Irrigation Decision Support Systems (IDSS) for California’s Water–Nutrient–Energy Nexus
Abstract
:1. Introduction
2. Objective and Review Methodology
3. Context for IDSS in California Agriculture
3.1. Water Scarcity
3.2. Regulations
3.3. Loss and Risk Management
3.3.1. Infrastructure Failures
3.3.2. Disease-Based Losses and Water
4. Soil–Plant–Atmosphere Approaches and Data for IDSS in California
4.1. Precipitation
4.2. Evapotranspiration
4.3. Irrigation Scheduling Resources
4.3.1. In Situ Calculation of Crop Coefficient Values
4.3.2. Scheduling with Allowable Depletion
4.3.3. Scheduling with Crop Canopy Characteristics
5. IDSS for Crop Water Management in California
5.1. Soil-Based IDSS
5.2. Canopy-Based IDSS
5.2.1. Canopy Cover
5.2.2. Canopy Temperature
5.2.3. Stem Water Potential
5.3. Remote-Sensing IDSS
6. IDSS for Energy Management in California
6.1. General Considerations
6.2. Science
6.3. Policy
6.4. Decision Support for Irrigation and Energy Management
7. IDSS for Nitrogen (N) Management in California
7.1. General Considerations
7.2. Science
7.3. Policy
7.4. Decision Support for Irrigation and N Management
8. IDSS for Salinity Management in California
8.1. General Considerations
8.2. Science
8.3. Policy
- (i)
- Phase I focuses on developing a prioritization and optimization study for salinity management by using an interim salinity approach.
- (ii)
- Phase II is related to environmental permits, obtaining funding, engineering and design.
- (iii)
- Phase III consists of the implementation of physical projects to manage salt in the long term.
8.4. Decision Support for Irrigation and Salinity
9. IDSS for Irrigation System Management
10. IDSS Evaluation and Ongoing Work in California
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- CDFA—Statistics. Available online: https://www.cdfa.ca.gov/Statistics/ (accessed on 5 July 2022).
- Jerphagnon, O.; Knutson, S.; Geyer, R.; Scow, K. Decision Support Tool to Reduce Energy and Water Consumption in Agriculture; California Energy Commission: Sacramento, CA, USA, 2019. [Google Scholar]
- California Department of Water Resources Agricultural Water Use Efficiency. Available online: https://water.ca.gov/Programs/Water-Use-And-Efficiency/Agricultural-Water-Use-Efficiency (accessed on 5 July 2022).
- Berger, M.A.; Hans, L.; Piscopo, K.; Sohn, M.D. Exploring the Energy Benefits of Advanced Water Metering. Energy Anal. Environ. Impacts Div. Energy Technol. Area 2016, 54, 1005988. [Google Scholar]
- Water & Energy—California Agricultural Water Stewardship Initiative. Available online: https://agwaterstewards.org/practices/water_energy/ (accessed on 5 July 2022).
- Howitt, R.; Medellín-azuara, J.; Macewan, D. Economic Analysis of the 2014 Drought for California Agriculture; University of California Davis: Davis, CA, USA, 2014. [Google Scholar]
- Johnson, R.; Cody, B.A. California Agricultural Production and Irrigated Water Use; Congressional Research Service: California, CA, USA, 2015; p. 28. [Google Scholar]
- Bazzani, G.M. An Integrated Decision Support System for Irrigation and Water Policy Design: DSIRR. Environ. Model. Softw. 2005, 20, 153–163. [Google Scholar] [CrossRef]
- Rinaldi, M.; He, Z. Decision Support Systems to Manage Irrigation in Agriculture, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; Volume 123, ISBN 9780124202252. [Google Scholar]
- Schwabe, K.; Nemati, M.; Landry, C.; Zimmerman, G. Water Markets in the Western United States: Trends and Opportunities. Water 2020, 12, 233. [Google Scholar] [CrossRef]
- Mount, J.; Hanak, E. Water Use in California: Just the Facts; PPIC Water Policy Center: San Francisco, CA, USA, 2019. [Google Scholar]
- California Department of Water Resources DWR Contributes $16 Million to Support Desalination Research, Improved Energy Efficiency. Available online: https://water.ca.gov/News/Blog/2021/September/DWR-Contributes-16-Million-to-Support-Desalination-Research (accessed on 5 July 2022).
- Willett, M.; Willett, M. USF Scholarship: A Digital Repository @ Gleeson Library | Geschke Energy Intensity Variation among California Urban Water Supplies; The University of San Francisco: San Francisco, CA, USA, 2020. [Google Scholar]
- Escriva-Bou, A.; Lund, J.R.; Pulido-Velazquez, M. Saving Energy from Urban Water Demand Management. Water Resour. Res. 2018, 54, 4265–4276. [Google Scholar] [CrossRef]
- Fayiah, M.; Dong, S.; Singh, S.; Kwaku, E.A. A Review of Water–Energy Nexus Trend, Methods, Challenges and Future Prospects. Int. J. Energy Water Resour. 2020, 4, 91–107. [Google Scholar] [CrossRef]
- Lofman, D.; Petersen, M.; Bower, A. Water, Energy and Environment Nexus: The California Experience. Int. J. Water Resour. Dev. 2002, 18, 73–85. [Google Scholar] [CrossRef]
- Bedsworth, L.; Cayan, D.; Guido, F.; Fisher, L.; Ziaja, S. California’s Fourth Climate Change Assessment Statewide Summary Report; California Department of Parks & Recreation: Sacramento, CA, USA, 2018; p. 133. [Google Scholar]
- English, M.J.; Solomon, K.H.; Huffman, G.J. A Paradigm Shift in Irrigation Management. Perspect. Civ. Eng. Commem. Anniv. Am. Soc. Civ. Eng. 2003, 128, 89–99. [Google Scholar] [CrossRef]
- Baldocchi, D.; Agarwal, D.; Torn, M.; Humphrey, M. Connecting AmeriFlux to the Globe, Extending the Partnership with Global Flux Network FLUXNET; No. DOE-UCB-037357; University of California: Berkeley, CA, USA, 2018. [Google Scholar]
- Younghein, M. Water and Energy Calculator 2.0 Project Report. 2022. Available online: https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/water-energy-nexus/we-calc20-project-report.pdf (accessed on 20 June 2022).
- CA Farm Bureau Federation Electricity Rates. 2022. Available online: https://www.cfbf.com/ (accessed on 11 June 2022).
- Koundouri, P.; Nauges, C.; Tzouvelekas, V. Technology Adoption under Production Uncertainty: Theory and Application to Irrigation Technology. Am. J. Agric. Econ. 2006, 88, 657–670. [Google Scholar] [CrossRef]
- Berbel, J.; Expósito, A. The Theory and Practice of Water Pricing and Cost Recovery in the Water Framework Directive. Water Altern. 2020, 13, 659–673. [Google Scholar]
- Portoghese, I.; Giannoccaro, G.; Giordano, R.; Pagano, A. Modeling the Impacts of Volumetric Water Pricing in Irrigation Districts with Conjunctive Use of Surface and Groundwater Resources. Agric. Water Manag. 2021, 244, 106561. [Google Scholar] [CrossRef]
- Méndez-Barrientos, L.E.; DeVincentis, A.; Rudnick, J.; Dahlquist-Willard, R.; Lowry, B.; Gould, K. Farmer Participation and Institutional Capture in Common-Pool Resource Governance Reforms. The Case of Groundwater Management in California. Soc. Nat. Resour. 2020, 33, 1486–1507. [Google Scholar] [CrossRef]
- Lubell, M.; Blomquist, W.; Beutler, L. Sustainable Groundwater Management in California: A Grand Experiment in Environmental Governance. Soc. Nat. Resour. 2020, 33, 1447–1467. [Google Scholar] [CrossRef]
- Water Resource Control Board Irrigated Lands Regulatory Program; California Environmental Protection Agency: Sacramento, CA, USA, 2020; pp. 1–6.
