Crop Load and Thinning Methods Impact Yield, Nutrient Content, Fruit Quality, and Physiological Disorders in ‘Scilate’ Apples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental and Treatment Design
2.2. Treatment Setup and Counts
2.3. Sample Collection and Storage
2.4. Fruit Quality Assessments
2.5. Soil Sampling
2.6. Statistical Analysis
3. Results
3.1. Fruit Set and Return Bloom
3.2. Fruit Weight and Yield
3.3. Fruit Maturity at Harvest
3.4. Fruit Quality at Harvest
3.5. Internal Flesh Browning and Fruit Softening
3.6. Fruit Nutrients
3.7. Leaf Nutrients
3.8. Individual Leaf Area and Plant Health
4. Discussion
4.1. Fruit Set and Return Bloom
4.2. Fruit Weight and Yield
4.3. Fruit Maturity and Quality
4.4. Internal Flesh Browning and Fruit Softening
4.5. Fruit and Leaf Nutrients
4.6. Leaf Area and Tree Health
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidt, T.R.; Auvil, T.D.; Hanrahan, I.; Castillo, F.; McFerson, J.R. Crop load management of tree fruits in the Pacific Northwest of USA. Acta Hortic. 2011, 903, 759–766. [Google Scholar] [CrossRef]
- Breen, K.; van Hooijdonk, B.; Tustin, D.; Wilkie, J.; Bound, S.; Middleton, S.; Close, D. Changes in fruit set of ‘Gala’ apple in response to environment and artificial spur extinction. Acta Hortic. 2014, 1058, 77–83. [Google Scholar] [CrossRef]
- Costa, G.; Blanke, M.; Widmer, A. Principles of thinning in fruit tree crops-needs and novelties. Acta Hortic. 2013, 998, 17–26. [Google Scholar] [CrossRef]
- Jones, K.M.; Bound, S.; Miller, P. Crop Regulation of Pome Fruit in Australia; Tasmanian Institute of Research: Hobart, Australia, 1998. [Google Scholar]
- Untiedt, R.; Blanke, M. Effects of fruit thinning agents on apple tree canopy photosynthesis and dark respiration. Plant Growth Regul. 2001, 35, 1–9. [Google Scholar] [CrossRef]
- Webster, T. Current approved thinning strategies for apples and pears and recent thinning research trials in Europe. Compact. Fruit Tree 2002, 35, 73–76. [Google Scholar]
- Williams, M.W.; Edgerton, L.J. Fruit thinning of apples and pears with chemicals. Agric. Inf. Bull. 1981, 289. [Google Scholar] [CrossRef]
- Lakso, A.N. Early fruit growth and drop-the role of carbon balance in the apple tree. Acta Hortic. 2011, 903, 733–742. [Google Scholar] [CrossRef]
- Lakso, A.N.; Goffinet, M.C. Apple fruit growth. N. Y. Fruit Q. 2013, 21, 11–14. [Google Scholar]
- Mészáros, M.; Hnátková, H.; Čonka, P.; Náměstek, J. Linking mineral nutrition and fruit quality to growth intensity and crop load in apple. Agronomy 2021, 11, 506. [Google Scholar] [CrossRef]
- Davis, K.; Stover, E.; Wirth, F. Economics of fruit thinning: A review focusing on apple and citrus. HortTechnology 2004, 14, 282–289. [Google Scholar] [CrossRef]
- Bound, S.A. Managing crop load in european pear (Pyrus communis L.)—A review. Agriculture 2021, 11, 637. [Google Scholar] [CrossRef]
