Effects of Legume–Grass Ratio on C and Nutrients of Root and Soil in Common Vetch–Oat Mixture under Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sampling, Measurement and Calculation
2.4. Statistical Analysis
3. Results
3.1. Root C, N, P Concentrations and Stoichiometric Ratios
3.2. Soil C, N, P Contents and Stoichiometric Ratios
3.3. Correlations of Nutritional Indexes between Root and Soil
4. Discussion
4.1. Effect of Mixing and Fertilization on Root C and Nutrients
4.2. Effects of Mixing and Fertilization on Soil C and Nutrients
4.3. Correlations of C and Nutrients between Root and Soil
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, L.; Berg, B.; Sun, T.; Wang, Z.; Han, X. Response of fine root decomposition to different forms of N deposition in a temperate grassland. Soil Biol. Biochem. 2020, 147, 107845. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, D.; Li, Q.; Wang, Q. Vertical Distributions of Soil Nutrients and Their Stoichiometric Ratios as Affected by Long Term Grazing and Enclosing in a Semi-Arid Grassland of Inner Mongolia. Agriculture 2020, 10, 382. [Google Scholar] [CrossRef]
- Cao, Y.; Li, Y.N.; Zhang, G.Q.; Zhang, J.; Chen, M. Fine root C:N:P stoichiometry and its driving factors across forest ecosystems in northwestern China. Sci. Total Environ. 2020, 737, 140299. [Google Scholar] [CrossRef] [PubMed]
- Bell, L.W.; Sparling, B.; Tenuta, M.; Entz, M.H. Soil profile carbon and nutrient stocks under long-term conventional and organic crop and alfalfa-crop rotations and re-established grassland. Agric. Ecosyst. Environ. 2012, 158, 156–163. [Google Scholar] [CrossRef]
- Rasmussen, J.; Karen, S.; Karin, P.; Jørgen, E. N2-fixation and residual N effect of four legume species and four companion grass species. Eur. J. Agron. 2012, 36, 66–74. [Google Scholar] [CrossRef]
- Wang, M.; Chen, H.; Zhang, W.; Wang, K. Soil nutrients and stoichiometric ratios as affected by land use and lithology at county scale in a karst area, southwest China. Sci. Total Environ. 2018, 619, 1299–1307. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Drinkwater, L.E. Nitrogen fixation in annual and perennial legume-grass mixtures across a fertility gradient. Plant Soil 2012, 357, 147–159. [Google Scholar] [CrossRef]
- Li, Q.; Yu, P.; Li, G.; Zhou, D. Grass-legume ratio can change soil carbon and nitrogen storage in a temperate steppe grassland. Soil Till. Res. 2016, 175, 23–31. [Google Scholar] [CrossRef]
- Nyfeler, D.; Huguenin-Elie, O.; Suter, M.; Frossard, E.; Lüscher, A. Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric. Ecosyst. Environ. 2011, 140, 155–163. [Google Scholar] [CrossRef]