- Almond Board of California. Almond Irrigation Improvement Continuum., 1–6. 2020. Available online: https://www.almonds.com/sites/default/files/2020-02/Almond-Irrigation-Improvement-Continuum.pdf (accessed on 5 July 2022).
- USDA-NASS 2018 Irrigation and Water Management Survey. Available online: https://www.nass.usda.gov/Publications/AgCensus/2017/Online_Resources/Farm_and_Ranch_Irrigation_Survey/index.php (accessed on 5 July 2022).
- Ghafouri, N. WaterBit. 2019. Available online: https://www.waterbit.app/over-irrigation/ (accessed on 5 July 2022).
- Volder, A. Exploring the Black Box-Root Growth. In Proceedings of the Tree Physiology: How Does an Almond Tree Grow; Almond Board of California: Modesto, CA, USA, 2016. [Google Scholar]
- Swett, C.L. Managing Crop Diseases under Water Scarcity. Annu. Rev. Phytopathol. 2020, 58, 387–406. [Google Scholar] [CrossRef]
- Luković, J.; Chiang, J.C.H.; Blagojević, D.; Sekulić, A. A Later Onset of the Rainy Season in California. Geophys. Res. Lett. 2021, 48, e2020GL090350. [Google Scholar] [CrossRef]
- Goss, M.; Swain, D.L.; Abatzoglou, J.T.; Sarhadi, A.; Kolden, C.A.; Williams, A.P.; Diffenbaugh, N.S. Climate Change Is Increasing the Likelihood of Extreme Autumn Wildfire Conditions across California. Environ. Res. Lett. 2020, 15, 094016. [Google Scholar] [CrossRef]
- Peterson, T.C.; Stott, P.A.; Herring, S. Explaining Extreme Events of 2018 from a Climate Perspective. Bull. Am. Meteorol. Soc. 2020, 93, 1041–1067. [Google Scholar] [CrossRef]
- Burton, C.A.; Hoefen, T.M.; Plumlee, G.S.; Baumberger, K.L.; Backlin, A.R.; Gallegos, E.; Fisher, R.N. Trace Elements in Stormflow, Ash, and Burned Soil Following the 2009 Station Fire in Southern California. PLoS ONE 2016, 11, e0153372. [Google Scholar] [CrossRef] [PubMed]
- Pruitt, W.O.; Doorenbos, J. Empirical Calibration: A Requisite for Evapotranspiration Formulae Based on Daily or Longer Mean Climate Data? The Committee: Budapest, Hungary, 1977. [Google Scholar]
- Dong, A.; Grattan, S.R.; Carroll, J.J.; Prashar, C.R.K. Estimation of Daytime Net Radiation over Well-Watered Grass. J. Irrig. Drain. Eng. 1992, 118, 466–479. [Google Scholar] [CrossRef]
- Temesgen, B.; Eching, S.; Davidoff, B.; Frame, K. Comparison of Some Reference Evapotranspiration Equations for California. J. Irrig. Drain. Eng. 2005, 131, 73–84. [Google Scholar] [CrossRef]
- Ben Hamouda, G.; Zaccaria, D.; Bali, K.; Snyder, R.L.; Ventura, F. Evaluation of Forecast Reference Evapotranspiration for Different Microclimate Regions in California to Enable Prospective Irrigation Scheduling. J. Irrig. Drain. Eng. 2022, 148, 04021061. [Google Scholar] [CrossRef]
- Parker, L.; Pathak, T.; Ostoja, S. Climate Change Reduces Frost Exposure for High-Value California Orchard Crops. Sci. Total Environ. 2021, 762, 143971. [Google Scholar] [CrossRef] [PubMed]
- Hanson, B.; Orloff, S.; Sanden, B. Monitoring Soil Moisture for Irrigation Water Management; University of California, Agriculture and Natural Resources: Davis, CA, USA, 2007; Volume 21635. [Google Scholar]
- Gu, Z.; Qi, Z.; Burghate, R.; Yuan, S.; Jiao, X.; Xu, J. Irrigation Scheduling Approaches and Applications: A Review. J. Irrig. Drain. Eng. 2020, 146, 4020007. [Google Scholar] [CrossRef]
- Montazar, A.; Rejmanek, H.; Tindula, G.; Little, C.; Shapland, T.; Anderson, F.; Inglese, G.; Mutters, R.; Linquist, B.; Greer, C.A.; et al. Crop Coefficient Curve for Paddy Rice from Residual Energy Balance Calculations. J. Irrig. Drain. Eng. 2017, 143, 04016076. [Google Scholar] [CrossRef]
- Hanson, B.R.; May, D.M. Crop Coefficients for Drip-Irrigated Processing Tomato. Agric. Water Manag. 2006, 81, 381–399. [Google Scholar] [CrossRef]
- Hanson, B.; Bendixen, W. Drip Irrigation Evaluated in Santa Maria Valley Strawberries. Calif. Agric. 2004, 58, 48–53. [Google Scholar] [CrossRef]
- Bellvert, J.; Adeline, K.; Baram, S.; Pierce, L.; Sanden, B.L.; Smart, D.R. Monitoring Crop Evapotranspiration and Crop Coefficients Over an Almond and Pistachio Orchard Throughout Remote Sensing. Remote Sens. 2018, 10, 2001. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Fereres, E.; Raes, D. Crop Yield Response to Water; Steduto, P., Ed.; FAO Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; pp. 358–373. ISBN 978-92-5-107274-5. [Google Scholar]
- Micke, W.C. Almond Production Manual; University of California, Division of Agriculture and Natural Resources: Oakland, CA, USA, 1996; ISBN 978-1-879906-22-8. [Google Scholar]
- Sanden, B.; Brown, P.; Snyder, R. Insights on water management in almonds. In 2012 Conference Proceedings; California Chapter; American Society of Agronomy: Madison, WI, USA, 2012; pp. 88–91. [Google Scholar]
- FAO. Chapter 6-ETc-Single Crop Coefficient (Kc). Available online: https://www.fao.org/3/x0490e/x0490e0b.htm (accessed on 8 August 2022).
- University of California Almonds. Available online: http://ucmanagedrought.ucdavis.edu/Agriculture/Crop_Irrigation_Strategies/Almonds (accessed on 7 August 2022).
- Doll, D. Pistachio Irrigation: Determining Water Needs and Managing Drought; University of California, Agriculture and Natural Resources: Davis: Davis, CA, USA, 2017. [Google Scholar]
- Goldhamer, D.A. Tree Water Requirements and Regulated Deficit Irrigation. Pist. Prod. Man. 2005, 4, 103–116. [Google Scholar]
- Zaccaria, D. Updated Water Use Information for Irrigation Scheduling of Pistachio on Non-Saline and Increasingly Saline Soils. Available online: https://ucanr.edu/sites/calasa/files/345175.pdf. (accessed on 7 August 2022).
