsay, R.C.; Peterson, C.E. Analysis of carrot volatiles collected on porous polymer traps. J. Agric. Food Chem. 1980, 28, 549–552. [Google Scholar] [CrossRef]
- Holden, J.M.; Eldridge, A.L.; Beecher, G.R.; Buzzard, I.M.; Bhagwat, S.; Davis, C.S.; Schakel, S. Carotenoid content of US foods: An update of the database. J. Food Compos. Anal. 1999, 12, 169–196. [Google Scholar] [CrossRef]
- Böhm, V.; Puspitasari-Nienaber, N.L.; Ferruzzi, M.G.; Schwartz, S.J. Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene, and zeaxanthin. J. Agric. Food Chem. 2002, 50, 221–226. [Google Scholar] [CrossRef]
- Baranski, R.; Allender, C.; Klimek-Chodacka, M. Towards better tasting and more nutritious carrots: Carotenoid and sugar content variation in carrot genetic resources. Food Res. Int. 2012, 47, 182–187. [Google Scholar] [CrossRef]
- Singh, B.; Pal, A.K.; Pandy, S.; Rai, M. Genotypic Variation for Quantitative and Qualititative Traits in Asiatic Carrot (Daucuscarota L. var. sativa). Indian J. Plant Genet.Resour. 2004, 17, 181–184. [Google Scholar]
- Kırca, A.; Özkan, M.; Cemeroğlu, B. Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chem. 2007, 101, 212–218. [Google Scholar] [CrossRef]
- Maeda, H.; Akagi, T.; Tao, R. Quantitative characterization of fruit shape and its differentiation pattern in diverse persimmon (Diospyros kaki) cultivars. Sci. Hortic. 2018, 228, 41–48. [Google Scholar] [CrossRef]
- Thompson, R. Some factors affecting carrot root shape and size. Euphytica 1969, 18, 277–285. [Google Scholar] [CrossRef]
- Olymbios, C.M.; Schwabe, W.W. Effects of aeration and soil compaction on growth of the carrot, Daucuscarota L. J. Hortic. Sci. 1977, 52, 485–500. [Google Scholar] [CrossRef]
- Strandberg, J.O. Effect of soil compaction on carrot roots. J. Am. Soc. Hortic. Sci. 1979, 104, 344–349. [Google Scholar]
- Sri Agung, I.; Blair, G.J. Effects of soil bulk density and water regime on carrot yield harvested at different growth stages. J. Hortic. Sci. 1989, 64, 17–25. [Google Scholar] [CrossRef]
- Ahmed, N.; Singh, S.R.; Lal, S.; Mir, K.A.; Amin, A.; Habib, K.; Salmani, M. Assessment of genetic diversity in brinjal genotypes using multivariate analysis. Indian J. Hortic. 2014, 71, 494–498. [Google Scholar]
- Singh, V.N.; Singh, S.S. Studies on the effect of INM on growth, yield and economics of tomato [Solanum lycopersicon (L.)] cv. NDT-6. J. Multidiscipl. Ina Adv. Res. 2013, 2, 94–102. [Google Scholar]
- Riley, K.; Rao, V.R.; Zhou, M.D.; Quek, P. Characterization and evaluation of plant genetic resources-Present status and future challenges. In Plant Genetic Resources: Characterization and Evaluation; NIAR: Ibaraki, Japan, 1996. [Google Scholar]
