Nitrogen Use Efficiency and Partitioning of Dairy Heifers Grazing Perennial Ryegrass (Lolium perenne L.) or Pasture Brome (Bromus valdivianus Phil.) Swards during Spring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Pasture Preparation and Grazing Management
2.3. Forage Sampling and Analysis
2.4. Dry Matter Intake and Body Weight
2.5. Urine and Ruminal Samples
2.6. Nitrogen Balance
2.7. Statistical Analysis
3. Results
3.1. Chemical Composition of Pasture and Herbage Mass
3.2. Dry Matter Intake and Body Weight
3.3. Purine Derivatives, Microbial N Synthesis and Nitrogen Partitioning
4. Discussion
4.1. Chemical Composition of Pasture and Herbage Mass
4.2. Dry Matter Intake and Body Weight
4.3. Nitrogen Metabolism and Partitioning
4.4. Implications of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; FGDP. Limate Change and the Global Dairy Cattle Sector—The Role of the Dairy Sector in a Low-Carbon Future; FAO: Rome, Italy, 2018. [Google Scholar]
- Congio, G.F.d.S.; Bannink, A.; Mayorga Mogollón, O.L.; Jaurena, G.; Gonda, H.; Gere, J.I.; Cerón-Cucchi, M.E.; Ortiz-Chura, A.; Tieri, M.P.; Hernández, O.; et al. Enteric methane mitigation strategies for ruminant livestock systems in the Latin America and Caribbean region: A meta-analysis. J. Clean. Prod. 2021, 312, 127693. [Google Scholar] [CrossRef]
- Guzmán-Luna, P.; Mauricio-Iglesias, M.; Flysjö, A.; Hospido, A. Analysing the interaction between the dairy sector and climate change from a life cycle perspective: A review. Trends Food Sci. Technol. 2021, 126, 168–179. [Google Scholar] [CrossRef]
- IPCC. Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Ginebra, Switzerland, 2014. [Google Scholar]
- Silpa, M.V.; König, S.; Sejian, V.; Malik, P.K.; Nair, M.R.R.; Fonseca, V.F.C.; Maia, A.S.C.; Bhatta, R. Climate-Resilient Dairy Cattle Production: Applications of Genomic Tools and Statistical Models. Front. Vet. Sci. 2021, 8, 625189. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, D.R.; Cardenas, L.M.; Dhanoa, M.S.; Donovan, N.; Misselbrook, T.; Williams, J.R.; Thorman, R.E.; McGeough, K.L.; Watson, C.J.; Bell, M.; et al. The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Sci. Total Environ. 2018, 635, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and climate change: Impact of livestock on climate and mitigation strategies. Anim. Front. 2018, 9, 69–76. [Google Scholar] [CrossRef]
- Hafner, S.D.; Pacholski, A.; Bittman, S.; Burchill, W.; Bussink, W.; Chantigny, M.; Carozzi, M.; Génermont, S.; Häni, C.; Hansen, M.N.; et al. The ALFAM2 database on ammonia emission from field-applied manure: Description and illustrative analysis. Agric. For. Meteorol. 2018, 258, 66–79. [Google Scholar] [CrossRef]
- Sigurdarson, J.J.; Svane, S.; Karring, H. The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Rev. Environ. Sci. Bio/Technol. 2018, 17, 241–258. [Google Scholar] [CrossRef]
- Selbie, D.R.; Cameron, K.C.; Di, H.J.; Moir, J.L.; Lanigan, G.J.; Richards, K.G. The effect of urinary nitrogen loading rate and a nitrification inhibitor on nitrous oxide emissions from a temperate grassland soil. J. Agric. Sci. 2014, 152, 159–171. [Google Scholar] [CrossRef]