- University of California Agriculture and Natural Resources. Using Reference Evapotranspiration (ETo) and Crop Coefficients to Estimate Crop Evapotranspiration (ETc) for Agronomic Crops, Grasses, and Vegetable Crops. Available online: https://cimis.water.ca.gov/Content/PDF/21427-KcAgronomicGrassandVeg.pdf (accessed on 7 August 2022).
- University of California Agriculture and Natural Resources Walnuts. Available online: http://ucmanagedrought.ucdavis.edu/Agriculture/Crop_Irrigation_Strategies/Walnuts (accessed on 7 August 2022).
- Irrigation of Processing Tomatoes/Tomato/Agriculture: Pest Management Guidelines/UC Statewide IPM Program (UC IPM). Available online: https://www2.ipm.ucanr.edu/agriculture/tomato/Irrigation-of-Processing-Tomatoes/ (accessed on 7 August 2022).
- López-Urrea, R.; Montoro, A.; Mañas, F.; López-Fuster, P.; Fereres, E. Evapotranspiration and Crop Coefficients from Lysimeter Measurements of Mature ‘Tempranillo’ Wine Grapes. Agric. Water Manag. 2012, 112, 13–20. [Google Scholar] [CrossRef]
- Goldammer, T. Grape Grower’s Handbook: A Guide to Viticulture for Wine Production; APEX Publishers: Centreville, VA, USA, 2018; ISBN 978-0-9675212-5-1. [Google Scholar]
- Hanson, B. Crop Coefficients: Irrigation Water Management: Science, Art, or Guess? Available online: https://ucanr.edu/sites/irrigation_and_soils_/files/93370.pdf (accessed on 7 August 2022).
- Smith, R.; Cahn, M.; Daugovish, O.; Koike, S.; Natwick, E.; Smith, H.; Subbarao, K.; Takele, E.; Turini, T. Leaf Lettuce Production in California; University of California, Agriculture and Natural Resources: California, CA, USA, 2011; ISBN 978-1-60107-767-7. [Google Scholar]
- Hardke, J.T. Water-Use Efficiency Options. In Rice Farming; One Grower Publishing: Memphis, TN, USA, 2013. [Google Scholar]
- University of California Agriculture and Natural Corn. Available online: http://ucmanagedrought.ucdavis.edu/Agriculture/Crop_Irrigation_Strategies/Corn (accessed on 7 August 2022).
- Gao, Y.; Duan, A.; Sun, J.; Li, F.; Liu, Z.; Liu, H.; Liu, Z. Crop Coefficient and Water-Use Efficiency of Winter Wheat/Spring Maize Strip Intercropping. Field Crops Res. 2009, 111, 65–73. [Google Scholar] [CrossRef]
- Bauder, J. Wheat Irrigation—MSU Extension Water Quality | Montana State University. Available online: https://waterquality.montana.edu/farm-ranch/irrigation/wheat/wheat-irrigation.html (accessed on 8 August 2022).
- Shewmaker, G.E.; Allen, R.G.; Neibling, W.H. Alfalfa Irrigation and Drought 2013; University of Idaho: Moscow, ID, USA, 2013. [Google Scholar]
- Snyder, R.L.; Bali, K.M. Irrigation Scheduling of Alfalfa Using Evapotranspiration. In Proceedings of the 2008 California Alfalfa and Forage Symposium and Western Seed Conference, San Diego, CA, USA, 2–4 December 2008; pp. 2–4. [Google Scholar]
- Hanson, B.; Schwankl, L.; Fulton, A. Scheduling Irrigations: When and How Much Water to Apply; Division of Agriculture and Natural Resources Publication: Oakland, CA, USA, 2004; p. 3396. [Google Scholar]
- Devine, S.; Anthony Toby, O. Climate-Smart Management of Soil Water Storage: Statewide Analysis of California Perennial Crops. Environ. Res. Lett. 2019, 14, 44021. [Google Scholar] [CrossRef]
- Sorooshian, S.; Li, J.; Hsu, K.; Gao, X. How Significant Is the Impact of Irrigation on the Local Hydroclimate in California’s Central Valley? Comparison of Model Results with Ground and Remote-sensing Data. J. Geophys. Res. Atmos. 2011, 116, D06102. [Google Scholar] [CrossRef]
- Hanson, B.R.; Peters, D. Soil Type Affects Accuracy of Dielectric Moisture Sensors. Calif. Agric. 2000, 54, 43–47. [Google Scholar] [CrossRef]
- Bausch, W.C. Remote Sensing of Crop Coefficients for Improving the Irrigation Scheduling of Corn. Agric. Water Manag. 1995, 27, 55–68. [Google Scholar] [CrossRef]
- French, A.N.; Hunsaker, D.J.; Sanchez, C.A.; Saber, M.; Gonzalez, J.R.; Anderson, R. Satellite-Based NDVI Crop Coefficients and Evapotranspiration with Eddy Covariance Validation for Multiple Durum Wheat Fields in the US Southwest. Agric. Water Manag. 2020, 239, 106266. [Google Scholar] [CrossRef]
- Horta, A.; Malone, B.; Stockmann, U.; Minasny, B.; Bishop, T.F.A.; McBratney, A.B.; Pallasser, R.; Pozza, L. Potential of Integrated Field Spectroscopy and Spatial Analysis for Enhanced Assessment of Soil Contamination: A Prospective Review. Geoderma 2015, 241–242, 180–209. [Google Scholar] [CrossRef]
- Nocco, M.A.; Rouse, S.E.; Balster, N.J. Vegetation Type Alters Water and Nitrogen Budgets in a Controlled, Replicated Experiment on Residential-Sized Rain Gardens Planted with Prairie, Shrub, and Turfgrass. Urban Ecosyst. 2016, 19, 1665–1691. [Google Scholar] [CrossRef]
- Nocco, M.A.; Zipper, S.C.; Booth, E.G.; Cummings, C.R.; Loheide, S.P.; Kucharik, C.J. Combining Evapotranspiration and Soil Apparent Electrical Conductivity Mapping to Identify Potential Precision Irrigation Benefits. Remote Sens. 2019, 11, 2460. [Google Scholar] [CrossRef]
- McLennon, E.; Dari, B.; Jha, G.; Sihi, D.; Kankarla, V. Regenerative Agriculture and Integrative Permaculture for Sustainable and Technology Driven Global Food Production and Security. Agron. J. 2021, 113, 4541–4559. [Google Scholar] [CrossRef]
- Jha, G.; Mukhopadhyay, S.; Ulery, A.L.; Lombard, K.; Chakraborty, S.; Weindorf, D.C.; VanLeeuwen, D.; Brungard, C. Agricultural Soils of the Animas River Watershed after the Gold King Mine Spill: An Elemental Spatiotemporal Analysis via Portable X-Ray Fluorescence Spectroscopy. J. Environ. Qual. 2021, 50, 730–743. [Google Scholar] [CrossRef]
- Zhang, J.; Guan, K.; Peng, B.; Jiang, C.; Zhou, W.; Yang, Y.; Pan, M.; Franz, T.E.; Heeren, D.M.; Rudnick, D.R.; et al. Challenges and Opportunities in Precision Irrigation Decision-Support Systems for Center Pivots. Environ. Res. Lett. 2021, 16, 053003. [Google Scholar] [CrossRef]
- Cahn, M.; Hartz, T.; Smith, R.; Noel, B.; Johnson, L.; Melton, F. CropManage: An Online Decision Support Tool for Irrigation and Nutrient Management. West. Nutr. Manag. Conf. Proc. 2015, 11, 9–15. [Google Scholar]