- Meland, M. The effect of hand thinning on yield and return bloom of five pear cultivars in a Northern climate. Acta Hortic. 1998, 475, 275–282. [Google Scholar] [CrossRef]
- Bound, S. Managing Crop Load in Deciduous Tree Crops; NSW Government Department of Primary Industries: Orange, NSW, Australia, 2021; pp. 126–131. [Google Scholar]
- Tromp, J. Flower-bud formation in pome fruits as affected by fruit thinning. Plant Growth Regul. 2000, 31, 27–34. [Google Scholar] [CrossRef]
- Greene, D.; Costa, G. Fruit thinning in pome- and stone-fruit: State of the art. Acta Hortic. 2013, 998, 93–102. [Google Scholar] [CrossRef]
- Bound, S. Precision crop load management of apple (Malus x domestica Borkh.) without chemicals. Horticulturae 2019, 5, 3. [Google Scholar] [CrossRef]
- Bound, S.A. Alternate thinning chemicals for apples. Acta Hortic. 2010, 884, 229–236. [Google Scholar] [CrossRef]
- Wertheim, S.J.; Webster, A.D. Manipulation of growth and development by plant bioregulators. In Fundamentals of Temperate Zone Tree Fruit Production; Tromp, J., Webster, A.D., Wertheim, S.J., Eds.; Backhuys Publishers: Leiden, The Netherlands, 2005; pp. 267–294. [Google Scholar]
- Looney, N.E. Chemical thinning of apple: Some new strategies and important refinements to old procedures. Acta Hortic. 1986, 179, 597–604. [Google Scholar] [CrossRef]
- Bound, S.; Jones, K. Ammonium thiosulphate as a blossom thinner of ‘Delicious’ apple, ‘Winter Cole’ pear and ‘Hunter’ apricot. Aust. J. Exp. Agric. 2004, 44, 931–937. [Google Scholar] [CrossRef]
- Robinson, T.L.; Lakso, A.N. Predicting chemical thinner response with a carbohydrate model. Acta Hortic. 2008, 903, 743–750. [Google Scholar] [CrossRef]
- Lauri, P.É.; Térouanne, E.; Lespinasse, J.M. Relationship between the early development of apple fruiting branches and the regularity of bearing—An approach to the strategies of various cultivars. J. Hortic. Sci. 1997, 72, 519–530. [Google Scholar] [CrossRef]
- Lauri, P.É.; Térouanne, E.; Lespinasse, J.M.; Regnard, J.L.; Kelner, J.J. Genotypic differences in the axillary bud growth and fruiting pattern of apple fruiting branches over several years—An approach to regulation of fruit bearing. Sci. Hortic. 1995, 64, 265–281. [Google Scholar] [CrossRef]
- Lauri, P.É.; Lespinasse, J.M. Apple tree training in France: Current concepts and practical implications. Fruits 1999, 54, 441–454. [Google Scholar]
- Lauri, P.É.; Lespinasse, J.M. The vertical axis and solaxe systems in France. Acta Hortic. 1998, 513, 287–296. [Google Scholar] [CrossRef]
- Lauri, P.E.; Crété, X.; Ferre, G. Centrifugal training in apple-appraisal of a two-year experiment on ‘Galaxy’ in Southeast France. Acta Hortic. 2007, 732, 391–396. [Google Scholar] [CrossRef]
- Lauri, P.É.; Willaume, M.; Larrive, G.; Lespinasse, J.M. The concept of centrifugal training in apple aimed at optimizing the relationship between growth and fruiting. Acta Hortic. 2004, 636, 35–42. [Google Scholar] [CrossRef]
