Comparative Approach on the Effects of Soil Amendments and Controlled-Release Fertilizer Application on the Growth, Nutrient Uptake, Physiological Performance and Fruit Quality of Pepper (Capsicum annuum L.) Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Soil Sampling and Treatments
2.2. Chemical Analyses of Soil Samples and Mixtures
2.3. Plant and Fruit Growth
2.4. Tissue Nutrient Analyses, Total Plant Nutrient Content and Nutrient Use Efficiency
2.5. Chlorophyll Fluorescence and Gas Exchange Measurements
2.6. Total Soluble Solids, Total Phenolics and FRAP
2.7. qPCR Expression Analysis
2.8. Statistical Analysis
3. Results
3.1. Initial Soil Properties and Fertility of Soil Mixtures with Amendments
3.2. Plant Growth
3.3. Tissue Nutrient Concentrations, Total Plant Nutrient Content and Nutrient Use Efficiency
3.4. Chlorophyll Fluorescence and Gas Exchange Measurements
3.5. Total Soluble Solids, Total Phenolics and FRAP
3.6. Gene Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Altaf, Μ.A.; Shu, H.; Hao, Y.; Zhou, Y.; Mumtaz, M.A.; Wang, Z. Vanadium toxicity induced changes in growth, antioxidant profiling, and vanadium uptake in pepper (Capsicum annuum L.) seedlings. Horticulturae 2022, 8, 28. [Google Scholar] [CrossRef]
- Howard, L.R.; Talcott, S.Y.; Brenes, C.H.; Villalon, B. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum sp.) as affected by maturity. J. Agric. Food Chem. 2000, 48, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Gisbert-Mullor, R.; Pascual-Seva, N.; Martinez-Gimeno, M.A.; Lopez-Serrano, L.; Marin, E.B.; Perez-Perez, J.G.; Bonet, L.; Padilla, Y.G.; Calatayud, A.; Pascual, B.; et al. Grafting onto an appropriate rootstock reduces the impact on yield and quality of controlled deficit irrigated pepper crops. Agronomy 2020, 10, 1529. [Google Scholar] [CrossRef]
- Karakurt, Y.; Unlu, H.; Unlu, H.; Padem, H. The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2009, 59, 233–237. [Google Scholar] [CrossRef]
- Pinero, M.C.; Perez-Jimenez, M.; Lopez-Marin, J.; Del Amor, F.M. Fruit quality of sweet pepper as affected by foliar Ca applications to mitigate the supply of saline water under a climate change scenario. J. Sci. Food Agric. 2018, 98, 1071–1078. [Google Scholar] [CrossRef]
- Aminifard, M.H.; Aroiee, H.; Nemati, H.; Azizi, M.; Khayatt, M. Effect of nitrogen fertilizer on vegetative and reproductive growth of pepper plants under field conditions. J. Plant Nutr. 2012, 35, 235–242. [Google Scholar] [CrossRef]
- Xu, G.; Wolf, S.; Kafkafi, U. Effect of varying nitrogen form and concentration during growing season on sweet pepper flowering and fruit yield. J. Plant Nutr. 2001, 24, 1099–1116. [Google Scholar] [CrossRef]
- Xu, G.; Wolf, S.; Kafkafi, U. Interactive effect of nutrient concentration and container volume on flowering, fruiting and nutrient uptake of sweet pepper. J. Plant Nutr. 2001, 24, 479–501. [Google Scholar] [CrossRef]
- Xu, G.; Wolf, S.; Kafkafi, U. Ammonium on potassium interaction in sweet pepper. J. Plant Nutr. 2002, 25, 719–734. [Google Scholar] [CrossRef]
- Nabi, G.; Rafique, E.; Salim, M. Boron nutrition of four sweet pepper cultivars grown in boron-deficient soil. J. Plant Nutr. 2006, 29, 717–725. [Google Scholar] [CrossRef]
- Roosta, H.R.; Mohsenian, Y. Effects of foliar spray of different Fe sources on pepper (Capsicum annuum L.) plants in aquaponic system. Sci. Hortic. 2012, 146, 182–191. [Google Scholar] [CrossRef]