- Cahn, M.; Brown, P.; Fulton, A. Adapting CropManage Irrigation and Nitrogen Management Decision Support Tool for Central Valley Crops; California Department of Food and Agriculture: Sacramento, CA, USA, 2020. [Google Scholar]
- Khalid, S.; Sherzad, S. Agricultural Extension Manual for Extension Workers. Food and Agriculture Organization of United Nations Manual Book; FAO: Roma, Italy, 2019; pp. 1–42. [Google Scholar]
- Montazar, A.; Bachie, O.; Corwin, D.; Putnam, D. Feasibility of Moderate Deficit Irrigation as a Water Conservation Tool in California’s Low Desert Alfalfa. Agronomy 2020, 10, 1640. [Google Scholar] [CrossRef]
- Munoz-Carpena, R. Field Devices for Monitoring Soil Water Content. Bull. Inst. Food Agric. Sci. Univ. Fla. 2004, 343, 1–16. [Google Scholar] [CrossRef]
- Busscher, W.J. Field Estimation of Soil Water Content: A Review. J. Soil Water Conserv. 2009, 64, 116A. [Google Scholar] [CrossRef]
- Campbell, G.S. Soil Water Potential Measurement: An Overview. Irrig. Sci. 1988, 9, 265–273. [Google Scholar] [CrossRef]
- Muñoz-carpena, R.; Dukes, M.D.; Li, Y.C.; Klassen, W. Field Comparison of Tensiometer and Irrigation on Tomato. HortTechnology 2005, 15, 584–590. [Google Scholar] [CrossRef]
- Jha, G.; Choudhary, O.P.; Sharda, R.; Tejada Moral, M. Comparative Effects of Saline Water on Yield and Quality of Potato under Drip and Furrow Irrigation. Cogent Food Agric. 2017, 3, 1369345. [Google Scholar] [CrossRef]
- Shackel, K.; Lampinen, B.; Sibbett, S.; Olson, W. The relation of midday stem water potential to the growth and physiology of fruit trees under water limited conditions. Acta Hortic. 2000, 537, 425–430. [Google Scholar] [CrossRef]
- Hu, T.; Kang, S.; Li, F.; Zhang, J. Effects of Partial Root-Zone Irrigation on Hydraulic Conductivity in the Soil-Root System of Maize Plants. J. Exp. Bot. 2011, 62, 4163–4172. [Google Scholar] [CrossRef]
- Jha, G. A Review on Drip Irrigation Using Saline Irrigation Water in Potato (Solanum tuberosum L.). J. Agroecol. Nat. Resour. Manag. 2016, 3, 43–46. [Google Scholar]
- Chen, A.; Orlov-Levin, V.; Meron, M. Applying High-Resolution Visible-Channel Aerial Imaging of Crop Canopy to Precision Irrigation Management. Agric. Water Manag. 2019, 216, 196–205. [Google Scholar] [CrossRef]
- Hunt, E.R.; Doraiswamy, P.C.; McMurtrey, J.E.; Daughtry, C.S.T.; Perry, E.M.; Akhmedov, B. A Visible Band Index for Remote Sensing Leaf Chlorophyll Content at the Canopy Scale. Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 103–112. [Google Scholar] [CrossRef]
- Testa, G.; Gresta, F.; Cosentino, S.L. Dry Matter and Qualitative Characteristics of Alfalfa as Affected by Harvest Times and Soil Water Content. Eur. J. Agron. 2011, 34, 144–152. [Google Scholar] [CrossRef]
- Green, S.; McNaughton, K.; Wünsche, J.N.; Clothier, B. Modeling Light Interception and Transpiration of Apple Tree Canopies. Agron. J. 2003, 95, 1380–1387. [Google Scholar] [CrossRef]
- Massmann, A.; Gentine, P.; Lin, C. When Does Vapor Pressure Deficit Drive or Reduce Evapotranspiration? J. Adv. Model. Earth Syst. 2019, 11, 3305–3320. [Google Scholar] [CrossRef]
- Greco, M.; Chiappetta, A.; Bruno, L.; Bitonti, M.B. Estimating Evapotranspiration and Drought Stress in DNA In Posidonia Oceanica Cadmium Induces Changes with Ground-Based Thermal Patterning Remote Sensing in Methylation and Chromatin Agriculture: A Review. J. Exp. Bot. 2012, 63, 4671–4712. [Google Scholar] [CrossRef]
- Kisekka, I.; Aguilar, J.; Lamm, F.R.; Kansas, C.; Rogers, D. Using Soil Water and Canopy Temperature to Improve Irrigation Scheduling for Corn. In Proceedings of the 2014 Irrigation Association Conference, Phoenix, AZ, USA, 19–20 November 2014. [Google Scholar]
- Aladenola, O.; Madramootoo, C. Response of Greenhouse-Grown Bell Pepper (Capsicum annuum L.) to Variable Irrigation. Can. J. Plant Sci. 2014, 94, 303–310. [Google Scholar] [CrossRef]
- Bellvert, J.; Marsal, J.; Girona, J.; Gonzalez-Dugo, V.; Fereres, E.; Ustin, S.; Zarco-Tejada, P. Airborne Thermal Imagery to Detect the Seasonal Evolution of Crop Water Status in Peach, Nectarine and Saturn Peach Orchards. Remote Sens. 2016, 8, 39. [Google Scholar] [CrossRef]
- Prueger, J.H.; Parry, C.K.; Kustas, W.P.; Alfieri, J.G.; Alsina, M.M.; Nieto, H.; Wilson, T.G.; Hipps, L.E.; Anderson, M.C.; Hatfield, J.L.; et al. Crop Water Stress Index of an Irrigated Vineyard in the Central Valley of California. Irrig. Sci. 2018, 37, 297–313. [Google Scholar] [CrossRef]
- Dejonge, K.C.; Taghvaeian, S.; Trout, T.J.; Comas, L.H. Comparison of Canopy Temperature-Based Water Stress Indices for Maize. Agric. Water Manag. 2015, 156, 51–62. [Google Scholar] [CrossRef]
- Kullberg, E.G.; DeJonge, K.C.; Chávez, J.L. Evaluation of Thermal Remote Sensing Indices to Estimate Crop Evapotranspiration Coefficients. Agric. Water Manag. 2017, 179, 64–73. [Google Scholar] [CrossRef]
- Fulton, A.; Grant, J.; Buchner, R.; Connell, J. Using the Pressure Chamber for Irrigation Management in Walnut, Almond and Prune; University of California, Agriculture and Natural Resources: Davis, CA, USA, 2014. [Google Scholar]
- Shackel, K.; Moriana, A.; Marino, G.; Corell, M.; Pérez-lópez, D.; Martin-palomo, M.J.; Caruso, T.; Marra, F.P.; Martín, L.; Alcaras, A.; et al. Establishing a Reference Baseline for Midday Stem Water Potential in Olive and Its Use for Plant-Based Irrigation Management. Front. Plant Sci. 2021, 12, 2715. [Google Scholar] [CrossRef] [PubMed]
- CDFA. Climate Change Consortium for Specialty Crops: Impacts and Strategies for Resilience; CDFA: Sacramento, CA, USA, 2013; p. 76. [Google Scholar]
- Chen, W.-H.; Shang, C.; Zhu, S.; Haldeman, K.; Santiago, M.; Stroock, A.D.; You, F. Theoretical Exploration of Irrigation Control for Stem Water Potential through Model Predictive Control. In Proceedings of the 2020 American Control Conference (ACC), Online, 1–3 July 2020; pp. 1992–1997. [Google Scholar]
- 2020 Research Update—Almond Board of Califonia. Available online: https://www.almonds.com/sites/default/files/2020-12/ResearchUpdate_121620202.pdf (accessed on 20 July 2021).