- Barneze, A.S.; Whitaker, J.; McNamara, N.P.; Ostle, N.J. Legumes increase grassland productivity with no effect on nitrous oxide emissions. Plant Soil 2020, 446, 163–177. [Google Scholar] [CrossRef]
- Kohmann, M.M.; Sollenberger, L.E.; Dubeux, J.C.B.; Silveira, M.L.; Moreno, L.S.B.; da Silva, L.S.; Aryal, P. Nitrogen Fertilization and Proportion of Legume Affect Litter Decomposition and Nutrient Return in Grass Pastures. Crop Sci. 2018, 58, 2138–2148. [Google Scholar] [CrossRef]
- Cong, W.F.; Hoffland, E.; Li, L.; Janssen, B.H.; van der Werf, W. Intercropping affects the rate of decomposition of soil organic matter and root litter. Plant Soil 2015, 391, 399–411. [Google Scholar] [CrossRef]
- Dubeux, J.; Sollenberger, L.E.; Interrante, S.M.; Vendramini, J.; Stewart, R.L. Litter Decomposition and Mineralization in Bahiagrass Pastures Managed at Different Intensities. Crop Sci. 2006, 46, 1305–1310. [Google Scholar] [CrossRef]
- Hodge, A. Tansley review the plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytol. 2004, 162, 9–24. [Google Scholar] [CrossRef]
- Scavo, A.; Abbate, C.; Mauromicale, G. Plant allelochemicals: Agronomic, nutritional and ecological relevance in the soil system. Plant Soil 2019, 442, 23–48. [Google Scholar] [CrossRef]
- Cong, W.F.; Hoffland, E.; Li, L.; Six, J.; Sun, J.H.; Bao, X.G.; Zhang, F.S.; van der Werf, W. Intercropping enhances soil carbon and nitrogen. Glob. Change Biol. 2015, 21, 1715–1726. [Google Scholar] [CrossRef]
- Smith, S.W.; Woodin, S.J.; Pakeman, R.J.; Johnson, D.; van der Wal, R. Root traits predict decomposition across a landscape-scale grazing experiment. New Phytol. 2014, 203, 851–862. [Google Scholar] [CrossRef]
- Fornara, D.A.; Flynn, D.; Caruso, T. Effects of nutrient fertilization on root decomposition and carbon accumulation in intensively managed grassland soils. Ecosphere 2020, 11, e03103. [Google Scholar] [CrossRef]
- Lu, X.T.; Reed, S.; Yu, Q.; He, N.P.; Wang, Z.W.; Han, X.G. Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland. Glob. Chang. Biol. 2013, 19, 2775–2784. [Google Scholar] [CrossRef]
- Zeng, Q.C.; Rattan, L.; Chen, Y.; An, S.; Hui, D. Soil, Leaf and Root Ecological Stoichiometry of Caragana korshinskii on the Loess Plateau of China in Relation to Plantation Age. PLoS ONE 2017, 12, e168890. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, H.; Shen, Y. Forage production and soil water balance in oat and common vetch sole crops and intercrops cultivated in the summer-autumn fallow season on the Chinese Loess Plateau. Eur. J. Agron. 2020, 115, 126042. [Google Scholar] [CrossRef]
- Lithourgidis, A.S.; Vasilakoglou, I.B.; Dhima, K.V.; Dordas, C.A.; Yiakoulaki, M.D. Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crop Res. 2006, 99, 106–113. [Google Scholar] [CrossRef]