- Beltran, I.E.; Calvache, I.; Cofre, R.; Salazar, F.; Keim, J.P.; Morales, A.; Pulido, R.G.; Alfaro, M. Nitrogen Intake and Its Partition on Urine, Dung and Products of Dairy and Beef Cattle in Chile. Agronomy 2022, 12, 15. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Keim, J.P.; Anrique, R. Nutritional Strategies to Improve Nitrogen use Efficiency by Grazing Dairy Cows. Chil. J. Agr. Res. 2011, 71, 623–633. [Google Scholar] [CrossRef]
- Correa-Luna, M.; Donaghy, D.; Kemp, P.; Schutz, M.; López-Villalobos, N. Efficiency of Crude Protein Utilisation in Grazing Dairy Cows: A Case Study Comparing Two Production Systems Differing in Intensification Level in New Zealand. Animals 2020, 10, 1036. [Google Scholar] [CrossRef] [PubMed]
- Soni, S.; Rathore, A.; Sheoran, R.; Singh, S.; Dagar, H.; Loura, D.; Kumar, S.; Paras. Impact of climate change on forage and pasture production and strategies for its mitigation—A review. Forage Res. 2020, 46, 105–113. [Google Scholar]
- Zanton, G.I.; Heinrichs, A.J. Analysis of Nitrogen Utilization and Excretion in Growing Dairy Cattle. J. Dairy Sci. 2008, 91, 1519–1533. [Google Scholar] [CrossRef] [PubMed]
- Palczynski, L.J.; Bleach, E.C.L.; Brennan, M.L.; Robinson, P.A. Youngstock Management as “The Key for Everything”? Perceived Value of Calves and the Role of Calf Performance Monitoring and Advice on Dairy Farms. Front. Anim. Sci. 2022, 3, 835317. [Google Scholar] [CrossRef]
- Singh, D.K.; Bird, P.R.; Saul, G.R. Maximising the use of soil water by herbaceous species in the high rainfall zone of southern Australia: A review. Aust. J. Agric. Res. 2003, 54, 677–691. [Google Scholar] [CrossRef]
- Stewart, A.V. Potential value of some Bromus species of the section Ceratochloa. N. Z. J. Agric. Res. 1996, 39, 611–618. [Google Scholar] [CrossRef]
- García-Favre, J.; López, I.F.; Cranston, L.M.; Donaghy, D.J.; Kemp, P.D. The Growth Response of Pasture Brome (Bromus valdivianus Phil.) to Defoliation Frequency under Two Soil-Water Restriction Levels. Agronomy 2021, 11, 300. [Google Scholar] [CrossRef]
- Alfaro, M.; Hube, S.; Salazar, F.; Beltrán, I.; Rodriguez, M.; Ramírez, L.; Saggar, S. Soil Greenhouse Gas Emissions in Different Pastures Implemented as a Management Strategy for Climate Change. Agronomy 2022, 12, 1097. [Google Scholar] [CrossRef]
- Calvache, I.; Balocchi, O.; Alonso, M.; Keim, J.P.; López, I.F. Thermal Time as a Parameter to Determine Optimal Defoliation Frequency of Perennial Ryegrass (Lolium perenne L.) and Pasture Brome (Bromus valdivianus Phil.). Agronomy 2020, 10, 620. [Google Scholar] [CrossRef]
- Calvache, I.; Balocchi, O.; Alonso, M.; Keim, J.P.; López, I. Water-Soluble Carbohydrate Recovery in Pastures of Perennial Ryegrass (Lolium perenne L.) and Pasture Brome (Bromus valdivianus Phil.) Under Two Defoliation Frequencies Determined by Thermal Time. Agriculture 2020, 10, 563. [Google Scholar] [CrossRef]