- Tabing, O.; Parkes, H.; Middleton, S.; Tustin, D.; Breen, K.; Van Hooijdonk, B. Artificial spur extinction to regulate crop load and fruit quality of ‘Kalei’ apple. Acta Hortic. 2016, 1130, 273–278. [Google Scholar] [CrossRef]
- Tustin, D.S.; Dayatilake, G.A.; Breen, K.C.; Oliver, M.J. Fruit set responses to changes in floral bud load—A new concept for crop load regulation. Acta Hortic. 2012, 932, 195–202. [Google Scholar] [CrossRef]
- Tustin, D.S.; Dayatilake, G.A.; Henriod, R.E.; Breen, K.C.; Oliver, M. Changes in fruiting behaviour and vegetative development of ‘Scifresh’ apple in response to artificial spur extinction using centrifugal training. Acta Hortic. 2011, 903, 603–610. [Google Scholar] [CrossRef]
- Van Hooijdonk, B.; Tustin, D.; Oliver, M.; Breen, K.; Dayatilake, G. Modification of canopy architecture imposed by artificial spur extinction promotes reliable cropping behaviour and enhances fruit quality of ‘Scilate’ apple trees. Acta Hortic. 2014, 1058, 63–70. [Google Scholar] [CrossRef]
- Breen, K.C.; Tustin, D.S.; Palmer, J.W.; Boldingh, H.L.; Close, D.C. Apple fruit set is influenced by altered floral bud density but not by reduced carbohydrate reserves. Acta Hortic. 2018, 1228, 315–322. [Google Scholar] [CrossRef]
- Breen, K.; Tustin, S.; Palmer, J.; Boldingh, H.; Close, D. Revisiting the role of carbohydrate reserves in fruit set and early-season growth of apple. Sci. Hortic. 2020, 261, 109034. [Google Scholar] [CrossRef]
- Breen, K.C.; Tustin, D.S.; Palmer, J.W.; Close, D.C. Method of manipulating floral bud density affects fruit set responses in apple. Sci. Hortic. 2015, 197, 244–253. [Google Scholar] [CrossRef]
- Breen, K.; Palmer, J.; Birken, E.; Tustin, D.; Henriod, R.; Seymour, S.; Diack, R.; Dayatilake, G.; Oliver, M. The influence of fruiting bud structure on fruit size and quality of ‘Scifresh’ apple. In Proceedings of the Growing Smarter with Less Water—The Annual New Zealand Agricultural and Horticultural Science Convention, Lincoln University, Canterbury, New Zealand, 13–15 August 2007; pp. 13–15. [Google Scholar]
- Rayment, G.E.; Lyons, D.J. Soil Chemical Methods—Australasia; CSIRO Publishing: Collingwood, Australia, 2010; p. 516. [Google Scholar]
- McQuaker, N.R.; Brown, D.F.; Kluckner, P.D. Digestion of environmental materials for analysis by inductively coupled plasma-atomic emission spectrometry. Anal. Chem. 1979, 51, 1082–1084. [Google Scholar] [CrossRef]
- Reddy, P.; Plozza, T.; Ezernieks, V.; Stefanelli, D.; Scalisi, A.; Goodwin, I.; Rochfort, S. Metabolic pathways for observed impacts of crop load on floral induction in apple. Int. J. Mol. Sci. 2022, 23, 6019. [Google Scholar] [CrossRef]
- Jones, K.; Bound, S.; Koen, T.; Oakford, M. Effect of timing of hand thinning on the cropping potential of ‘Red Fuji’ apple trees. Aust. J. Exp. Agric. 1992, 32, 417–420. [Google Scholar] [CrossRef]
- Atay, E.; Crété, X.; Loubet, D.; Lauri, P.E. Effects of different crop loads on physiological, yield and fruit quality of ‘JoyaTM’ apple trees: High crop load decreases maximum daily trunk diameter and does not affect stem water potential. Int. J. Fruit Sci. 2021, 21, 955–969. [Google Scholar] [CrossRef]