- Aminifard, Μ.H.; Aroiee, H.; Azizi, M.; Nemati, H.; Jaafar, H.Z.E. Effect of compost on antioxidant components and fruit quality of sweet pepper (Capsicum annuum L.). J. Cent. Eur. Agric. 2013, 14, 525–534. [Google Scholar] [CrossRef]
- Diaz-Perez, J.C.; Germishuizen, P.; Da Silva, A.L.B.R. Effect of compost application at transplant stage and before planting to the field on plant growth and fruit yield in bell pepper (Capsicum annuum L.). Com. Soil Sci. Plant Anal. 2021, 52, 2793–2802. [Google Scholar] [CrossRef]
- Singh, R.; Rathore, D. Effects of fertilization with textile effluent on germination, growth and metabolites of chilli (Capsicum annuum L.) cultivars. Environ. Process. 2021, 8, 1249–1266. [Google Scholar] [CrossRef]
- Assimakopoulou, A.; Dimitroulia, D.; Kosmidis, S.; Doula, M.K. Growth, yield and nutrient status of pepper plants grown on a soil substrate with olive mill waste sludge and natural zeolite addition. J. Plant Nutr. 2020, 43, 629–640. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Tzanakakis, V.; Giannakoula, A.; Psoma, P. Inorganic and organic amendments affect soil fertility, nutrition, photosystem II activity, and fruit weight, and may enhance the sustainability of Solanum lycopersicon L. (cv. ‘Mountain Fresh’) crop. Sustainability 2020, 12, 9028. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Papaioannou, E.; Giannakoula, A.; Papadakis, I.E. Zeolite and vermiculite as inorganic soil amendments modify root-shoot allocation, mineral nutrition, photosystem II activity and gas exchange parameters of chestnut (Castanea sativa Mill) plants. Agronomy 2021, 11, 109. [Google Scholar] [CrossRef]
- McLean, E. Soil pH and lime requirement. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph; ASA; SSSA: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Gee, G.; Bauder, J. Particle-size analysis. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods; Klute, A., Ed.; ASA; SSSA: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph; ASA; SSSA: Madison, WI, USA, 1982; pp. 539–547. [Google Scholar]
- Hood-Nowotny, R.; Umana, N.H.-N.; Inselbacher, E.; Oswald-Lachouani, P.; Wanek, W. Alternative Methods for Measuring Inorganic, Organic, and Total Dissolved Nitrogen. Soil Sci. Soc. Am. J. 2010, 74, 1018–1027. [Google Scholar] [CrossRef]
- Mulvaney, R. Nitrogen—Inorganic Forms. In Methods of Soil Analysis: Part 3 Chemical Methods 5; ASA; SSSA: Madison, WI, USA, 1996; pp. 1123–1184. [Google Scholar]
- Olsen, S.; Sommers, L. Phosphorus. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph; ASA; SSSA: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Thomas, G.W. Exchangeable cations methods of soil analysis. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph; ASA; SSSA: Madison, WI, USA, 1982; pp. 159–166. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Hansen, T.H.; De Bang, T.C.; Laursen, K.H.; Pedas, P.; Husted, S.; Schjoerring, J.K. Multielement plant tissue analysis using ICP spectrometry. In Plant Mineral Nutrients. Methods in Molecular Biology (Methods and Protocols); Maathuis, F., Ed.; Humana Press: Totowa, NJ, USA, 2013; Volume 953. [Google Scholar]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants and Waters; Division of Agricultural Sciences, University of California: Riverside, CA, USA, 1961; p. 309. [Google Scholar]
- Chapin, F.S.; Van Cleve, K. Approaches to studying nutrient uptake, use and loss in plants. In Plant Physiological Ecology-Field Methods and Instrumentation; Pearcy, R.W., Ehleringer, J.R., Mooney, H.A., Rundel, P.W., Eds.; Springer: New York, NY, USA, 1991; pp. 185–207. [Google Scholar]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G., Govindjee, G., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 321–362. [Google Scholar]