Mean Square | Error Mean Square | |||||
---|---|---|---|---|---|---|
Characters | Year | Replication (Year) | Block (Year × Replication) | Treatment | Year × Treatment | |
Plant height (cm) | 10.09 | 6.43 | 14.43 | 114.01 * | 46.52 * | 14.40 |
Number of leaves | 0.85 * | 0.19 | 0.1523 | 1.22 * | 0.897 * | 0.15 |
Shoot weight (g) | 613.66 * | 14.06 | 12.84 | 99.98 * | 40.31 * | 12.08 |
Root length (cm) | 77.63 * | 2.39 | 6.26 | 32.11 * | 8.86 | 7.26 |
Root weight (g) | 809.09 * | 44.85 | 17.82 | 103.71 * | 53.66 * | 20.51 |
Root girth (cm) | 0.61 * | 0.09 | 0.07 | 0.15 * | 0.1002 | 0.07 |
Core girth (cm) | 0.013 * | 0.000051 | 0.0013 | 0.061 * | 0.039 * | 0.0014 |
Flesh thickness (cm) | 0.83 * | 0.00081 | 0.0047 | 0.14 * | 0.09 * | 0.006 |
Root shoot ratio | 1.12 * | 0.01 | 0.014 | 0.36 * | 0.12 * | 0.023 |
Total root yield (kg) | 3.22 * | 0.04 | 0.13 | 0.61 * | 0.27 * | 0.12 |
Marketable root yield (kg) | 6.08 * | 0.20 | 0.11 | 0.49 * | 0.27 * | 0.12 |
Days to 1st root harvest | 30.07 | 3.45 | 9.59 | 63.17 * | 14.24 | 11.53 |
Dry matter content (%) | 0.007 | 0.101 | 0.085 | 2.89 * | 0.25 * | 0.15 |
Total soluble solids content (°Brix) | 0.11 | 0.005 | 0.074 | 0.43 * | 0.198* | 0.09 |
Total sugar content (%) | 0.0044 | 0.009 | 0.084 | 2.33 * | 0.037 | 0.10 |
Juice content (mL/kg) | 5145.67 * | 77.08 | 235.09 | 8241.40 * | 5426.85 * | 218.85 |
Anthocyanin content (mg/100 g) | 0.021 | 0.78 | 0.66 | 1502.06 * | 1.102 | 1.13 |
Carotene content (mg/100 g) | 0.03 | 0.074 | 0.13 | 5.39 * | 0.108 | 0.10 |
Lycopene content (mg/100 g) | 0.00000031 | 0.00213 | 0.0011 | 0.632* | 0.06083 * | 0.00156072 |
Serial Number | Genotypes | Plant Height (cm) | Shoot Weight (g) | Root Length (cm) | Root Weight (g) | Root Shoot Ratio | Root Girth (cm) | Core Girth (cm) | Flesh Thickness (cm) | Total Yield (kg) | Marketable Yield (kg) | Days to 1st Root Harvest | Number of Leaves | Total Solube Solids; (°Brix) | Dry Matter (%) | Total Sugar (%) | Carotene (mg/100 g) | Anthocyanin (mg/100 g) | Juice (mL/kg) | Lycopene (mg/100 g) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | PC-5 | 70.8 | 39.6 | 26.3 | 114.3 | 2.95 | 2.6 | 0.78 | 1.83 | 8.4 | 8.2 | 95.4 | 8.2 | 8.3 | 7.7 | 7.9 | 7.0 | 9.7 | 533.8 | 0.88 |
2. | PC-5-1 | 69.4 | 52.5 | 26.4 | 107.4 | 2.07 | 2.7 | 0.96 | 1.65 | 7.8 | 7.6 | 99.3 | 7.8 | 8.6 | 6.8 | 6.5 | 6.6 | 5.4 | 534.5 | 1.03 |
3. | PC-6 | 69.8 | 47.8 | 26.1 | 117.1 | 2.47 | 2.5 | 0.77 | 1.71 | 8.6 | 8.2 | 90.5 | 7.7 | 8.8 | 6.6 | 7.8 | 6.5 | 8.7 | 426.1 | 1.11 |