- Knipper, K.R.; Kustas, W.P.; Anderson, M.C.; Alfieri, J.G.; Prueger, J.H.; Hain, C.R.; Gao, F.; Yang, Y.; McKee, L.G.; Nieto, H.; et al. Evapotranspiration Estimates Derived Using Thermal-Based Satellite Remote Sensing and Data Fusion for Irrigation Management in California Vineyards. Irrig. Sci. 2019, 37, 431–449. [Google Scholar] [CrossRef]
- Semmens, K.A.; Anderson, M.C.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; McKee, L.; Prueger, J.H.; Hain, C.R.; Cammalleri, C.; Yang, Y.; et al. Monitoring Daily Evapotranspiration over Two California Vineyards Using Landsat 8 in a Multi-Sensor Data Fusion Approach. Remote Sens. Environ. 2016, 185, 155–170. [Google Scholar] [CrossRef]
- Roy, S.; Ophori, D.; Kefauver, S. Estimation of Actual Evapotranspiration Using Surface Energy Balance Algorithms for Land Model: A Case Study in San Joaquin Valley, California. J. Environ. Hydrol. 2013, 21, 1–13. [Google Scholar]
- Zhao, J.; Chen, X.; Zhang, J.; Zhao, H.; Song, Y. Higher Temporal Evapotranspiration Estimation with Improved SEBS Model from Geostationary Meteorological Satellite Data. Sci. Rep. 2019, 9, 14981. [Google Scholar] [CrossRef]
- Xue, J.; Bali, K.M.; Light, S.; Hessels, T.; Kisekka, I. Evaluation of Remote Sensing-Based Evapotranspiration Models against Surface Renewal in Almonds, Tomatoes and Maize. Agric. Water Manag. 2020, 238, 106228. [Google Scholar] [CrossRef]
- Medellín-Azuara, J.; Paw, U.K.T.; Jin, Y.; Jankowski, J.; Bell, A.M.; Kent, E.; Clay, J.; Wong, A.; Alexander, N.; Santos, N.; et al. A Comparative Study for Estimating Crop Evapotranspiration in the Sacramento-San Joaquin Delta—Appendix G. NASA Satellite Irrigation Management Support System (SIMS); University of California Davis: Davis, CA, USA, 2018; pp. 1–3. [Google Scholar]
- Poirier-pocovi, M.; Volder, A.; Bailey, B.N. Modeling of Reference Temperatures for Calculating Crop Water Stress Indices from Infrared Thermography. Agric. Water Manag. 2020, 233, 106070. [Google Scholar] [CrossRef]
- Magney, T.S.; Frankenberg, C.; Köhler, P.; North, G.; Harrington, A.; Hat, J.; Stutz, J.; Sun, Y.; Castell, A.P. Disentangling Changes in the Spectral Shape of Chlorophyll Fluorescence: Implications for Remote Sensing of Photosynthesis. J. Geophys. Res. Biogeosci. 2019, 124, 1491–1507. [Google Scholar] [CrossRef]
- Nocco, M.A.; Smail, R.A.; Kucharik, C.J. Observation of Irrigation—Induced Climate Change in the Midwest United States. Glob. Chang. Biol. 2019, 25, 3472–3484. [Google Scholar] [CrossRef]
- Yu, R.; Zaccaria, D.; Kisekka, I.; Kurtural, S.K. Soil Apparent Electrical Conductivity and Must Carbon Isotope Ratio Provide Indication of Plant Water Status in Wine Grape Vineyards. Precis. Agric. 2021, 22, 1333–1352. [Google Scholar] [CrossRef]
- Brush, C.F.; Dogrul, E.C.; Kadir, T.N. Development and Calibration of the California Central Valley Groundwater-Surface Water Simulation Model (C2VSim), Version 3.02-CG; California Department of Water Resources Technical Memorandum: San Diego, CA, USA, 2013; p. 193. [Google Scholar]
- PPIC. Energy and Water Use in California Are Interconnected; PPIC: San Francisco, CA, USA, 2016. [Google Scholar]
- University of California Agriculture and Natural Resources. Agricultural Issues Center-Energy and Agriculture. Available online: https://aic.ucdavis.edu/ (accessed on 20 June 2021).
- Howes, D.J.; Freeman, B.; Jones, M. Agricultural Water Energy Efficiency Final Report; ITRC Report, No.R 11-007; Digital Commons @ Cal Poly: California, CA, USA, 2011. [Google Scholar]
- House, L.W. Water Supply Related Electricity Demand in California; Public Interest Energy Research (PIER) Program: Sacramento, CA, USA, 2006; pp. 1–77. [Google Scholar]
- Salas, W.; Green, P.; Frolking, S.; Li, C.; Boles, S. Estimating Irrigation Water Use for California Agriculture: 1950s to Present; California Energy Commission: Sacramento, CA, USA, 2006; p. 33. [Google Scholar]
- Anderson, R.G. Irrigation in California: Overview and Relation to Energy; US Salinity Laboratory: Riverside, CA, USA, 2019. [Google Scholar]
- Tindula, G.N.; Orang, M.N.; Snyder, R.L. Survey of Irrigation Methods in California in 2010. J. Irrig. Drain. Eng. 2013, 139, 233–238. [Google Scholar] [CrossRef]
- Marks, G.; Wilcox, E.; Olsen, D.; Goli, S. Opportunities for Demand Response in California Agricultural Irrigation: A Scoping Study; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA, 2013. [Google Scholar]
- Zoldoske, D. Water & Energy Efficiency; Colorado Water: Fort Collins, CO, USA, 2018; p. 35. [Google Scholar]
- Burt, C.M. Rapid Field Evaluation of Drip and Microspray Distribution Uniformity. Irrig. Drain. Syst. 2004, 18, 275–297. [Google Scholar] [CrossRef]
- Tarjuelo, J.M.; Rodriguez-Diaz, J.A.; Abadía, R.; Camacho, E.; Rocamora, C.; Moreno, M.A. Efficient Water and Energy Use in Irrigation Modernization: Lessons from Spanish Case Studies. Agric. Water Manag. 2015, 162, 67–77. [Google Scholar] [CrossRef]