- Pulido, R.G.; Leaver, J.D. Quantifying the influence of sward height, concentrate level and initial milk yield on the milk production and grazing behaviour of continuously stocked dairy cows. Grass Forage Sci. 2001, 56, 57–67. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 1996. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; VanSoest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Fisheries and Food. The Analysis of Agricultural Materials: A Manual of the Analytical Methods Used by the Agricultural Development and Advisory Service, 3rd ed.; H.M. Stationery Office: London, UK, 1985; p. 239. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Análisis de Fibra de Forrajes; Universidad Agraria La Molina: Lima, Perú, 1972. [Google Scholar]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Penning, P.D. (Ed.) Animal-Based Techniques for Estimating Herbage Intake. In Herbage Intake Handbook; British Grassland Society: Reading, UK, 2004; pp. 53–94. [Google Scholar]
- Velasquez, A.V.; da Silva, G.G.; Sousa, D.O.; Oliveira, C.A.; Martins, C.; Dos Santos, P.P.M.; Balieiro, J.C.C.; Renno, F.P.; Fukushima, R.S. Evaluating internal and external markers versus fecal sampling procedure interactions when estimating intake in dairy cows consuming a corn silage-based diet. J. Dairy Sci. 2018, 101, 5890–5901. [Google Scholar] [CrossRef]
- Lindberg, J.E. Nitrogen metabolism and urinary excretion of purines in goat kids. Br. J. Nutr. 1989, 61, 309–321. [Google Scholar] [CrossRef]
- Chen, X.B.; Orskov, E.R. Research on urinary excretion of purine derivatives in ruminants: Past, present and future. In Estimation of Microbial Protein Supply in Ruminants Using Urinary Purine Derivatives; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Weatherburn, M. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Littell, R.C.; Milliken, G.A.; Stroup, W.W.; Wolfinger, R.D.; Schabenberger, O. SAS for Mixed Models, 2nd ed.; SAS Institute: Cary, NC, USA, 2006. [Google Scholar]
- García-Favre, J.; López, I.F.; Cranston, L.M.; Donaghy, D.J.; Kemp, P.D.; Ordóñez, I.P. Functional contribution of two perennial grasses to enhance pasture production and drought resistance under a leaf regrowth stage defoliation criterion. J. Agron. Crop Sci. 2022, 1–17. [Google Scholar] [CrossRef]
- Keim, J.P.; Valderrama, X.; Alomar, D.; López, I.F. In situ rumen degradation kinetics as affected by type of pasture and date of harvest. Sci. Agric. 2013, 70, 405–414. [Google Scholar] [CrossRef]
- Keim, J.P.; López, I.F.; Berthiaume, R. Nutritive value, in vitro fermentation and methane production of perennial pastures as affected by botanical composition over a growing season in the south of Chile. Anim. Prod. Sci. 2014, 54, 598–607. [Google Scholar] [CrossRef]
- Balocchi, O.A.; Caballero, J.M.; Smith, R. Characterization and agronomic variability of ecotypes of Bromus valdivianus Phil. Collected from Valdivia province. Agrosur 2001, 29, 64–77. [Google Scholar] [CrossRef]
- Balocchi, O.A.; Teuber, N. Recursos forrajeros en producción de leche: II. Novedades en gramíneas y leguminosas forrajeras. Serie Actas—Instituto de Investigaciones Agropecuarias. no. 24. 2003. Available online: https://hdl.handle.net/20.500.14001/8408 (accessed on 11 January 2022).