4. | PC-17 | 68.6 | 46.5 | 30.8 | 120.2 | 2.57 | 3.0 | 0.83 | 2.16 | 8.8 | 8.5 | 96.4 | 7.8 | 9.0 | 7.0 | 6.1 | 6.4 | 3.9 | 591.1 | 1.20 |
5. | PC-34 | 66.8 | 42.9 | 26.9 | 116.7 | 2.76 | 3.1 | 0.95 | 2.07 | 8.5 | 8.4 | 91.3 | 6.7 | 8.7 | 10.9 | 8.1 | 7.8 | 8.7 | 495.7 | 0.86 |
6. | PC-43 | 70.9 | 43.2 | 23.6 | 124.4 | 2.94 | 2.8 | 0.83 | 1.93 | 9.2 | 8.7 | 92.5 | 7.6 | 8.8 | 7.2 | 7.7 | 6.4 | 3.8 | 572.9 | 0.95 |
7. | PC-69 | 66.5 | 46.0 | 24.9 | 122.4 | 2.64 | 3.0 | 0.94 | 2.01 | 8.9 | 8.8 | 89.6 | 7.8 | 8.7 | 6.6 | 7.7 | 7.2 | 3.3 | 468.8 | 0.95 |
8. | PC-79A | 68.9 | 49.3 | 29.0 | 123.6 | 2.56 | 2.9 | 0.75 | 2.05 | 9.1 | 8.6 | 91.6 | 8.3 | 9.4 | 7.3 | 8.2 | 6.3 | 8.1 | 492.8 | 1.65 |
9. | PC-79B | 71.8 | 48.9 | 23.7 | 116.0 | 2.42 | 3.0 | 0.99 | 1.98 | 8.5 | 8.3 | 96.7 | 8.6 | 9.0 | 6.8 | 6.4 | 6.6 | 8.3 | 481.0 | 1.25 |
10. | PC-80 | 71.7 | 50.7 | 28.0 | 122.0 | 2.46 | 3.0 | 0.98 | 1.94 | 9.1 | 8.6 | 90.5 | 8.1 | 8.8 | 6.7 | 6.1 | 6.1 | 7.8 | 503.0 | 0.26 |
11. | PC-100 | 60.3 | 44.9 | 22.9 | 121.5 | 2.73 | 3.1 | 0.93 | 2.11 | 8.9 | 8.5 | 89.2 | 7.3 | 8.5 | 6.2 | 7.9 | 7.6 | 3.2 | 529.0 | 1.09 |
12. | PC-103 | 74.6 | 45.1 | 25.4 | 124.1 | 2.75 | 3.2 | 0.84 | 2.40 | 9.2 | 8.8 | 90.5 | 8.9 | 9.0 | 6.9 | 7.5 | 6.9 | 8.5 | 444.1 | 1.12 |
13. | PC-105 | 67.9 | 44.7 | 24.2 | 117.3 | 2.62 | 3.3 | 1.35 | 1.88 | 8.7 | 8.4 | 99.9 | 8.4 | 8.9 | 5.9 | 7.8 | 7.4 | 7.8 | 543.8 | 0.79 |
14. | PC-112 | 71.7 | 52.5 | 28.3 | 119.3 | 2.24 | 3.3 | 1.03 | 2.20 | 8.7 | 8.3 | 97.2 | 7.8 | 8.6 | 7.3 | 7.9 | 7.2 | 12.5 | 571.0 | 0.30 |
15. | PC-14-1 | 65.7 | 44.8 | 24.0 | 122.9 | 2.77 | 2.9 | 1.10 | 1.80 | 9.0 | 8.7 | 88.4 | 8.1 | 8.9 | 7.0 | 6.1 | 5.2 | 11.0 | 531.9 | 0.87 |
16. | PC-142 | 71.5 | 54.5 | 22.7 | 119.8 | 2.20 | 2.8 | 1.14 | 1.67 | 8.7 | 8.5 | 94.8 | 8.7 | 8.8 | 7.3 | 7.5 | 6.5 | 8.7 | 423.5 | 1.35 |
17. | PC-143 | 75.8 | 50.6 | 22.2 | 114.2 | 2.26 | 3.0 | 1.00 | 1.94 | 8.5 | 8.4 | 87.6 | 8.2 | 8.1 | 7.0 | 7.8 | 7.0 | 4.8 | 446.2 | 0.92 |
18. | PC-144 | 60.2 | 45.0 | 24.7 | 122.5 | 2.74 | 3.2 | 1.03 | 2.09 | 9.0 | 8.6 | 94.5 | 8.2 | 8.8 | 6.7 | 7.4 | 6.6 | 6.5 | 472.5 | 0.34 |
19. | PC-160 | 68.9 | 48.3 | 26.3 | 122.8 | 2.59 | 3.1 | 0.78 | 2.13 | 9.1 | 8.6 | 91.4 | 8.2 | 8.6 | 6.8 | 7.9 | 6.6 | 7.4 | 514.7 | 1.13 |
20. | PC-161 | 73.5 | 48.5 | 30.0 | 127.2 | 2.62 | 3.0 | 0.69 | 2.23 | 9.3 | 9.2 | 90.5 | 8.2 | 9.5 | 9.7 | 8.3 | 8.7 | 8.4 | 583.5 | 1.67 |
21. | PAU-J-1 | 69.6 | 49.8 | 23.6 | 121.2 | 2.51 | 3.0 | 1.03 | 1.92 | 8.9 | 8.6 | 86.4 | 6.7 | 8.5 | 7.6 | 6.2 | 5.8 | 7.9 | 503.1 | 1.21 |
22. | PAU-J-2 | 69.5 | 43.9 | 26.1 | 118.7 | 2.67 | 2.9 | 0.87 | 2.02 | 8.8 | 8.4 | 86.9 | 7.3 | 8.5 | 7.6 | 6.9 | 6.8 | 3.8 | 470.8 | 0.99 |