- Palmer, J.W.; Giuliani, R.; Adams, H.M. Effect of crop load on fruiting and leaf photosynthesis of ‘Braeburn’/M.26 apple trees. Tree Physiol. 1997, 17, 741–746. [Google Scholar] [CrossRef]
- Daugaard, H.; Grauslund, J. Fruit colour and correlations with orchard factors and post-harvest characteristics in apple cv. Mutsu. J. Hortic. Sci. Biotechnol. 1999, 74, 283–287. [Google Scholar] [CrossRef]
- Willaume, M.; Lauri, P.-É.; Sinoquet, H. Light interception in apple trees influenced by canopy architecture manipulation. Trees 2004, 18, 705–713. [Google Scholar] [CrossRef]
- Ferguson, I.B.; Watkins, C.B. Crop load affects mineral concentrations and incidence of bitter pit in ‘Cox’s Orange Pippin’ apple fruit. J. Am. Soc. Hortic. Sci. 1992, 117, 373–376. [Google Scholar] [CrossRef]
- Lidster, P.D.; Porritt, S.W.; Mason, J.; Eaton, G.W. Spartan apple breakdown as affected by orchard factors, nutrient content and fruit quality. Can. J. Plant Sci. 1975, 55, 443–446. [Google Scholar] [CrossRef]
- Johnston, J.W.; Hewett, E.W.; Hertog, M.L.A.T.M.; Harker, R. Harvest date and fruit size affect postharvest softening of apple fruit. J. Hortic. Sci. Biotechnol. 2002, 77, 355–360. [Google Scholar] [CrossRef]
- Lee, J.; Mattheis, J.P.; Rudell, D.R. Fruit size affects physiological attributes and storage disorders in cold-stored ‘Royal Gala’ apples. HortScience 2013, 48, 1518–1524. [Google Scholar] [CrossRef]
- Harker, F.R.; Redgwell, R.J.; Hallett, I.C. Texture of fresh fruit. Hortic. Rev. 1997, 20, 121–224. [Google Scholar]
- Malladi, A.; Hirst, P.M. Increase in fruit size of a spontaneous mutant of ‘Gala’ apple (Malus × domestica Borkh.) is facilitated by altered cell production and enhanced cell size. J. Exp. Bot. 2010, 61, 3003–3013. [Google Scholar] [CrossRef]
- Mann, H.; Bedford, D.; Luby, J.; Vickers, Z.; Tong, C. Relationship of instrumental and sensory texture measurements of fresh and stored apples to cell number and size. HortScience 2005, 40, 1815–1820. [Google Scholar] [CrossRef]
- McArtney, S.; Palmer, J.W.; Adams, H.M. Crop loading studies with ‘Royal Gala’ and ‘Braeburn’ apples: Effect of time and level of hand thinning. N. Z. J. Crop Hortic. Sci. 1996, 24, 401–407. [Google Scholar] [CrossRef]
- Wünsche, J.N.; Ferguson, I.B. Crop load interactions in apple. Hortic. Rev. 2005, 31, 231–290. [Google Scholar]
- Anthony, B.; Serra, S.; Musacchi, S. Optimizing crop load for new apple cultivar: “WA38”. Agronomy 2019, 9, 107. [Google Scholar] [CrossRef]
- Parker, A.K.; Hofmann, R.W.; van Leeuwen, C.; McLachlan, A.R.; Trought, M.C. Leaf area to fruit mass ratio determines the time of veraison in Sauvignon Blanc and Pinot Noir grapevines. Aust. J. Grape Wine Res. 2014, 20, 422–431. [Google Scholar] [CrossRef]