- Comas, L.H.; Eissenstat, D.M.; Lakso, A.N. Assessing root death and root system dynamics in a study of grape canopy pruning. New Phytol. 2000, 147, 171–178. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Chen, H. Fine Root Biomass, Production, Turnover Rates, and Nutrient Contents in Boreal Forest Ecosystems in Relation to Species, Climate, Fertility, and Stand Age: Literature Review and Meta-Analyses. Crit. Rev. Plant Sci. 2010, 29, 204–221. [Google Scholar] [CrossRef]
- Liu, G.F.; Ye, X.H.; Huang, Z.Y.; Cornelissen, J.H. Leaf and root nutrient concentrations and stoichiometry along aridity and soil fertility gradients. J. Veg. Sci. 2019, 30, 291–300. [Google Scholar] [CrossRef]
- Crème, A.; Rumpel, C.; Gastal, F.; Gil, M.D.M.; Chabbi, A. Effects of grasses and a legume grown in monoculture or mixture on soil organic matter and phosphorus forms. Plant Soil 2016, 402, 117–128. [Google Scholar] [CrossRef]
- Houlton, B.Z.; Wang, Y.P.; Vitousek, P.M.; Field, C.B. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 2008, 454, 327–330. [Google Scholar] [CrossRef]
- Png, G.K.; Turner, B.L.; Albornoz, F.E.; Hayes, P.E.; Lambers, H.; Laliberté, E. Greater root phosphatase activity in nitrogen-fixing rhizobial but not actinorhizal plants with declining phosphorus availability. J. Ecol. 2017, 105, 1246–1255. [Google Scholar] [CrossRef]
- Heyburn, J.; McKenzie, P.; Crawley, M.J.; Fornara, D.A. Effects of grassland management on plant C:N:P stoichiometry: Implications for soil element cycling and storage. Ecosphere 2017, 8, e01963. [Google Scholar] [CrossRef]
- Edwards, K.R. Effect of nutrient additions and site hydrology on belowground production and root nutrient contents in two wet grasslands. Ecol. Eng. 2015, 84, 325–335. [Google Scholar] [CrossRef]
- Kearney, M.A.; Zhu, W. Growth of three wetland plant species under single and multi-pollutant wastewater conditions. Ecol. Eng. 2012, 47, 214–220. [Google Scholar] [CrossRef]
- Romanyà, J.A.; Casals, P.B. Biological Nitrogen Fixation Response to Soil Fertility Is Species-Dependent in Annual Legumes. J. Soil Sci. Plant Nut. 2020, 20, 546–556. [Google Scholar] [CrossRef]
- Yao, Y.M.; Ye, L.M.; Tang, H.J.; Tang, P.Q.; Wang, D.Y.; Si, H.Q.; Hu, W.J.; Eric, V.R. Cropland soil organic matter content change in Northeast China, 1985–2005. Open Geosci. 2015, 7, 234–243. [Google Scholar] [CrossRef]
- Zechmeister-Boltenstern, S.; Keiblinger, K.M.; Mooshammer, M.; Peuelas, J.; Richter, A.; Sardans, J.; Wanek, W. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecol. Monogr. 2015, 85, 133–155. [Google Scholar] [CrossRef]