- Schreiber, U.; Schliwa, U.; Bilger, W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 1986, 10, 51–62. [Google Scholar] [CrossRef]
- Scalbert, A.; Monties, B.; Janin, G. Tannins in wood: Comparison of different estimation methods. J. Agric. Food Chem. 1989, 37, 1324–1329. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [PubMed]
- Pappi, P.; Nikoloudakis, N.; Fanourakis, D.; Zambounis, A.; Delis, C.; Tsaniklidis, G. Differential Triggering of the Phenylpropanoid Biosynthetic Pathway Key Genes Transcription upon Cold Stress and Viral Infection in Tomato Leaves. Horticulturae 2021, 7, 448. [Google Scholar] [CrossRef]
- Doostikhah, N.; Panahpour, E.; Nadian, H.; Gholami, A. Tomato (Lycopersicon esculentum L.) nutrient and lead uptake affected by zeolite and DTPA in a lead-polluted soil. Plant Biol. 2020, 22, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, W. Ernahrungstorungen bei Kulturpflanzen; Gustav Fischer Verlag: Stuttgart, Germany, 1986. [Google Scholar]
- Therios, I. Mineral Nutrition of Plants; Dedousi Publications: Thessaloniki, Greece, 1996. (In Greek) [Google Scholar]
- Glisic, I.P.; Milosevic, T.M.; Glisic, I.S.; Milosevic, N.T. The effect of natural zeolites and organic fertilizers on the characteristics of degraded soils and yield of crops grown in western Serbia. Land Degrad. Dev. 2009, 20, 33–40. [Google Scholar] [CrossRef]
- Milosevic, T.; Milosevic, N.; Glisic, I.; Boskovic-Rakosevic, L.; Milivojevic, J. Fertilization effect on trees and fruits characteristics and leaf nutrient status of apricots which are grown at Cacak region (Serbia). Sci. Hortic. 2013, 164, 112–123. [Google Scholar] [CrossRef]
- Slewinski, T.L. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: A physiological perspective. Mol. Plant 2011, 4, 641–662. [Google Scholar] [CrossRef]
- Chen, L.Q.; Qu, X.Q.; Hou, B.H.; Sosso, D.; Osorio, S.; Fernie, A.R.; Frommer, W.B. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 2012, 335, 207–211. [Google Scholar] [CrossRef]
- Payyavula, R.S.; Tschaplinski, T.J.; Jawdy, S.S.; Sykes, R.W.; Tuskan, G.A.; Kalluri, U.C. Metabolic profiling reveals altered sugar and secondary metabolism in response to UGPase overexpression in Populus. BMC Plant Biol. 2014, 14, 265. [Google Scholar] [CrossRef]
- Jeena, G.S.; Kumar, S.; Shukla, R.K. Structure, evolution and diverse physiological roles of sweet sugar transporters in plants. Plant Mol. Biol. 2019, 100, 351–365. [Google Scholar] [CrossRef]
- Geng, Y.; Wu, M.; Zhang, C. Sugar Transporter ZjSWEET2.2 mediates sugar loading in leaves of Ziziphus jujuba Mill. Front. Plant Sci. 2020, 11, 1081. [Google Scholar]
- Cui, Y.; Wang, Z.; Chen, S.; Vainstein, A.; Ma, H. Proteome and transcriptome analyses reveal key molecular differences between quality parameters of commercial-ripe and tree-ripe fig (Ficus carica L.). BMC Plant Biol. 2019, 19, 146. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.M.; Wang, L.; Ruan, Y.L. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signaling to enhance crop yield and food security. J. Exp. Bot. 2014, 65, 1713–1735. [Google Scholar] [CrossRef]
- Wang, S.; Song, M.; Guo, J.; Huang, Y.; Zhang, F.; Xu, C.; Xiao, Y.; Zhang, L. The potassium channel FaTPK1 plays a critical role in fruit quality formation in strawberry (Fragaria × ananassa). Plant Biotechnol. J. 2018, 16, 737–748. [Google Scholar] [CrossRef]