23. | PAU-J-3 | 66.8 | 42.0 | 27.3 | 118.3 | 2.83 | 3.0 | 1.02 | 1.91 | 8.7 | 8.7 | 95.8 | 7.6 | 8.9 | 5.8 | 6.6 | 7.0 | 3.1 | 508.9 | 1.04 |
24. | PAU-J-4 | 61.3 | 44.2 | 23.8 | 116.0 | 2.67 | 3.1 | 0.91 | 2.18 | 8.5 | 8.2 | 95.3 | 8.2 | 8.4 | 7.7 | 7.2 | 7.3 | 8.3 | 507.4 | 0.70 |
25. | PAU-J-5 | 62.7 | 57.5 | 24.5 | 121.2 | 2.10 | 3.0 | 0.86 | 2.10 | 8.9 | 8.5 | 94.7 | 7.8 | 9.0 | 6.8 | 7.9 | 7.1 | 8.3 | 530.4 | 0.31 |
26. | PAU-J-6 | 71.0 | 55.2 | 23.7 | 122.2 | 2.16 | 3.1 | 0.87 | 2.24 | 8.9 | 8.5 | 95.4 | 7.7 | 8.6 | 6.8 | 5.2 | 7.4 | 9.2 | 561.8 | 0.29 |
27. | PAU-J-7 | 72.2 | 44.7 | 22.2 | 120.6 | 2.80 | 3.0 | 1.15 | 1.85 | 9.0 | 8.5 | 92.7 | 7.8 | 8.9 | 9.2 | 5.1 | 6.4 | 9.6 | 496.7 | 0.79 |
28. | PAU-J-8 | 73.4 | 51.5 | 27.1 | 121.5 | 2.38 | 2.7 | 0.79 | 1.90 | 8.9 | 8.5 | 89.2 | 8.0 | 9.0 | 8.9 | 6.4 | 6.9 | 5.3 | 560.1 | 1.17 |
29. | PAU-J-9 | 68.3 | 47.9 | 26.6 | 121.6 | 2.54 | 2.9 | 0.86 | 2.05 | 8.8 | 8.4 | 94.4 | 8.9 | 8.6 | 7.0 | 7.0 | 7.7 | 3.8 | 528.4 | 0.97 |
30. | PAU-J-10 | 67.2 | 50.0 | 25.8 | 121.3 | 2.43 | 3.1 | 1.01 | 2.10 | 8.8 | 8.7 | 95.5 | 8.7 | 8.4 | 7.2 | 5.2 | 7.9 | 6.7 | 506.3 | 1.02 |
31. | PAU-J-11 | 75.4 | 49.7 | 21.5 | 109.3 | 2.27 | 3.3 | 0.85 | 2.46 | 8.2 | 7.7 | 92.6 | 8.2 | 8.4 | 9.2 | 7.6 | 7.1 | 8.0 | 414.2 | 1.38 |
32. | PAU-J-12 | 70.2 | 51.0 | 28.8 | 118.1 | 2.35 | 3.0 | 0.84 | 2.12 | 8.8 | 8.4 | 90.4 | 8.8 | 8.7 | 7.0 | 8.2 | 6.8 | 9.4 | 474.9 | 1.28 |
33. | PAU-J-13 | 57.1 | 52.8 | 26.0 | 123.2 | 2.39 | 2.8 | 1.02 | 1.84 | 9.0 | 8.7 | 91.0 | 7.3 | 8.7 | 7.0 | 6.3 | 7.6 | 6.8 | 454.9 | 0.33 |
34. | PAU-J-14 | 62.9 | 44.5 | 23.6 | 118.6 | 2.67 | 3.0 | 1.24 | 1.81 | 8.8 | 8.4 | 94.0 | 8.5 | 8.5 | 6.8 | 6.9 | 5.7 | 12.2 | 499.6 | 0.24 |
35. | PAU-J-15 | 66.3 | 48.5 | 26.7 | 124.4 | 2.85 | 3.0 | 0.95 | 2.05 | 9.2 | 8.8 | 91.3 | 9.3 | 9.4 | 7.2 | 7.3 | 7.7 | 3.4 | 544.9 | 1.07 |
36. | PAU-KPT-1 | 67.7 | 47.2 | 29.0 | 116.2 | 2.53 | 2.7 | 0.80 | 1.92 | 8.4 | 8.2 | 93.6 | 8.8 | 8.5 | 7.0 | 5.8 | 7.5 | 8.3 | 554.8 | 1.60 |
37. | Karnana-1 | 63.9 | 45.0 | 26.6 | 123.1 | 2.77 | 3.1 | 0.93 | 2.18 | 9.0 | 8.5 | 90.3 | 8.5 | 8.6 | 7.0 | 7.7 | 7.5 | 3.1 | 520.7 | 0.92 |
38. | Pusa Vrishti | 55.0 | 47.5 | 24.3 | 124.0 | 2.65 | 3.4 | 0.84 | 2.56 | 8.9 | 8.7 | 94.0 | 6.5 | 8.6 | 6.2 | 7.7 | 6.8 | 3.8 | 556.9 | 1.06 |
39. | Pusa Rudira | 73.0 | 46.4 | 25.8 | 112.6 | 2.44 | 2.6 | 0.85 | 1.79 | 8.3 | 8.0 | 89.3 | 8.4 | 8.7 | 6.4 | 8.0 | 7.0 | 9.6 | 552.0 | 1.13 |
40. | Pusa Vasuda | 74.5 | 47.8 | 26.1 | 118.8 | 2.45 | 2.8 | 0.84 | 1.96 | 8.7 | 8.4 | 95.3 | 8.5 | 8.6 | 7.3 | 8.3 | 7.6 | 5.3 | 437.2 | 1.11 |