- Lopez, I.F.; Kemp, P.D.; Dorner, J.; Descalzi, C.A.; Balocchi, O.A.; Garcia, S. Competitive Strategies and Growth of Neighbouring Bromus valdivianus Phil and Lolium perenne L. Plants Under Water Restriction. J. Agron. Crop Sci. 2013, 199, 449–459. [Google Scholar] [CrossRef]
- Dillon, P. Achieving high dry-matter intake from pasture with grazing dairy cows. In Fresh Herbage for Dairy Cattle; Elgersma, A., Dijkstra, J., Tamminga, S., Eds.; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Brown, E.G.; VandeHaar, M.J.; Daniels, K.M.; Liesman, J.S.; Chapin, L.T.; Keisler, D.H.; Nielsen, M.S.W. Effect of Increasing Energy and Protein Intake on Body Growth and Carcass Composition of Heifer Calves. J. Dairy Sci. 2005, 88, 585–594. [Google Scholar] [CrossRef]
- Ueda, K.; Mitani, T.; Kondo, S. Herbage intake and ruminal digestion of dairy cows grazed on perennial ryegrass pasture either in the morning or evening. Anim. Sci. J. 2016, 87, 997–1004. [Google Scholar] [CrossRef]
- Beltran, I.E.; Gregorini, P.; Daza, J.; Balocchi, O.A.; Morales, A.; Pulido, R.G. Diurnal Concentration of Urinary Nitrogen and Rumen Ammonia Are Modified by Timing and Mass of Herbage Allocation. Animals 2019, 9, 961. [Google Scholar] [CrossRef]
- Pathak, A.K. Various factors affecting microbial protein synthesis in the rumen. Vet. World 2008, 1, 186–189. [Google Scholar]
- Seo, J.K.; Kim, M.H.; Yang, J.Y.; Kim, H.J.; Lee, C.H.; Kim, K.H.; Ha, J.K. Effects of synchronicity of carbohydrate and protein degradation on rumen fermentation characteristics and microbial protein synthesis. Asian-Australas. J. Anim. Sci. 2013, 26, 358–365. [Google Scholar] [CrossRef]
- Arias, R.A.; Guajardo, G.; Kunick, S.; Alvarado-Gilis, C.; Keim, J.P. Effect of Two Nutritional Strategies to Balance Energy and Protein Supply in Fattening Heifers on Performance, Ruminal Metabolism, and Carcass Characteristics. Animals 2020, 10, 852. [Google Scholar] [CrossRef]
- Hoekstra, N.; Schulte, R.P.O.; Struik, P.; Lantinga, E. Pathways to improving the N efficiency of grazing bovines. Eur. J. Agron. 2007, 26, 363–374. [Google Scholar] [CrossRef]
- Whelan, S.J.; Pierce, K.M.; McCarney, C.; Flynn, B.; Mulligan, F.J. Effect of supplementary concentrate type on nitrogen partitioning in early lactation dairy cows offered perennial ryegrass-based pasture. J. Dairy Sci. 2012, 95, 4468–4477. [Google Scholar] [CrossRef]
- Pacheco, D.; Waghorn, G. Dietary nitrogen–definitions, digestion, excretion and consequences of excess for grazing ruminants. Proc. N. Z. Grassl. Assoc. 2008, 70, 107–116. [Google Scholar] [CrossRef]
- Lapierre, H.; Berthiaume, R.; Raggio, G.; Thivierge, M.C.; Doepel, L.; Pacheco, D.; Dubreuil, P.; Lobley, G.E. The route of absorbed nitrogen into milk protein. Anim. Sci. 2005, 80, 11–22. [Google Scholar] [CrossRef]
- Keim, J.P.; López, I.F.; Balocchi, O.A. Sward herbage accumulation and nutritive value as affected by pasture renovation strategy. Grass Forage Sci. 2015, 70, 283–295. [Google Scholar] [CrossRef]
Parameters 1 | Treatment | SEM 2 | p Value | |||
---|---|---|---|---|---|---|
L. perenne | B. valdivianus | Species | Week | Interaction | ||