- Ren, R.; Yue, X.; Li, J.; Xie, S.; Guo, S.; Zhang, Z. Co-expression of sucrose synthase and the sweet transporter, which are associated with sugar hydrolysis and transport, respectively, increases the hexose content in Vitis vinifera L. grape berries. Front. Plant Sci. 2020, 11, 321. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, I.; Gomez-Porras, J.L.; Riedelsberger, J. The potassium battery: A mobile energy source for transport processes in plant vascular tissues. New Phytol. 2017, 216, 1049–1053. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Papadakis, I.E.; Papaioannou, A.; Chatzissavvidis, C.; Giannakoula, A. Comparative study effects between manure application and a controlled release fertilizer on the growth, nutrient uptake, photosystem II activity and photosynthetic rate of Olea europaea L. (cv. ‘Koroneiki’). Sci. Hortic. 2020, 264, 109176. [Google Scholar] [CrossRef]
- Zhu, L.D.; Shao, X.H.; Zhang, Y.C.; Zhang, H.; Hou, M.M. Effects of K fertilizer application on photosynthesis and seedling growth of sweet potato under drought stress. J. Food Agric. Environ. 2012, 10, 487–491. [Google Scholar]
- Saykhul, A.; Chatzistathis, T.; Chatzissavvidis, C.; Koundouras, S.; Therios, I.; Dimassi, K. Potassium utilization efficiency of three olive cultivars grown in a hydroponic system. Sci. Hortic. 2013, 162, 55–62. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, X.; Miao, Q.; Yu, B.; Xu, L.; Cui, Z. Combining mineral amendments improves wheat yield and soil properties in a coastal saline area. Agronomy 2019, 9, 48. [Google Scholar] [CrossRef]
Treatment | Leaves | Stems | Root | (Leaves + Stem)/Root | Total Biomass (g) | ||||
---|---|---|---|---|---|---|---|---|---|
F.W. | D.W. | F.W. | D.W. | F.W. | D.W. | D.W. | F.W. | D.W. | |
VER | 101.77 a | 20.38 a | 123.16 a | 29.25 ab | 70.80 ab | 11.94 a | 3.93 a | 297.36 a | 62.32 a |
ZEO | 56.72 b | 11.58 b | 84.34 ab | 21.30 ab | 88.21 a | 14.05 a | 2.25 b | 229.27 a | 46.93 a |
ZEO + VER | 64.62 b | 10.86 b | 80.92 b | 22.12 ab | 80.62 ab | 13.14 a | 2.53 b | 208.09 a | 46.13 a |
CRF | 70.75 ab | 13.86 ab | 84.12 ab | 20.76 b | 57.86 b | 11.18 a | 3.11 ab | 212.74 a | 45.80 a |
MAN + VER. | 60.23 b | 13.40 b | 96.90 ab | 27.41 ab | 71.93 ab | 12.11 a | 3.40 a | 229.06 a | 52.92 a |
MAN + ZEO | 78.67 ab | 18.76 ab | 120.02 a | 33.06 a | 95.18 a | 13.06 a | 3.52 a | 293.88 a | 65.73 a |
Treatment | Month of the Year | ||||
---|---|---|---|---|---|
May | June | July | August | September | |
VER | 0.43 b | 0.21 b | 1.47 a | 0.22 a | 0.56 a |
ZEO | 0.70 a | 0.34 ab | 0.90 b | 0.13 bc | 0.37 b |
ZEO + VER | 0.40 b | 0.45 a | 1.03 ab | 0.09 c | 0.42 ab |
CRF | 0.40 b | 0.30 ab | 0.82 b | 0.20 ab | 0.49 a |
MAN + VER. | 0.83 a | 0.26 b | 1.05 ab | 0.26 a | 0.40 ab |
MAN + ZEO | 0.71 a | 0.20 b | 0.96 ab | 0.21 ab | 0.25 c |
Treatment | N | P | K | Ca | Mg | Fe | Mn | Zn | Cu |
---|---|---|---|---|---|---|---|---|---|
% D.W. | mg kg−1 | ||||||||
VER | 2.73 b | 0.28 b | 2.62 bc | 2.03 a | 0.87 ab | 67 a | 92 b | 62 a | 632 b |
ZEO | 1.80 c | 0.44 a | 4.51 a | 1.57 a | 0.48 c | 32 c | 89 b | 51 ab | 944 a |
VER + ZEO | 1.60 c | 0.30 b | 5.10 a | 1.57 a | 0.55 c | 43 b | 90 b | 55 a | 838 a |
CRF | 3.84 a | 0.39 ab | 2.00 c | 2.04 a | 1.12 a | 63 a | 226 a | 48 ab | 828 a |
MAN + VER | 1.50 c | 0.47 a | 2.99 b | 1.76 a | 0.75 b | 30 c | 71 c | 42 b | 839 a |
MAN + ZEO | 1.43 c | 0.29 b | 2.86 b | 1.59 a | 0.58 c | 39 bc | 84 bc | 50 ab | 725 ab |
Treatment | N | P | K | Ca | Mg | Fe | Mn | Zn | Cu |
---|---|---|---|---|---|---|---|---|---|
mg | |||||||||