- Chen, J.; Luo, Y.Q.; Van Groenigen, K.J.; Hungate, B.A.; Cao, J.J.; Zhou, X.H.; Wang, R.W. A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci. Adv. 2018, 4, eaaq1689. [Google Scholar] [CrossRef]
- Robson, A.D.; Ohara, G.W.; Abbott, L.K. Involvement of Phosphorus in Nitrogen Fixation by Subterranean Clover (Trifolium subterraneum L.). Aust. J. Plant Physiol. 1981, 8, 427–436. [Google Scholar] [CrossRef]
- Agren, G.I. Stoichiometry and Nutrition of Plant Growth in Natural Communities. In Book Annual Review of Ecology, Evolution and Systematics; Department of Ecology, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2008; Volume 39, pp. 153–170. [Google Scholar] [CrossRef]
- Ptacnik, R.; Jenerette, G.D.; Verschoor, A.M.; Huberty, A.F.; Solimini, A.G. Applications of ecological stoichiometry for sustainable acquisition of ecosystem services. Oikos 2005, 109, 52–62. [Google Scholar] [CrossRef]
- Han, Y.; Dong, S.; Zhao, Z.; Sha, W.; Li, S.; Shen, H.; Xiao, J.N.; Zhang, J.; Wu, X.Y.; Jiang, X.M. Response of soil nutrients and stoichiometry to elevated nitrogen deposition in alpine grassland on the Qinghai-Tibetan Plateau. Geoderma 2019, 343, 263–268. [Google Scholar] [CrossRef]
- Hedin, L.O. Global organization of terrestrial plant-nutrient interactions. Proc. Natl. Acad. Sci. USA 2004, 101, 10849–10850. [Google Scholar] [CrossRef]
- Su, L.; Du, H.; Zeng, F.P.; Peng, W.X.; Riwan, M.; Nunez-Delgado, A.; Zhou, Y.Y.; Song, T.Q.; Wang, H. Soil and fine roots ecological stoichiometry in different vegetation restoration stages in a karst area, southwest China. J. Environ. Manag. 2019, 252, 109694. [Google Scholar] [CrossRef]
- Townsend, A.R.; Cleveland, C.C.; Asner, G.P.; Bustamante, M.C. Controls over foliar N:P ratios in tropical rain forests. Ecology 2007, 88, 107–118. [Google Scholar]
- Bui, E.N.; Henderson, B.L. C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant Soil 2013, 373, 553–568. [Google Scholar] [CrossRef]
- Liao, Y.C.; McCormack, M.; Fan, H.B.; Wang, H.M.; Wu, J.P.; Tu, J.; Liu, W.F.; Guo, D.L. Relation of fine root distribution to soil C in a Cunninghamia lanceolata plantation in subtropical China. Plant Soil 2014, 381, 225–234. [Google Scholar] [CrossRef]
- Ma, Y.Z.; Zhong, Q.; Jin, B.; Lu, H.D.; Guo, B.Q.; Zheng, Y.; Li, M.; Cheng, D.L. Spatial changes and influencing factors of fine root carbon, nitrogen and phosphorus stoichiometry of plants in China. Chin. J. Plant Ecol. 2015, 39, 159–166. [Google Scholar] [CrossRef]
- Bell, C.; Carrillo, Y.; Boot, C.M.; Rocca, J.D.; Pendall, E.; Wallenstein, M.D. Rhizosphere stoichiometry: Are C:N:P ratios of plants, soils, and enzymes conserved at the plant species-level? New Phytol. 2014, 201, 505–517. [Google Scholar] [CrossRef]