- California Air Resources Control Board. Greenhouse Gas Quantification Methodology for the California Department of Food and Agriculture State Water Efficiency and Enhancement Program; California Air Resources Control Board: Sacramento, CA, USA, 2017. [Google Scholar]
- Shobe, B.; Merrill, J. Climate Smart: Saving Water and Energy on California Farms Recommendations for California’s State Water Efficiency and Enhancement Program (SWEEP); SWEEP: Sacramento, CA, USA, 2018. [Google Scholar]
- California Climate and Agricultural Network. Investing in California Agriculture’s Climate Solutions; California Climate and Agricultural Network: Sacramento, CA, USA, 2021. [Google Scholar]
- Montazar, A.; Krueger, R.; Corwin, D.; Pourreza, A.; Little, C.; Rios, S.; Snyder, R.L. Determination of Actual Evapotranspiration and Crop Coefficients of California Date Palms Using the Residual of Energy Balance Approach. Water 2020, 12, 2253. [Google Scholar] [CrossRef]
- Pardo, J.C.F.; Ramon, D.; Stefanelli-Silva, G.; Elegbede, I.; Lima, L.S.; Principe, S.C. Advancing Through the Pandemic from the Perspective of Marine Graduate Researchers: Challenges, Solutions, and Opportunities. Front. Mar. Sci. 2020, 7, 528. [Google Scholar] [CrossRef]
- García, A.M.; García, I.F.; Poyato, E.C.; Barrios, P.M.; Díaz, J.A.R. Coupling Irrigation Scheduling with Solar Energy Production in a Smart Irrigation Management System. J. Clean. Prod. 2018, 175, 670–682. [Google Scholar] [CrossRef]
- Galloway, J.N.; Aber, J.D.; Erisman, J.W.; Seitzinger, S.P.; Howarth, R.W.; Cowling, E.B.; Cosby, B.J. The Nitrogen Cascade. BioScience 2003, 53, 341–356. [Google Scholar] [CrossRef]
- Rosenstock, T.S.; Liptzin, D.; Dzurella, K.; Fryjoff-Hung, A.; Hollander, A.; Jensen, V.; King, A.; Kourakos, G.; McNally, A.; Pettygrove, G.S.; et al. Agriculture’s Contribution to Nitrate Contamination of Californian Groundwater (1945–2005). J. Environ. Qual. 2014, 43, 895–907. [Google Scholar] [CrossRef]
- Harding, R.B.; Embleton, T.W.; Jones, W.W.; Ryan, T.M. Leaching and Gaseous Losses of Nitrogen from Some Nontilled California Soils1. Agron. J. 1963, 55, 515–518. [Google Scholar] [CrossRef]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystems and Human Well-Being-Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Shrestha, A.; Luo, W. An Assessment of Groundwater Contamination in Central Valley Aquifer, California Using Geodetector Method. Ann. GIS 2017, 23, 149–166. [Google Scholar] [CrossRef]
- Harter, T.; Dzurella, K.; Kourakos, G.; Hollander, A.; Bell, A.; Santos, N.; Hart, Q.; King, A.; Quinn, J.; Lampinen, G.; et al. Nitrogen Fertilizer Loading to Groundwater in the Central Valley; Final Report to the Fertilizer Research Education Program, Projects 11-0301 and 15-0454; University of California Davis: Davis, CA, USA, 2017; pp. 1–36. [Google Scholar]
- Harter, T. Agricultural Impacts on Groundwater Nitrate, Nitrates in Groundwater. Southwest Hydrol. Mag. 2009, 8, 1–38. [Google Scholar]
- Brown, P. Crop Nutrient Status & Demand in Almond. Available online: https://ucanr.edu/sites/scri/Crop_Nutrient_Status_and_Demand__Patrick_Brown (accessed on 5 July 2022).
- Saa, S.; Peach-Fine, E.; Brown, P.; Michailides, T.; Castro, S.; Bostock, R.; Laca, E. Nitrogen Increases Hull Rot and Interferes with the Hull Split Phenology in Almond (Prunus dulcis). Sci. Hortic. 2016, 199, 41–48. [Google Scholar] [CrossRef]
- Hartz, T.K.; Bottoms, T.G. Nitrogen Requirements of Drip-Irrigated Processing Tomatoes. HortScience Horts 2009, 44, 1988–1993. [Google Scholar] [CrossRef]
- Geisseler, D.J. Developing a Decision Support Tool for Processing Tomato Irrigation and Fertilization in the Central Valley Based on CropManage; California Department of Food and Agriculture: California, CA, USA, 2018. [Google Scholar]
- Geisseler, D.; Horwath, W.R. California Crop Fertilization Guidelines; UCANR Publication: Davis, CA, USA, 2018. [Google Scholar]
- Rosenstock, T.T.; Liptzin, D.; Six, J.; Tomich, T. Fertilizer Use in California: Assessing the Data, Trends and a Way Forward. Calif. Agric. 2013, 67, 68. [Google Scholar] [CrossRef]
- Walker, L. Central Valley Salt & Nitrate Management Plan Antidegradation Analysis. Available online: https://www.cvsalinity.org/_Archive/docs/ceqa/ceqa-documents/3524-central-valley-salt-and-nitrate-management-plan-antidegradation-analysis/file.html (accessed on 10 July 2021).
- Gallardo, M.; Elia, A.; Thompson, R.B. Decision Support Systems and Models for Aiding Irrigation and Nutrient Management of Vegetable Crops. Agric. Water Manag. 2020, 240, 106209. [Google Scholar] [CrossRef]
- Kim, J.S.; Kisekka, I. FARMs: A Geospatial Crop Modeling and Agricultural Water Management System. ISPRS Int. J. Geo-Inf. 2021, 10, 553. [Google Scholar] [CrossRef]
- Smedema, L.K.; Shiati, K. Irrigation and Salinity: A Perspective Review of the Salinity Hazards of Irrigation Development in the Arid Zone. Irrig. Drain. Syst. 2002, 16, 161–174. [Google Scholar] [CrossRef]
- CV-SALTS Central Valley Salinity Alternatives for Long-Term Sustainability. Available online: https://www.waterboards.ca.gov/centralvalley/water_issues/salinity/ (accessed on 10 July 2021).