DM | 18.8 | 16.5 | 0.24 | <0.01 | <0.01 | 0.26 |
CP | 15.5 | 16.8 | 0.62 | 0.07 | 0.19 | 0.07 |
SP | 6.0 | 5.8 | 0.24 | 0.71 | 0.79 | 0.56 |
NDF | 54.7 | 59.8 | 0.82 | <0.01 | 0.13 | 0.56 |
ADF | 30.5 | 34.0 | 0.53 | <0.01 | 0.22 | 0.16 |
ME | 2.74 | 2.68 | 0.01 | <0.01 | 0.03 | 0.76 |
WSC | 13.3 | 10.5 | 0.37 | <0.01 | 0.18 | 0.93 |
WSC:CP ratio | 0.88 | 0.64 | 0.05 | <0.01 | 0.15 | 0.14 |
Pre grazing HM, kg DM/ha | 3073 | 3149 | 114.3 | 0.65 | <0.01 | 0.88 |
Post-grazing HM, kg DM/ha | 1220 | 1406 | 124.2 | 0.17 | 0.62 | 0.07 |
Parameters 1 | Treatment | SEM 2 | p-Value | |
---|---|---|---|---|
L. perenne | B. valdivianus | |||
Intake, kg DM/d | ||||
DMI | 6.82 | 6.88 | 0.47 | 0.69 |
SP | 0.39 | 0.45 | 0.07 | 0.58 |
ME | 18.02 | 18.26 | 1.52 | 0.82 |
NDF | 3.78 | 4.25 | 0.24 | 0.09 |
ADF | 2.09 | 2.39 | 0.12 | 0.03 |
WSC | 0.80 | 0.70 | 0.10 | 0.47 |
Body Weight, kg | ||||
Initial | 343.9 | 345.4 | 1.42 | 0.57 |
Final | 373.6 | 376.5 | 2.19 | 0.71 |
ADG, kg/d | 0.98 | 1.00 | 0.09 | 0.79 |
Feeding conversion, kg/kg | 7.22 | 6.98 | 0.97 | 0.84 |
Parameters 1 | Treatment | SEM 2 | p-Value | |
---|---|---|---|---|
L. perenne | B. valdivianus | |||
Allantoin, mmol/d | 156.45 | 167.46 | 4.97 | 0.23 |
Uric Acid, mmol/d | 3.63 | 3.46 | 0.21 | 0.64 |
Total PD, mmol/d | 160.08 | 170.92 | 5.09 | 0.25 |
Absorbed PD, mmol/d | 145.82 | 157.59 | 6.18 | 0.31 |
Microbial N, g N/d | 106.01 | 114.57 | 4.50 | 0.31 |
Ruminal NH3, mmol/L | 6.50 | 9.70 | 0.48 | <0.01 |
Nitrogen intake, g N/d | 204.8 | 235.8 | 8.9 | 0.08 |
Urine N excretion, g N/d | 75.1 | 94.8 | 4.1 | <0.01 |
Dung N excretion, g N/d | 80.9 | 86.6 | 2.3 | 0.23 |
Total N excretion, g N/d | 156.0 | 182.3 | 4.6 | <0.01 |
Retained N, g N/d | 49.8 | 46.6 | 4.0 | 0.25 |
NUE, % | 23.2 | 20.7 | 2.8 | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beltran, I.E.; Tellez, D.; Cabanilla, J.; Balocchi, O.; Arias, R.; Keim, J.P. Nitrogen Use Efficiency and Partitioning of Dairy Heifers Grazing Perennial Ryegrass (Lolium perenne L.) or Pasture Brome (Bromus valdivianus Phil.) Swards during Spring. Agronomy 2022, 12, 1953. https://doi.org/10.3390/agronomy12081953
Beltran IE, Tellez D, Cabanilla J, Balocchi O, Arias R, Keim JP. Nitrogen Use Efficiency and Partitioning of Dairy Heifers Grazing Perennial Ryegrass (Lolium perenne L.) or Pasture Brome (Bromus valdivianus Phil.) Swards during Spring. Agronomy. 2022; 12(8):1953. https://doi.org/10.3390/agronomy12081953
Chicago/Turabian StyleBeltran, Ignacio E., Daniel Tellez, Jaime Cabanilla, Oscar Balocchi, Rodrigo Arias, and Juan Pablo Keim. 2022. "Nitrogen Use Efficiency and Partitioning of Dairy Heifers Grazing Perennial Ryegrass (Lolium perenne L.) or Pasture Brome (Bromus valdivianus Phil.) Swards during Spring" Agronomy 12, no. 8: 1953. https://doi.org/10.3390/agronomy12081953
APA StyleBeltran, I. E., Tellez, D., Cabanilla, J., Balocchi, O., Arias, R., & Keim, J. P. (2022). Nitrogen Use Efficiency and Partitioning of Dairy Heifers Grazing Perennial Ryegrass (Lolium perenne L.) or Pasture Brome (Bromus valdivianus Phil.) Swards during Spring. Agronomy, 12(8), 1953. https://doi.org/10.3390/agronomy12081953