41. | Hisar Gairic | 69.6 | 48.1 | 24.9 | 111.8 | 2.36 | 2.8 | 0.81 | 1.97 | 8.2 | 8.1 | 94.7 | 7.4 | 8.4 | 6.2 | 7.6 | 7.2 | 3.2 | 464.9 | 1.04 |
42. | PC-171 | 68.9 | 54.5 | 29.3 | 123.6 | 2.29 | 2.7 | 0.67 | 2.00 | 8.9 | 8.9 | 92.9 | 8.2 | 8.3 | 6.8 | 8.0 | 6.6 | 11.3 | 550.0 | 1.06 |
43. | PC-172 | 67.0 | 52.1 | 26.0 | 120.2 | 2.32 | 2.8 | 0.94 | 1.93 | 8.8 | 8.4 | 90.0 | 9.4 | 8.8 | 6.5 | 8.3 | 7.9 | 12.3 | 597.9 | 0.98 |
44. | PC-173 | 70.2 | 49.0 | 26.2 | 126.0 | 2.57 | 3.4 | 1.05 | 2.31 | 9.1 | 9.0 | 92.4 | 8.6 | 9.4 | 8.7 | 8.3 | 7.8 | 5.5 | 582.3 | 1.03 |
45. | PC-174 | 67.6 | 47.1 | 23.5 | 119.8 | 2.65 | 3.0 | 0.84 | 2.15 | 8.8 | 8.3 | 96.5 | 7.3 | 8.6 | 8.0 | 5.9 | 6.0 | 11.9 | 484.0 | 1.39 |
46. | PCR | 65.6 | 50.4 | 27.4 | 114.7 | 2.27 | 2.9 | 0.79 | 2.08 | 8.2 | 8.1 | 88.9 | 7.9 | 9.2 | 10.0 | 8.0 | 7.4 | 10.4 | 515.3 | 1.30 |
47. | PCP-1 | 57.9 | 37.4 | 25.7 | 121.5 | 3.20 | 3.1 | 0.99 | 2.11 | 7.9 | 7.6 | 98.5 | 7.8 | 9.0 | 9.0 | 6.3 | 4.6 | 107.0 | 473.1 | 0.32 |
48. | PCP-2 | 67.5 | 46.6 | 26.3 | 123.1 | 2.64 | 3.2 | 1.06 | 2.09 | 8.1 | 7.7 | 101.0 | 7.3 | 8.6 | 8.5 | 6.1 | 5.0 | 85.3 | 513.2 | 0.20 |
49. | PCP-17A | 57.4 | 40.0 | 22.8 | 110.9 | 2.77 | 3.0 | 1.07 | 1.86 | 7.6 | 7.2 | 89.4 | 8.4 | 8.6 | 8.6 | 6.0 | 3.5 | 92.0 | 474.4 | 0.66 |
50. | PCP-17B | 61.8 | 39.7 | 27.0 | 120.0 | 3.02 | 3.0 | 0.90 | 1.93 | 7.8 | 7.3 | 92.7 | 7.8 | 8.7 | 8.5 | 5.8 | 3.4 | 83.9 | 538.6 | 0.24 |
51. | PCB-2 | 70.0 | 38.8 | 25.2 | 118.7 | 3.05 | 3.1 | 0.96 | 1.95 | 7.7 | 7.2 | 97.4 | 7.5 | 8.9 | 7.9 | 6.2 | 3.3 | 180.4 | 509.0 | 1.13 |
52. | Pusa Asita | 66.1 | 43.1 | 24.3 | 115.1 | 2.66 | 2.9 | 1.18 | 1.97 | 4.9 | 4.6 | 91.7 | 7.8 | 8.9 | 9.3 | 6.0 | 2.8 | 135.5 | 379.5 | 1.57 |
53. | PBB | 74.5 | 42.7 | 25.4 | 113.6 | 2.65 | 2.7 | 0.85 | 1.85 | 7.2 | 6.9 | 88.8 | 8.4 | 7.8 | 10.4 | 6.1 | 2.3 | 252.1 | 575.0 | 0.32 |
54. | PCW | 71.5 | 42.8 | 22.0 | 116.0 | 2.70 | 3.1 | 1.11 | 1.98 | 6.9 | 6.4 | 90.4 | 8.4 | 8.4 | 9.0 | 6.0 | 5.4 | 3.7 | 467.3 | 0.87 |
55. | PCY-1 | 65.7 | 44.0 | 25.3 | 103.9 | 2.36 | 2.8 | 0.89 | 1.92 | 5.1 | 4.8 | 102.1 | 8.6 | 9.4 | 8.6 | 6.2 | 6.9 | 7.9 | 470.7 | 1.39 |
56. | Pusa Kulfi | 64.1 | 41.3 | 23.4 | 119.5 | 2.89 | 3.5 | 1.11 | 2.33 | 5.3 | 5.1 | 94.8 | 8.6 | 9.2 | 7.7 | 6.2 | 6.7 | 9.4 | 448.8 | 1.29 |
57. | PCO-1 | 56.2 | 40.5 | 15.6 | 110.2 | 2.72 | 2.9 | 0.62 | 2.23 | 5.9 | 5.7 | 102.5 | 8.1 | 8.6 | 9.7 | 7.7 | 7.6 | 6.1 | 441.3 | 0.25 |
58. | PCO-3 | 64.9 | 40.6 | 21.3 | 111.8 | 2.75 | 2.9 | 0.78 | 2.10 | 6.3 | 6.0 | 97.6 | 6.9 | 9.5 | 10.9 | 7.8 | 7.3 | 8.7 | 546.8 | 0.34 |