- Quinn, N.W.T. Policy Innovation and Governance for Irrigation Sustainability in the Arid, Saline San Joaquin River Basin. Sustainability 2020, 12, 4733. [Google Scholar] [CrossRef]
- Mitchell, J.P.; Thomsen, C.D.; Graves, W.L.; Shennan, C. Cover Crops for Saline Soils. J. Agron. Crop Sci. 1999, 183, 167–178. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Letey, J. Soil Salinity Poses Challenges for Sustainable Agriculture and Wildlife. Calif. Agric. 2000, 54, 43–48. [Google Scholar] [CrossRef]
- Howitt, R.E.; Kaplan, J.; Larson, D.; MacEwan, D.; Medellín-Azuara, J.; Horner, G.; Lee, N.S. The Economic Impacts of Central Valley Salinity; Final Report to the State Water Resources Control Board Contract; University of California Davis: Davis, CA, USA, 2009; pp. 5–417. [Google Scholar]
- Welle, P.D.; Mauter, M.S. High-Resolution Model for Estimating the Economic and Policy Implications of Agricultural Soil Salinization in California. Environ. Res. Lett. 2017, 12, 094010. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkaline Soils; US Department of Agriculture: Washington, DC, USA, 1954; Volume 160. [Google Scholar] [CrossRef]
- Shahid, S.A.; Zaman, M.; Heng, L. Soil Salinity: Historical Perspectives and a World Overview of the Problem. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Zaman, M., Shahid, S.A., Heng, L., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 43–53. ISBN 978-3-319-96190-3. [Google Scholar]
- Greenway, H.; Munns, R. Mechanisms of Salt Tolerance in Nonhalophytes. Annu. Rev. Plant Physiol. 1980, 31, 149–190. [Google Scholar] [CrossRef]
- Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Effect of Salinity Stress on Plants and Its Tolerance Strategies: A Review. Environ. Sci. Pollut. Res. 2015, 22, 4056–4075. [Google Scholar] [CrossRef] [PubMed]
- Kosloff, L.H. Tragedy at Kesterson Reservoir: Death of a Wildlife Refuge Illustrates Failings of Water Law. Envtl. L. Rep. News Anal. 1985, 15, 10386. [Google Scholar]
- Chen, C.W.; Herr, J.; Ziemelis, L. Watershed Analysis Risk Management Framework: A Decision Support System for Watershed Approach and Total Maximum Daily Load Calculation; Topical Report; US Department of Energy Office of Scientific and Technical Information: Washington, DC, USA, 1998. [Google Scholar]
- Hatchett, S.A.; Quinn, N.; Horner, G.L.; Howitt, R.E. A Drainage Economics Model to Evaluate Policy Options for Management of Selenium Contaminated Drainage. Toxic Substances in Agricultural Water Supply and Drainage. In Proceedings of the Second Pan American Regional Conference on Irrigation and Drainage, Denver, CO, USA, 1 June 1989. [Google Scholar]
- Quinn, N.W.T.; Cronin, J. Use of the Hydro-Salinity, Crop Production Optimization Model APSIDE to Validate Results from an Updated Regional Flow Model of the San Joaquin River Basin. In Proceedings of the Environmental Software Systems. Computer Science for Environmental Protection; Hřebíček, J., Denzer, R., Schimak, G., Pitner, T., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 150–162. [Google Scholar]
- Solomon, K.H. Yield Related Interpretations of Irrigation Uniformity and Efficiency Measures. Irrig. Sci. 1984, 5, 161–172. [Google Scholar] [CrossRef]
- Abd El-Wahed, M.H.; Medici, M.; Lorenzini, G. Sprinkler Irrigation Uniformity: Impact on the Crop Yield and Water Use Efficiency. J. Eng. Thermophys. 2016, 25, 117–125. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, N.; Jiang, C.; Archer, L.; Wang, Y. Temporal and Spatial Distribution of Soil Water and Nitrate Content Affected by Surface Irrigation and Fertilizer Rate in Silage Corn Fields. Sci. Rep. 2020, 10, 8317. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Li, Y. Effects of Drip Irrigation System Uniformity and Nitrogen Applied on Deep Percolation and Nitrate Leaching during Growing Seasons of Spring Maize in Semi-Humid Region. Irrig. Sci. 2014, 32, 221–236. [Google Scholar] [CrossRef]
- Stanhill, G. Water Use Efficiency. Adv. Agron. 1986, 39, 53–85. [Google Scholar] [CrossRef]
- Arya, C.K.; Purohit, R.C.; Dashora, L.K.; Singh, P.K.; Kothari, M. Performance Evaluation of Drip Irrigation Systems. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 2287–2292. [Google Scholar] [CrossRef]
- Zhu, X.; Chikangaise, P.; Shi, W.; Chen, W.H.; Yuan, S. Review of Intelligent Sprinkler Irrigation Technologies for Remote Autonomous System. Int. J. Agric. Biol. Eng. 2018, 11, 23–30. [Google Scholar] [CrossRef]
- Khosla, R.; Westfall, D.G.; Reich, R.M.; Mahal, J.S.; Gangloff, W.J. Spatial Variation and Site-Specific Management Zones. In Geostatistical Applications for Precision Agriculture; Springer: Dordrecht, The Netherlands, 2010; pp. 195–219. [Google Scholar]
- Oki, L. Measuring Distribution Uniformity and Calculating Run Time. University of California Davis California Center for Urban Horticulture. Available online: https://ccuh.ucdavis.edu/measuring-DU-run-time (accessed on 20 March 2021).
- Huang, Y.; Thomson, S.J.; Brand, H.J.; Reddy, K.N. Development and Evaluation of Low-Altitude Remote Sensing Systems for Crop Production Management. Int. J. Agric. Biol. Eng. 2016, 9, 1–11. [Google Scholar] [CrossRef]
- Yu, F.H.; Xu, T.Y.; Du, W.; Ma, H.; Zhang, G.S.; Chen, C.L. Radiative Transfer Models (RTMs) for Field Phenotyping Inversion of Rice Based on UAV Hyperspectral Remote Sensing. Int. J. Agric. Biol. Eng. 2017, 10, 150–157. [Google Scholar] [CrossRef]
- McBride, J. West Coast Nut; JCS Marketing: Fresno, CA, USA, 2020. [Google Scholar]
- Baja, S.; Arif, S.; Neswati, R. Developing a User Friendly Decision Tool for Agricultural Land Use Allocation at a Regional Scale. Mod. Appl. Sci. 2017, 11, 11–21. [Google Scholar] [CrossRef]
- Aubert, B.A.; Schroeder, A.; Grimaudo, J. IT as Enabler of Sustainable Farming: An Empirical Analysis of Farmers’ Adoption Decision of Precision Agriculture Technology. Decis. Support Syst. 2012, 54, 510–520. [Google Scholar] [CrossRef]
- Fulton, A. An Advisory Service for Optimum Irrigation Scheduling in California; University of California, Agriculture and Natural Resources: Davis, CA, USA, 2011. [Google Scholar]
- Porter, J.; Parsons, S.; Robertson, C. Time for Review: Supporting the Work of an Advisory Group. J. Res. Spéc. Educ. Needs 2006, 6, 11–16. [Google Scholar] [CrossRef]
- Wolek, F.W. Advisory Groups. J. Technol. Transf. 2015, 15, 39–44. [Google Scholar] [CrossRef]
- Torres-Sanchez, R.; Navarro-Hellin, H.; Guillamon-Frutos, A.; San-Segundo, R.; Ruiz-Abellón, M.C.; Domingo-Miguel, R. A Decision Support System for Irrigation Management: Analysis and Implementation of Different Learning Techniques. Water 2020, 12, 548. [Google Scholar] [CrossRef]
- Kpienbaareh, D.; Kansanga, M.; Luginaah, I. Examining the Potential of Open Source Remote Sensing for Building Effective Decision Support Systems for Precision Agriculture in Resource-Poor Settings. GeoJournal 2019, 84, 1481–1497. [Google Scholar] [CrossRef]