VER | 1093 a | 114 b | 1078 ab | 849 a | 377 a | 26 b | 3.22 b | 2.82 a | 15.33 a |
ZEO | 605 b | 100 b | 1073 ab | 443 b | 186 b | 34 ab | 2.76 bc | 2.13 a | 14.86 a |
VER + ZEO | 549 b | 115 b | 1265 ab | 444 b | 209 b | 39 a | 3.73 ab | 2.26 a | 16.18 a |
CRF | 1034 a | 116 b | 520 c | 548 b | 367 a | 27 b | 4.55 a | 2.29 a | 14.84 a |
MAN + VER | 685 b | 201 a | 922 b | 572 b | 315 a | 23 b | 2.34 c | 2.15 a | 14.07 a |
MAN + ZEO | 692 b | 161 ab | 1443 a | 843 a | 380 a | 29 b | 3.39 b | 2.14 a | 17.20 a |
Treatment | N | P | K | Ca | Mg | Fe | Mn | Zn | Cu |
---|---|---|---|---|---|---|---|---|---|
% d.w. | mg kg−1 | ||||||||
VER | 2.45 b | 0.75 bc | 2.00 c | 0.13 a | 0.16 ab | 52 b | 13 ab | 22 ab | 12 c |
ZEO | 2.27 cd | 0.71 bc | 4.27 a | 0.12 ab | 0.15 ab | 47 bc | 13 ab | 20 ab | 6 d |
VER + ZEO | 2.53 b | 0.77 b | 2.78 b | 0.12 ab | 0.18 a | 62 a | 15 a | 21 ab | 14 b |
CRF | 3.09 a | 0.86 a | 2.27 bc | 0.12 ab | 0.15 ab | 59 ab | 14 a | 23 a | 21 a |
MAN + VER | 2.15 d | 0.74 bc | 3.23 b | 0.12 ab | 0.17 a | 51 bc | 12 bc | 18 bc | 8 d |
MAN + ZEO | 2.34 c | 0.68 c | 2.21 bc | 0.10 b | 0.14 b | 45 c | 11 c | 16 c | 3 e |
Treatment | NUE | PUE | KUE | CaUE | MgUE | FeUE | MnUE | ZnUE | CuUE |
---|---|---|---|---|---|---|---|---|---|
mg Total Plant d.w./mg of Macronutrient | mg Total Plant d.w./μg of Micronutrient | ||||||||
VER | 59.42 b | 514.20 a | 47.76 b | 75.32 b | 163.75 b | 2.26 a | 19.51 a | 21.70 a | 4.11 a |
ZEO | 78.27 a | 390.69 ab | 39.69 bc | 105.05 a | 253.34 a | 1.26 c | 13.40 b | 19.73 a | 3.29 a |
VER + ZEO | 81.82 a | 470.98 a | 35.82 c | 97.89 a | 246.21 a | 1.73 b | 12.83 bc | 20.71 a | 3.74 a |
CRF | 45.00 b | 397.54 ab | 87.92 a | 78.64 b | 128.31 b | 1.67 bc | 10.45 c | 20.39 a | 3.84 a |
MAN + VER | 76.91 a | 266.30 b | 57.08 b | 94.39 a | 176.15 ab | 2.11 ab | 22.86 a | 24.59 a | 3.81 a |
MAN + ZEO | 85.99 a | 433.46 a | 49.25 b | 86.72 ab | 175.36 ab | 2.38 a | 17.49 ab | 27.89 a | 4.02 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzistathis, T.; Tsaniklidis, G.; Papaioannou, A.; Giannakoula, A.; Koukounaras, A. Comparative Approach on the Effects of Soil Amendments and Controlled-Release Fertilizer Application on the Growth, Nutrient Uptake, Physiological Performance and Fruit Quality of Pepper (Capsicum annuum L.) Plants. Agronomy 2022, 12, 1935. https://doi.org/10.3390/agronomy12081935
Chatzistathis T, Tsaniklidis G, Papaioannou A, Giannakoula A, Koukounaras A. Comparative Approach on the Effects of Soil Amendments and Controlled-Release Fertilizer Application on the Growth, Nutrient Uptake, Physiological Performance and Fruit Quality of Pepper (Capsicum annuum L.) Plants. Agronomy. 2022; 12(8):1935. https://doi.org/10.3390/agronomy12081935
Chicago/Turabian StyleChatzistathis, Theocharis, Georgios Tsaniklidis, Athanasios Papaioannou, Anastasia Giannakoula, and Athanasios Koukounaras. 2022. "Comparative Approach on the Effects of Soil Amendments and Controlled-Release Fertilizer Application on the Growth, Nutrient Uptake, Physiological Performance and Fruit Quality of Pepper (Capsicum annuum L.) Plants" Agronomy 12, no. 8: 1935. https://doi.org/10.3390/agronomy12081935
APA StyleChatzistathis, T., Tsaniklidis, G., Papaioannou, A., Giannakoula, A., & Koukounaras, A. (2022). Comparative Approach on the Effects of Soil Amendments and Controlled-Release Fertilizer Application on the Growth, Nutrient Uptake, Physiological Performance and Fruit Quality of Pepper (Capsicum annuum L.) Plants. Agronomy, 12(8), 1935. https://doi.org/10.3390/agronomy12081935