- Hudina, M.; Stampar, F. Influence of leaf area on the sugar and organic acids content in pear (Pyrus communis) fruits cultivar ‘Williams’. Acta Hortic. 2002, 596, 749–752. [Google Scholar] [CrossRef]
- Cittadini, E.D.; Peri, P.; Ridder, N.d.; Keulen, H.v. Relationship between fruit weight and the fruit-to-leaf area ratio, at the spur and whole-tree level, for three sweet cherry varieties. Acta Hortic. 2008, 795, 669–672. [Google Scholar] [CrossRef]
- Usenik, V.; Orazem, P.; Stampar, F. Low leaf to fruit ratio delays fruit maturity of ‘Lapins’ sweet cherry on Gisela 5. Sci. Hortic. 2010, 126, 33–36. [Google Scholar] [CrossRef]
- Samira, M.M.; Fayed, T.; Hussein, A.; Maged, S.M. Effect of some pruning applications on leaf to fruit ratio, yield and fruit quality of ‘Florda Prince’peach trees. J. Hortic. Sci. Ornam. Plants 2014, 6, 18–26. [Google Scholar]
Season | Thinning Regime | Crop Load (Fruit cm−2 LCSA) | Date Applied | Harvest Date |
---|---|---|---|---|
One (2019–2020) | ABE | 3, 6, 12 | 17 September 2019 | 14 April 2020 |
HT | 3, 6, 12 | 18 November 2019 | 14 April 2020 | |
Two (2020–2021) | ABE | 3, 6, 12 | 28 September 2020 | 14 April 2021 |
HT | 3, 6, 12 | 23 November 2020 | 14 April 2021 |
Soil Parameter | Season 1 | Season 2 |
---|---|---|
Soil Type | Sandy Grey | Sandy Grey |
Texture | 3.0 | 2.5 |
Organic Carbon (%) | 4.83 | 5.13 |
pH (CaCl2) | 5 | 4.5 |
Ammonium Nitrogen (mg/kg) | 10 | 7 |
Nitrate Nitrogen (mg/kg) | 4 | 8 |
Phosphorus Colwell (mg/kg) | 18 | 19 |
Potassium Colwell (mg/kg) | 179 | 307 |
Exc. Potassium (meq/100 g) | 0.34 | 0.46 |
Exc. Calcium (meq/100 g) | 14.4 | 16.73 |
Exc. Magnesium (meq/100 g) | 1.76 | 2.31 |
Boron Hot CaCl2 (mg/kg) | 1.12 | 3.29 |
DTPA Iron (mg/kg) | 328.9 | 504.1 |
DTPA Manganese (mg/kg) | 3.73 | 3.63 |
DTPA Zinc (mg/kg) | 6.98 | 5.85 |
DTPA Copper (mg/kg) | 3.63 | 2.71 |
Sulfur (mg/kg) | 6.8 | 13.4 |
Exc. Sodium (meq/100 g) | 0.17 | 0.31 |
| ||||||
---|---|---|---|---|---|---|
Nitrogen (%) | Potassium (%) | Calcium (%) | ||||
Season 1 | Season 2 | Season 1 | Season 2 | Season 1 | Season 2 | |
(i) Crop load (CL) | ||||||
3 fruit cm−2 LCSA | 0.17 | 0.23 | 0.85 | 0.81 | 0.03 | 0.03 |
6 fruit cm−2 LCSA | 0.18 | 0.23 | 0.74 | 0.85 | 0.03 | 0.03 |
12 fruit cm−2 LCSA | 0.19 | - | 0.74 | - | 0.04 | - |
p-value | 0.020 | 0.888 | 0.001 | 0.282 | 0.007 | 0.081 |
LSD | 0.02 | 0.05 | 0.07 | 0.07 | 0.01 | 0.01 |
| ||||||
Manganese (mg/kg) | Zinc (mg/kg) | Copper (mg/kg) | ||||
Season 1 | Season 2 | Season 1 | Season 2 | Season 1 | Season 2 | |
(i) Thinning regime (TR) | ||||||
Artificial bud extinction (ABE) | 2.03 | 1.84 | 2.33 | 1.76 | 2.11 | 3.24 |
Hand-thin (HT) | 1.99 | 1.59 | 1.88 | 1.43 | 2.09 | 2.89 |
p-value | 0.802 | 0.154 | 0.004 | 0.022 | 0.923 | 0.079 |
LSD | 0.32 | 0.34 | 0.37 | 0.27 | 0.51 | 0.37 |
(ii) Crop load (CL) | ||||||
3 fruit cm−2 LCSA | 1.69 | 1.94 | 1.88 | 1.77 | 2.08 | 2.88 |
6 fruit cm−2 LCSA | 2.10 | 1.50 | 1.98 | 1.42 | 2.06 | 3.25 |
12 fruit cm−2 LCSA | 2.24 | - | 2.46 | - | 2.17 | - |