- An, H.; Tang, Z.S.; Keesstra, S.; Shangguan, Z.P. Impact of desertification on soil and plant nutrient stoichiometry in a desert grassland. Sci. Rep. 2019, 9, 9422. [Google Scholar] [CrossRef]
Year | Layer (cm) | pH | Organic C (g/kg) | Nitrate N (mg/kg) | Ammonium N (mg/kg) | Total N (g/kg) | Available P (mg/kg) | Total P (g/kg) |
---|---|---|---|---|---|---|---|---|
2019 | 0–10 | 8.22 | 9.73 ± 0.14 | 14.81 ± 3.83 | 1.12 ± 0.07 | 1.01 ± 0.01 | 18.85 ± 2.14 | 0.51 ± 0.02 |
10–20 | 8.20 | 8.88 ± 0.08 | 13.03 ± 2.33 | 1.03 ± 0.17 | 0.97 ± 0.01 | 22.13 ± 3.17 | 0.53 ± 0.02 | |
20–30 | 8.11 | 9.32 ± 0.13 | 13.99 ± 0.79 | 0.94 ± 0.07 | 0.91 ± 0.01 | 17.28 ± 3.93 | 0.59 ± 0.03 | |
2020 | 0–10 | 8.12 | 5.02 ± 0.19 | 11.13 ± 0.18 | 0.57 ± 0.03 | 0.61 ± 0.03 | 10.97 ± 0.26 | 0.39 ± 0.01 |
10–20 | 8.11 | 3.82 ± 0.27 | 12.55 ± 0.44 | 0.77 ± 0.05 | 0.63 ± 0.01 | 11.10 ± 0.38 | 0.36 ± 0.02 | |
20–30 | 8.14 | 4.98 ± 0.27 | 13.95 ± 0.63 | 0.62 ± 0.05 | 0.56 ± 0.01 | 6.30 ± 0.73 | 0.36 ± 0.02 |
Treatment | N Test in 2019 | N + P Test in 2020 |
---|---|---|
Fertilization | No N fertilization (N0) 50 kg N/ha (N50) 100 kg N/ha (N100) 150 kg N/ha (N150) | No N and P fertilization (CK) 60 kg P2O5/ha (P1) 120 kg P2O5/ha (P2) 100 kg N/ha (N) 100 kg N/ha + 60 kg P2O5/ha (NP1) 100 kg N/ha + 120 kg P2O5/ha (NP2) |
Mixing | Mixing ratios of common vetch and oat were 1:0 (V, 100% common vetch), 2:1 (VA21, 62.5% common vetch + 37.5% oat), 1:2 (VA12, 29.4% common vetch + 70.6% oat), and 0:1 (A, 100% oat). Sowing rates were common vetch 75 kg/ha (V), common vetch 50 kg/ha and oat 30 kg/ha (VA21), common vetch 25 kg/ha and oat 60 kg/ha (VA12), and oat 90 kg/ha (A), respectively. |
Year | Treatment | CR | NR | PR | C:NR | C:PR | N:PR |
---|---|---|---|---|---|---|---|
2019 | Mixing (M) | 83.09 *** | 212.69 *** | 18.55 *** | 104.66 *** | 139.88 *** | 28.68 *** |
Fertilization (F) | 2.91 | 6.24 ** | 0.97 | 9.24 *** | 22.59 *** | 40.81 *** | |
M × F | 6.78 *** | 11.34 *** | 5.04 *** | 16.50 *** | 45.65 *** | 27.03 *** | |
2020 | Mixing (M) | 0.81 | 152.72 *** | 33.21 *** | 64.75 *** | 25.06 *** | 4.78 ** |
Fertilization (F) | 1.50 | 10.85 *** | 2.66 * | 8.73 *** | 3.46 * | 4.89 ** | |
M × F | 0.50 | 1.93 * | 2.69 ** | 2.28 * | 2.42 * | 3.22 ** |
Year | Treatment | Organic C (mg/g) | Total N (mg/g) | Total P (mg/g) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V | VA21 | VA12 | A | V | VA21 | VA12 | A | V | VA21 | VA12 | A | ||
2019 | N0 | 550 ± 8 Ba | 470 ± 4 Bb | 488 ± 8 b | 476 ± 5 Bb | 19.9 ± 0.25 Ba | 16.8 ± 0.33 Bb | 14.4 ± 0.31 ABc | 9.2 ± 0.14 Bd | 1.62 ± 0.05 Ba | 1.91 ± 0.14 a | 1.48 ± 0.05 a | 1.00 ± 0.02 Bb |