59. | PCO-4 | 55.0 | 43.2 | 20.8 | 111.6 | 2.58 | 3.2 | 0.69 | 2.51 | 6.1 | 6.0 | 106.1 | 8.0 | 8.3 | 10.0 | 7.6 | 7.9 | 3.7 | 548.5 | 0.97 |
60. | PCO-5 | 58.6 | 43.4 | 24.0 | 123.7 | 2.85 | 3.2 | 0.92 | 2.21 | 6.8 | 6.5 | 97.9 | 7.8 | 9.3 | 10.6 | 8.0 | 9.5 | 3.1 | 568.9 | 0.96 |
61. | PCO-7 | 60.6 | 32.3 | 23.4 | 122.9 | 3.80 | 2.9 | 0.79 | 2.13 | 6.6 | 6.4 | 97.1 | 7.6 | 8.7 | 10.3 | 7.5 | 8.0 | 8.7 | 488.9 | 1.19 |
62. | PCO-7-1 | 56.9 | 37.7 | 18.0 | 112.2 | 2.97 | 2.9 | 0.96 | 1.97 | 6.2 | 6.0 | 98.4 | 8.5 | 8.5 | 10.7 | 7.7 | 7.5 | 6.8 | 466.0 | 1.00 |
63. | PCO-8 | 61.5 | 37.2 | 15.7 | 115.0 | 3.09 | 3.1 | 0.85 | 2.28 | 6.2 | 6.0 | 109.2 | 7.8 | 9.0 | 9.8 | 7.4 | 8.5 | 8.1 | 526.3 | 0.24 |
64. | PCO-13 | 56.2 | 39.0 | 20.7 | 113.5 | 2.91 | 3.1 | 0.79 | 2.33 | 6.3 | 6.0 | 99.1 | 8.1 | 9.0 | 10.4 | 7.7 | 8.0 | 9.4 | 514.9 | 0.21 |
65. | PCO-14 | 56.8 | 36.1 | 13.8 | 110.6 | 3.06 | 3.2 | 0.73 | 2.43 | 6.1 | 5.9 | 98.1 | 8.0 | 8.4 | 9.9 | 7.9 | 7.4 | 2.8 | 539.2 | 1.05 |
66. | PCO-15 | 57.1 | 36.5 | 16.7 | 112.7 | 3.08 | 2.8 | 0.84 | 2.01 | 6.1 | 5.9 | 100.0 | 7.2 | 9.0 | 10.6 | 7.7 | 8.6 | 4.8 | 568.9 | 0.91 |
67. | PCO-16 | 65.5 | 39.7 | 17.2 | 103.5 | 2.60 | 3.0 | 0.75 | 2.26 | 5.5 | 5.4 | 100.5 | 8.7 | 9.1 | 11.8 | 7.7 | 8.7 | 7.6 | 510.9 | 0.97 |
68. | PCO-17 | 60.6 | 33.7 | 22.0 | 119.5 | 3.55 | 3.2 | 0.87 | 2.40 | 6.5 | 6.2 | 99.4 | 8.3 | 9.3 | 10.7 | 8.1 | 7.8 | 8.9 | 567.9 | 1.22 |
69. | PCO-18 | 57.0 | 43.3 | 17.6 | 101.4 | 2.34 | 2.8 | 0.82 | 2.40 | 6.3 | 6.1 | 100.8 | 7.6 | 8.9 | 11.4 | 7.6 | 7.7 | 7.5 | 486.9 | 0.34 |
70. | PCO-19 | 61.3 | 40.6 | 19.3 | 118.2 | 2.91 | 2.8 | 0.76 | 1.99 | 6.4 | 6.1 | 97.5 | 8.0 | 9.3 | 10.8 | 7.6 | 7.9 | 3.2 | 425.5 | 0.97 |
71. | PCO-20 | 52.3 | 30.1 | 21.0 | 121.7 | 4.04 | 3.3 | 0.78 | 2.64 | 5.4 | 5.2 | 97.7 | 7.9 | 9.2 | 10.3 | 8.0 | 7.4 | 9.1 | 555.9 | 0.24 |
72. | PCO-24 | 54.5 | 43.8 | 14.8 | 109.8 | 2.51 | 3.0 | 0.99 | 2.04 | 6.0 | 5.8 | 96.1 | 7.5 | 8.4 | 10.7 | 8.0 | 7.7 | 3.6 | 541.6 | 1.11 |
73. | PCO-30 | 59.6 | 34.6 | 24.9 | 120.6 | 3.49 | 3.2 | 0.96 | 2.23 | 6.9 | 6.7 | 105.4 | 8.6 | 9.3 | 10.7 | 8.1 | 9.0 | 8.1 | 571.9 | 0.33 |
74. | Early Nantes Totum | 62.6 | 46.9 | 18.0 | 114.7 | 2.45 | 2.8 | 0.90 | 1.87 | 5.5 | 5.3 | 97.9 | 8.6 | 8.3 | 10.6 | 7.7 | 7.1 | 5.1 | 481.1 | 0.93 |
75. | E N Kashmir | 57.3 | 47.0 | 20.1 | 109.7 | 2.33 | 2.8 | 0.83 | 1.88 | 6.1 | 5.9 | 100.5 | 7.6 | 8.7 | 9.4 | 7.9 | 7.5 | 8.5 | 501.1 | 1.09 |
76. | E N Sona | 57.5 | 42.5 | 23.8 | 119.0 | 2.80 | 3.2 | 0.87 | 2.20 | 5.5 | 5.4 | 104.2 | 7.2 | 8.3 | 10.7 | 8.2 | 7.4 | 7.6 | 577.6 | 1.66 |