p-value | 0.040 | 0.023 | 0.006 | 0.017 | 0.901 | 0.066 |
LSD | 0.50 | 0.34 | 0.58 | 0.27 | 0.79 | 0.37 |
(iii) TR x CL | ||||||
ABE-3 | 1.75 | 2.06 | 1.79 | 2.01 | 1.75 | 3.02 |
HT-3 | 1.62 | 1.82 | 1.98 | 1.53 | 2.41 | 2.74 |
ABE-6 | 2.07 | 1.62 | 2.27 | 1.51 | 2.44 | 3.46 |
HT-6 | 2.13 | 1.37 | 1.68 | 1.34 | 1.68 | 3.04 |
ABE-12 | 2.27 | - | 2.94 | - | 2.14 | - |
HT-12 | 2.21 | - | 1.97 | - | 2.19 | - |
p-value | 0.878 | 0.959 | 0.008 | 0.216 | 0.033 | 0.690 |
| ||||||
---|---|---|---|---|---|---|
Nitrogen (%) | Potassium (%) | |||||
Season 1 | Season 2 | Season 1 | Season 2 | |||
(i) Crop load (CL) | ||||||
3 fruit cm−2 LCSA | 1.41 | 1.75 | 1.47 | 1.68 | ||
6 fruit cm−2 LCSA | 1.78 | 1.48 | 1.19 | 1.65 | ||
12 fruit cm−2 LCSA | 1.78 | 1.42 | 1.14 | 1.87 | ||
p-value | 0.011 | 0.001 | 0.001 | 0.122 | ||
LSD | 0.29 | 0.21 | 0.19 | 0.29 | ||
| ||||||
Iron (mg/kg) | Zinc (mg/kg) | Copper (mg/kg) | ||||
Season 1 | Season 2 | Season 1 | Season 2 | Season 1 | Season 2 | |
(i) Thinning regime (TR) | ||||||
Artificial bud extinction (ABE) | 89.4 | 96.6 | 9.3 | 14.5 | 8.9 | 43.1 |
Hand-thin (HT) | 82.2 | 86.0 | 9.0 | 11.4 | 8.6 | 42.6 |
p-value | 0.105 | 0.200 | 0.540 | <0.001 | 0.744 | 0.797 |
LSD | 9.14 | 21.17 | 1.30 | 1.24 | 1.60 | 4.91 |
(ii) Crop load (CL) | ||||||
3 fruit cm−2 LCSA | 72.4 | 114.6 | 8.5 | 14.8 | 7.4 | 38.0 |
6 fruit cm−2 LCSA | 86.4 | 76.3 | 8.8 | 12.7 | 8.9 | 46.2 |
12 fruit cm−2 LCSA | 98.5 | 83.0 | 10.2 | 11.2 | 10.0 | 44.4 |
p-value | 0.001 | 0.004 | 0.028 | <0.001 | 0.038 | 0.011 |
LSD | 14.18 | 32.86 | 2.02 | 1.92 | 2.49 | 7.62 |
(iii) TR x CL | ||||||
ABE-3 | 73.2 | 137.0 | 9.2 | 16.7 | 6.78 | 38.0 |
HT-3 | 71.7 | 92.2 | 7.7 | 12.9 | 7.94 | 38.0 |
ABE-6 | 95.0 | 77.0 | 9.4 | 14.9 | 9.86 | 43.3 |
HT-6 | 77.8 | 75.6 | 8.1 | 10.6 | 7.97 | 49.1 |
ABE-12 | 100.0 | 75.9 | 9.2 | 11.7 | 9.95 | 48.1 |
HT-12 | 97.0 | 90.2 | 11.1 | 10.7 | 9.95 | 40.8 |
p-value | 0.264 | 0.026 | 0.023 | 0.028 | 0.256 | 0.050 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidhu, R.S.; Bound, S.A.; Hunt, I. Crop Load and Thinning Methods Impact Yield, Nutrient Content, Fruit Quality, and Physiological Disorders in ‘Scilate’ Apples. Agronomy 2022, 12, 1989. https://doi.org/10.3390/agronomy12091989
Sidhu RS, Bound SA, Hunt I. Crop Load and Thinning Methods Impact Yield, Nutrient Content, Fruit Quality, and Physiological Disorders in ‘Scilate’ Apples. Agronomy. 2022; 12(9):1989. https://doi.org/10.3390/agronomy12091989
Chicago/Turabian StyleSidhu, Ramandeep Singh, Sally A. Bound, and Ian Hunt. 2022. "Crop Load and Thinning Methods Impact Yield, Nutrient Content, Fruit Quality, and Physiological Disorders in ‘Scilate’ Apples" Agronomy 12, no. 9: 1989. https://doi.org/10.3390/agronomy12091989
APA StyleSidhu, R. S., Bound, S. A., & Hunt, I. (2022). Crop Load and Thinning Methods Impact Yield, Nutrient Content, Fruit Quality, and Physiological Disorders in ‘Scilate’ Apples. Agronomy, 12(9), 1989. https://doi.org/10.3390/agronomy12091989