N50 | 551 ± 2 Ba | 488 ± 8 ABb | 475 ± 1 b | 542 ± 1 Aa | 21.6 ± 0.60 ABa | 15.9 ± 0.31 Bb | 13.2 ± 0.28 Bc | 12.3 ± 0.09 Ac | 1.81 ± 0.06 B | 1.61 ± 0.15 | 1.31 ± 0.02 | 1.37 ± 0.06 A | |
N100 | 588 ± 4 Aa | 509 ± 6 Ab | 465 ± 5 c | 470 ± 4 Bc | 22.4 ± 0.04 Aa | 13.7 ± 0.13 Cbc | 14.8 ± 0.11 Ab | 13.6 ± 0.36 Ac | 2.34 ± 0.12 Aa | 1.45 ± 0.11 b | 1.29 ± 0.08 b | 1.40 ± 0.04 Ab | |
N150 | 568 ± 6 ABa | 496 ± 2 ABb | 480 ± 4 b | 484 ± 3 Bb | 19.7 ± 0.41 Ba | 18.6 ± 0.35 Aa | 14.9 ± 0.23 Ab | 13.2 ± 0.26 Ab | 1.43 ± 0.10 Bb | 1.99 ± 0.04 a | 1.59 ± 0.05 b | 0.80 ± 0.05 Bc | |
2020 | CK | 442 ± 12 | 438 ± 8 | 437 ± 3 | 423 ± 24 | 21.8 ± 0.08 Aa | 12.2 ± 1.00 ABb | 13.5 ± 0.03 Ab | 9.0 ± 0.57 Bc | 2.62 ± 0.04 a | 1.63 ± 0.04 BCb | 2.30 ± 0.11 Aa | 1.50 ± 0.10 b |
P1 | 436 ± 4 | 453 ± 8 | 438 ± 2 | 443 ± 4 | 20.5 ± 0.60 Aa | 13.0 ± 0.78 ABb | 9.2 ± 0.49 Bc | 8.1 ± 0.36 Bc | 2.35 ± 0.02 a | 1.27 ± 0.01 Cb | 1.31 ± 0.06 Cb | 1.25 ± 0.07 b | |
P2 | 437 ± 3 | 434 ± 5 | 442 ± 5 | 426 ± 2 | 16.8 ± 0.33 Ba | 11.2 ± 0.12 Bb | 9.5 ± 0.28 Bc | 8.6 ± 0.34 Bc | 2.28 ± 0.15 a | 2.12 ± 0.17 ABab | 1.43 ± 0.11 Cbc | 1.27 ± 0.08 c | |
N | 457 ± 2 | 432 ± 9 | 440 ± 6 | 434 ± 5 | 20.1 ± 0.56 Aa | 13.5 ± 0.90 ABb | 12.3 ± 0.52 Ab | 11.8 ± 0.49 Ab | 2.62 ± 0.17 a | 1.61 ± 0.07 BCb | 1.40 ± 0.07 Cb | 1.37 ± 0.04 b | |
NP1 | 456 ± 5 | 445 ± 8 | 444 ± 6 | 439 ± 10 | 21.6 ± 0.11 Aa | 15.3 ± 0.49 Ab | 12.7 ± 0.64 Ac | 12.3 ± 0.14 Ac | 1.96 ± 0.20 ab | 2.24 ± 0.09 Aa | 2.08 ± 0.24 ABab | 1.35 ± 0.10 b | |
NP2 | 448 ± 2 | 454 ± 3 | 448 ± 6 | 455 ± 6 | 19.6 ± 0.73 Aa | 12.9 ± 0.21 ABb | 12.1 ± 0.31 Ab | 12.4 ± 0.73 Ab | 2.59 ± 0.22 a | 1.58 ± 0.06 BCb | 1.69 ± 0.04 BCb | 1.33 ± 0.09 b |
Year | Treatment | CS | NS | PS | C:NS | C:PS | N:PS |
---|---|---|---|---|---|---|---|
2019 | Mixing (M) | 6.70 ** | 4.34 * | 28.69 *** | 8.58 *** | 20.21 *** | 12.48 *** |
Fertilization (F) | 1.48 | 0.45 | 14.15 *** | 0.97 | 11.04 *** | 12.31 *** | |
M×F | 7.02 *** | 2.43 * | 4.38 ** | 9.18 *** | 6.96 *** | 1.11 | |
2020 | Mixing (M) | 11.41 *** | 3.29 * | 13.05 *** | 1.46 | 9.45 *** | 6.07 ** |
Fertilization (F) | 23.32 *** | 19.98 *** | 64.14 *** | 16.83 *** | 28.68 *** | 23.48 *** | |
M×F | 22.81 *** | 12.91 *** | 76.81 *** | 8.06 *** | 22.51 *** | 19.85 *** |
Year | Treatment | Organic C (mg/cm2) | Total N (mg/cm2) | Total P (mg/cm2) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V | VA21 | VA12 | A | V | VA21 | VA12 | A | V | VA21 | VA12 | A | ||
2019 | N0 | 266 ± 9 Bb | 310 ± 10 ab | 261 ± 7 Bb | 331 ± 10 Aa | 33.8 ± 0.41 Aa | 29.8 ± 0.31 b | 32.2 ± 0.62 ab | 31.1 ± 0.52 ab | 28.6 ± 0.20 Aa | 19.7 ± 0.22 ABc | 21.1 ± 0.30 ABbc | 22.4 ± 0.38 ABb |