77. | T1 103 (333) | 58.5 | 43.3 | 18.4 | 111.9 | 2.58 | 3.1 | 0.66 | 2.38 | 5.9 | 5.8 | 99.4 | 7.5 | 8.8 | 10.6 | 7.5 | 7.1 | 8.3 | 543.6 | 0.24 |
78. | Samson-196 | 50.8 | 33.1 | 18.2 | 118.1 | 3.57 | 2.9 | 0.88 | 2.02 | 5.6 | 5.5 | 101.8 | 6.5 | 9.0 | 10.6 | 8.2 | 7.8 | 10.1 | 435.8 | 1.36 |
79. | Shin Kuroda | 55.3 | 37.7 | 16.8 | 115.2 | 3.06 | 2.9 | 0.85 | 1.94 | 6.3 | 6.0 | 99.3 | 8.0 | 9.0 | 10.5 | 7.6 | 9.3 | 10.0 | 459.8 | 0.28 |
80. | Pusa Meghali | 58.3 | 44.7 | 20.8 | 113.7 | 2.54 | 3.1 | 0.68 | 2.42 | 6.1 | 5.9 | 99.7 | 8.0 | 8.4 | 10.7 | 8.0 | 7.0 | 8.9 | 536.2 | 1.39 |
81. | Arka Suraj | 59.7 | 47.5 | 20.0 | 112.9 | 2.38 | 2.9 | 1.05 | 1.86 | 6.1 | 6.0 | 100.5 | 7.4 | 9.0 | 10.2 | 7.5 | 7.5 | 10.2 | 528.8 | 0.87 |
Overall Mean | 64.8 | 44.8 | 23.6 | 117.5 | 2.66 | 3.0 | 0.9 | 2.06 | 7.7 | 7.4 | 95.2 | 8.0 | 8.7 | 8.5 | 7.2 | 6.9 | 18.2 | 510.2 | 0.90 | |
Range | 50.8–75.8 | 30.1–57.5 | 13.8–30.8 | 101.4–127.2 | 2.07–3.56 | 2.5–3.5 | 0.62–1.35 | 1.65–2.64 | 4.9–9.3 | 4.6–9.2 | 86.4–109.2 | 6.5–9.4 | 7.8–9.5 | 5.8–11.8 | 5.1–8.3 | 2.3–9.5 | 2.8–252.1 | 379.5–597.9 | 0.20–1.67 | |
Critical difference (CD) at 5% | 5.3 | 4.9 | 3.8 | 6.3 | 0.21 | 0.4 | 0.05 | 0.11 | 0.5 | 0.47 | 4.75 | 0.5 | 0.4 | 0.5 | 0.44 | 0.44 | 1.49 | 20.7 | 0.06 |
Clusters | Root Weight (g) | Days to 1st Root Harvest | Root Girth (cm) | Dry Matter Content (%) | Total Sugar Content (%) | Carotene Content (mg/100 g) | Anthocyanin Content (mg/100 g) | Lycopene Content (mg/100 g) |
---|---|---|---|---|---|---|---|---|
1 | 118.03 | 93.62 | 2.95 | 8.58 | 3.44 | 7.19 | 6.79 | 1.058 |
2 | 121.43 | 92.55 | 2.89 | 9.05 | 2.67 | 8.33 | 7.61 | 0.777 |
3 | 122.82 | 101.14 | 3.14 | 8.47 | 3.03 | 4.99 | 85.30 | 0.205 |
4 | 119.51 | 95.01 | 2.88 | 8.42 | 4.89 | 7.57 | 9.205 | 1.208 |
5 | 116.52 | 92.96 | 3.05 | 10.59 | 4.99 | 8.69 | 7.63 | 1.189 |
6 | 115.62 | 97.46 | 3.01 | 8.32 | 4.68 | 7.99 | 6.15 | 0.693 |
7 | 117.21 | 93.50 | 2.91 | 8.62 | 3.02 | 3.84 | 69.36 | 0.408 |
8 | 115.05 | 97.14 | 2.97 | 7.91 | 3.13 | 3.29 | 180.41 | 1.137 |
9 | 118.77 | 91.55 | 3.09 | 9.22 | 2.93 | 2.78 | 135.51 | 1.566 |
10 | 123.17 | 88.30 | 2.70 | 10.27 | 3.06 | 2.31 | 252.1 | 0.316 |
Clusters | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 119.89 | 191.19 | 1695.07 | 273.69 | 352.78 | 220.32 | 8166.87 | 18,279.17 | 12,310.03 | 43,199.74 |
2 | 98.60 | 1874.27 | 540.20 | 554.22 | 429.45 | 8494.65 | 18,777.75 | 12,750.21 | 43,777.10 | |
3 | 0.00 | 1504.89 | 1950.35 | 1845.22 | 2555.98 | 9145.84 | 5090.16 | 28,310.94 | ||
4 | 43.46 | 127.99 | 100.15 | 7377.82 | 16,881.86 | 11,255.66 | 40,983.92 | |||
5 | 73.18 | 136.89 | 8192.63 | 18,037.99 | 12,229.84 | 42,592.09 | ||||