- Petrie, H.; Bevan, N. The Evaluation of Accessibility, Usability, and User Experience; CRC Press: Boca Raton, FL, USA, 2009; ISBN 9781420064995. [Google Scholar]
- de Godoi, T.X.; Costa Valentim, N.M. Towards an Integrated Evaluation of Usability, User Experience and Accessibility in Assistive Technologies. In Proceedings of the XVIII Brazilian Symposium on Software Quality, Fortaleza, Brazil, 28 October–1 November 2019. [Google Scholar] [CrossRef]
- Datta, S.; Taghvaeian, S.; Ochsner, T.E.; Moriasi, D.; Gowda, P.; Steiner, J.L. Performance Assessment of Five Different Soil Moisture Sensors under Irrigated Field Conditions in Oklahoma. Sensors 2018, 18, 3786. [Google Scholar] [CrossRef] [PubMed]
Crop | Crop Coefficient * | Notes | Water Requirement (cm per Season) | References | ||
---|---|---|---|---|---|---|
Initial | Developing | Late | ||||
Almonds | 0.20–0.78 | 0.80–1.09 | 0.40–1.17 | Mature trees; intial (hull, shell, integuments), developing (hardening, embryo growth), late (maturity, ripening, hull split). | 104–112 | [48,49,50,51,52] |
Pistachios | 0.07–0.79 | 0.82–1.19 | 0.35–1.19 | Mature trees; initial (bloom, leafout, shell expansion), developing (shell hardening, nut fill), late (nut fill, shell split, hull split, harvest, post harvest). | 76–127 | [51,53,54,55] |
Walnuts | 0.12–0.93 | 1.00–1.10 | 0.28–0.97 | Mature trees; initial (bloom, leafout, flowering, growth of hull), developing (shell and kernal development), and late (hull split). | 104–112 | [56,57] |
Tomatoes | 0.20–0.45 | 1.00–1.20 | 0.30–0.90 | Processing and fresh market tomatoes; initial (planting, prebloom, bloom), developing (bloom, early fruit set, late fruit set), late (late fruit set, first color, red fruit, preharvest). | 53–76 | [51,56,58] |
Grapes | 0.30–0.37 | 0.62–0.85 | 0.45–0.75 | Table, wine and rasin grapes; initial (shoot development, flowering), developing (berry formation, verasion), and late (berry ripening, harvest, senescence). | 25–76 | [51,59,60] |
Lettuce | 0.17–0.61 | 0.83–1.02 | 0.45–0.98 | Lettuce grown year-round; initial (emergence to 40% canopy cover), developing (40% canopy cover to 80% canopy cover), and late (80% canopy cover to harvest). | 30–61 | [51,56,61,62] |
Rice | 0.95–1.05 | 1.20–1.25 | 0.60–0.95 | For both paddy and non-paddy grown rice, initial (vegetative phase), developing (reproductive phase), and late (maturation phase). | 61–122 | [51,56,63] |
Corn | 0.18–0.26 | 1.06–1.17 | 0.30–0.55 | Field and sweet corn; initial (vegetative stage), developing (reproductive stage), and end (maturity). | 56–76 | [56,64] |
Wheat | 0.26–0.70 | 1.09–1.15 | 0.25–0.41 | Winter wheat; initial (tillering), developing (stem exension and heading), late (ripening, harvest). | 46–53 | [51,65,66] |
Alfalfa | 0.30–0.40 | 0.95–1.30 | 0.50–1.30 | Initial (planting to 10% cover), developing (10% cover to senescence), and late (senescence to maturity). | 51–117 | [56,67,68] |
IDSS Type | Name of Device | Key Parameter (s) | Telemetry | Service Provider or Integration Partners |
---|---|---|---|---|
Soil-based | Sentek Drill and Drop Probes (Stepney, Australia) | Volumetric Moisture Content Soil temperature Soil salinity | IrriMax | Wildeye (Fresno, CA, USA) Wiseconn (Fresno, CA, USA) |
AquaCheck Sub-Surface probes (Perry, IA, USA) | Volumetric Moisture Content | Farm(X) (Mountain View, CA, USA) | ||
Hortau 1k sensors (Québec, QC, Canada) | Soil water potential | Irrolis 3 | Hortau (Québec, Canada) | |
Irrometer tensiometer (Riverside, CA, USA) | Soil water potential | IRROcloud | Irrometer (Riverside, CA, USA), Agri-Valley irrigation (Merced, CA, USA), Bennett and Bennett (Selma, CA, USA), Bi-County Irrigation (Yuba City, CA, USA), Wildeye (Fresno, CA, USA), Crouzet Irrigation Supply (Porterville, CA, USA), Hydratec, Inc. (Windham, NH), Reedley Irrigation (Reedly CA, USA) | |
Watermark Sensor (Riverside, CA, USA) | Soil water potential | IRROcloud | ||
Canopy-based | Arable Mark 2 (San Francisco, CA, USA) | Crop Evapotranspiration Canopy temperature Precipitation Growing degree days Leaf wetness NDVI | Arable Open and Arable Mobile | Arable (San Francisco, CA, USA) Netafim (Tel Aviv-Yafo, Israel) (integrated data from Arable through NetBeat) |
Tule sensors (Davis, CA, USA) | Actual Evapotranspiration | Tule Web or mobile application | Tule Technologies (Davis, CA, USA) | |
Imagery-based | Ceres Imaging (Oakland, CA, USA) | Thermal imagery Water stress maps Color infrared maps Colorized NDVI | Ceres imaging web and mobile application | Ceres Imaging (Oakland, CA, USA) John Deere (Moline, IL, USA) ** Climate Field View (San Francisco, CA, USA) ** |
Irriwatch (Maurik, The Netherlands) | Soil moisture and actual evapotranspiration using daily satellite imaging using SEBAL model | Irriwatch Portal web and mobile application | Vinduino Crop Optimization Technology (Temecula, CA, USA) ** | |
CIMIS * | Reference Evapotranspiration | 153 CIMIS Stations through web and mobile applications | University of California, Davis WATERIGHT ** | |
CropManage * | Evapotranspiration using satellite imagery | CropManage Web Application | University of California Agriculture and Natural Resources (UCANR) | |
Open ET * | Evapotranspiration and consumptive water use using satellite imagery | OpenET Web application | NASA, DRI, EDF, Google Earth Engine |
IDSS Name | Operation Mode | Software Available | Reference |
---|---|---|---|
N management | |||
CropManage | Web-tool-based | https://cropmanage.ucanr.edu/ (accessed on 20 August 2021) | [82] |
FARMS | Web-tool-based | https://ciswma.lawr.ucdavis.edu/ (accessed on 20 August 2021) | [81] |
N budget calculator | Web-tool-based | http://fruitsandnuts.ucdavis.edu/N_Budget_Calculator/ (accessed on 20 August 2021) | [126] |
Salinity management | |||
WARMF | Computer-based | - | [82] |
SJRRTM | Web-tool-based | https://www.restoresjr.net/restoration-flows/water-quality/ (accessed on 20 August 2021) | [81] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jha, G.; Nicolas, F.; Schmidt, R.; Suvočarev, K.; Diaz, D.; Kisekka, I.; Scow, K.; Nocco, M.A. Irrigation Decision Support Systems (IDSS) for California’s Water–Nutrient–Energy Nexus. Agronomy 2022, 12, 1962. https://doi.org/10.3390/agronomy12081962
Jha G, Nicolas F, Schmidt R, Suvočarev K, Diaz D, Kisekka I, Scow K, Nocco MA. Irrigation Decision Support Systems (IDSS) for California’s Water–Nutrient–Energy Nexus. Agronomy. 2022; 12(8):1962. https://doi.org/10.3390/agronomy12081962
Chicago/Turabian StyleJha, Gaurav, Floyid Nicolas, Radomir Schmidt, Kosana Suvočarev, Dawson Diaz, Isaya Kisekka, Kate Scow, and Mallika A. Nocco. 2022. "Irrigation Decision Support Systems (IDSS) for California’s Water–Nutrient–Energy Nexus" Agronomy 12, no. 8: 1962. https://doi.org/10.3390/agronomy12081962
APA StyleJha, G., Nicolas, F., Schmidt, R., Suvočarev, K., Diaz, D., Kisekka, I., Scow, K., & Nocco, M. A. (2022). Irrigation Decision Support Systems (IDSS) for California’s Water–Nutrient–Energy Nexus. Agronomy, 12(8), 1962. https://doi.org/10.3390/agronomy12081962