N50 | 271 ± 4 Bb | 293 ± 8 ab | 330 ± 11 Aa | 279 ± 10 Bb | 33.0 ± 0.24 ABa | 28.2 ± 0.38 b | 32.3 ± 0.49 a | 31.5 ± 0.56 a | 28.4 ± 0.15 Aa | 19.7 ± 0.67 ABc | 21.2 ± 0.56 ABbc | 23.5 ± 0.82 ABb | |
N100 | 313 ± 10 ABa | 318 ± 12 a | 353 ± 7 Aa | 222 ± 4 Cb | 30.1 ± 0.58 C | 31.9 ± 0.57 | 32.9 ± 0.73 | 31.9 ± 0.45 | 23.3 ± 0.54 Bab | 21.2 ± 0.38 Ab | 23.9 ± 0.64 Aab | 26.4 ± 0.86 Aa | |
N150 | 346 ± 13 Aa | 299 ± 6 ab | 343 ± 11 Aa | 261 ± 4 BCb | 30.7 ± 0.56 BC | 30.6 ± 1.06 | 32.5 ± 0.47 | 34.7 ± 1.00 | 21.8 ± 0.56 Ba | 18.2 ± 0.24 Bb | 18.7 ± 0.79 Bab | 20.5 ± 0.61 Bab | |
2020 | CK | 276 ± 4 Ba | 269 ± 3 ABab | 251 ± 5 Cb | 283 ± 3 Aa | 29.1 ± 0.44 Ba | 26.7 ± 0.31 Bab | 23.5 ± 0.91 Db | 27.7 ± 0.62 ABCa | 17.2 ± 0.05 Aa | 15.3 ± 0.35 BCb | 14.7 ± 0.01 Bb | 17.9 ± 0.23 Ba |
P1 | 237 ± 6 CD | 249 ± 4 BCD | 264 ± 7 BC | 255 ± 3 BC | 24.7 ± 0.56 Cb | 21.8 ± 0.16 Cc | 27.8 ± 0.36 BCa | 26.5 ± 0.32 BCab | 15.8 ± 0.36 Ba | 15.8 ± 0.27 BCa | 15.6 ± 0.20 Ba | 13.6 ± 0.09 Cb | |
P2 | 223 ± 1 Db | 284 ± 3 Aa | 271 ± 4 BCa | 287 ± 2 Aa | 27.6 ± 0.33 Bbc | 31.6 ± 0.64 Aa | 25.7 ± 0.37 CDc | 29.5 ± 0.19 Aab | 13.9 ± 0.28 Cc | 28.7 ± 0.23 Aa | 15.2 ± 0.15 Bc | 21.5 ± 0.30 Ab | |
N | 251 ± 3 Cb | 243 ± 6 CDb | 278 ± 0.25 Ba | 248 ± 2 Cb | 28.9 ± 0.04 Bb | 30.5 ± 0.34 Aa | 31.2 ± 0.42 Aa | 28.2 ± 0.03 ABb | 15.7 ± 0.08 Bb | 16.4 ± 0.29 Bb | 18.5 ± 0.38 Aa | 12.1 ± 0.24 Dc | |
NP1 | 369 ± 1 Aa | 262 ± 4 BCc | 280 ± 3 Bb | 272 ± 3 ABbc | 34.9 ± 0.53 Aa | 27.3 ± 0.65 Bbc | 29.6 ± 0.34 ABb | 26.0 ± 0.46 Cc | 17.3 ± 0.22 Aa | 12.6 ± 0.08 Dc | 15.9 ± 0.29 Bb | 17.3 ± 0.18 Ba | |
NP2 | 290 ± 2 Ba | 231 ± 3 Db | 303 ± 2 Aa | 240 ± 5 Cb | 27.7 ± 0.38 Bb | 27.4 ± 0.39 Bb | 32.1 ± 0.58 Aa | 28.4 ± 0.35 ABb | 14.9 ± 0.10 BCb | 14.8 ± 0.22 Cb | 18.8 ± 0.20 Aa | 18.4 ± 0.49 Ba |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Wu, W.; Yang, H. Effects of Legume–Grass Ratio on C and Nutrients of Root and Soil in Common Vetch–Oat Mixture under Fertilization. Agronomy 2022, 12, 1936. https://doi.org/10.3390/agronomy12081936
Wu X, Wu W, Yang H. Effects of Legume–Grass Ratio on C and Nutrients of Root and Soil in Common Vetch–Oat Mixture under Fertilization. Agronomy. 2022; 12(8):1936. https://doi.org/10.3390/agronomy12081936
Chicago/Turabian StyleWu, Xiaojuan, Wanping Wu, and Huimin Yang. 2022. "Effects of Legume–Grass Ratio on C and Nutrients of Root and Soil in Common Vetch–Oat Mixture under Fertilization" Agronomy 12, no. 8: 1936. https://doi.org/10.3390/agronomy12081936
APA StyleWu, X., Wu, W., & Yang, H. (2022). Effects of Legume–Grass Ratio on C and Nutrients of Root and Soil in Common Vetch–Oat Mixture under Fertilization. Agronomy, 12(8), 1936. https://doi.org/10.3390/agronomy12081936