6 | 71.84 | 8260.00 | 18,264.99 | 12,400.47 | 43,124.33 | |||||
7 | 162.93 | 2159.81 | 542.02 | 14,067.31 | ||||||
8 | 0.00 | 644.11 | 5400.47 | |||||||
9 | 0.00 | 9595.32 | ||||||||
10 | 0.00 |
Traits | Contribution % | Times Ranked 1st |
---|---|---|
Root weight (g) | 0.19 | 6 |
Days to 1st root harvest | 2.90 | 94 |
Root girth (cm) | 3.80 | 123 |
Dry matter content (%) | 6.02 | 195 |
Total sugar content (%) | 36.14 | 1171 |
Carotene content (mg/100 g) | 9.85 | 319 |
Anthocyanin content (mg/100 g) | 35.74 | 1158 |
Lycopene content (mg/100 g) | 5.37 | 174 |
Traits | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
Root weight (g) | 0.15 | 0.54 | 0.26 | 0.28 |
Days to 1st root harvest | −0.20 | −0.42 | 0.24 | 0.16 |
Root girth (cm) | −0.20 | −0.56 | −0.21 | −0.26 |
Dry matter content (%) | 0.12 | 0.27 | −0.78 | −0.28 |
Total sugar content (%) | −0.29 | −0.08 | −0.42 | 0.81 |
Carotene content (mg/100 g) | −0.49 | 0.24 | −0.13 | −0.03 |
Anthocyanin content (mg/100 g) | 0.54 | −0.19 | −0.05 | 0.10 |
Lycopene content (mg/100 g) | 0.51 | −0.22 | −0.19 | 0.26 |
Eigene Value | 2.94 | 2.04 | 1.01 | 0.81 |
Partial Variance (%) | 36.77 | 25.50 | 12.67 | 10.17 |
Cumulative Variance (%) | 36.77 | 62.28 | 74.95 | 85.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, D.; Dhillon, T.S.; Javed, T.; Singh, R.; Dobaria, J.; Dhankhar, S.K.; Kianersi, F.; Ali, B.; Poczai, P.; Kumar, U. Exploring the Genetic Diversity of Carrot Genotypes through Phenotypically and Genetically Detailed Germplasm Collection. Agronomy 2022, 12, 1921. https://doi.org/10.3390/agronomy12081921
Singh D, Dhillon TS, Javed T, Singh R, Dobaria J, Dhankhar SK, Kianersi F, Ali B, Poczai P, Kumar U. Exploring the Genetic Diversity of Carrot Genotypes through Phenotypically and Genetically Detailed Germplasm Collection. Agronomy. 2022; 12(8):1921. https://doi.org/10.3390/agronomy12081921
Chicago/Turabian StyleSingh, Davinder, Tarsem Singh Dhillon, Talha Javed, Rajinder Singh, Jalpa Dobaria, Surender Kumar Dhankhar, Farzad Kianersi, Baber Ali, Peter Poczai, and Uttam Kumar. 2022. "Exploring the Genetic Diversity of Carrot Genotypes through Phenotypically and Genetically Detailed Germplasm Collection" Agronomy 12, no. 8: 1921. https://doi.org/10.3390/agronomy12081921
APA StyleSingh, D., Dhillon, T. S., Javed, T., Singh, R., Dobaria, J., Dhankhar, S. K., Kianersi, F., Ali, B., Poczai, P., & Kumar, U. (2022). Exploring the Genetic Diversity of Carrot Genotypes through Phenotypically and Genetically Detailed Germplasm Collection. Agronomy, 12(8), 1921. https://doi.org/10.3390/agronomy12081921