Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning
Abstract
:1. Introduction
2. Material and Methods
2.1. Site of Study and Biometric Data
2.2. UAV-Based Data Collection
2.3. Predict on ML
2.3.1. Data Curation
2.3.2. Data Analysis
3. Results
3.1. Selection of Predictor Variables
3.2. Predictions of Biometric Parameters
3.2.1. Predicting the Number of Tillers
3.2.2. Predicting Plant Height
3.2.3. Predicting Stalk Diameter
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT—Food and Agriculture Organization of the United Nation. Available online: http://www.fao.org/faostat/en/?#data/QC (accessed on 27 December 2021).
- Barbosa Júnior, M.R.; de Almeida Moreira, B.R.; de Brito Filho, A.L.; Tedesco, D.; Shiratsuchi, L.S.; da Silva, R.P. UAVs to Monitor and Manage Sugarcane: Integrative Review. Agronomy 2022, 12, 661. [Google Scholar] [CrossRef]
- Abebe, G.; Tadesse, T.; Gessesse, B. Assimilation of Leaf Area Index from Multisource Earth Observation Data into the WOFOST Model for Sugarcane Yield Estimation. Int. J. Remote Sens. 2022, 43, 698–720. [Google Scholar] [CrossRef]
- Abebe, G.; Tadesse, T.; Gessesse, B. Combined Use of Landsat 8 and Sentinel 2A Imagery for Improved Sugarcane Yield Estimation in Wonji-Shoa, Ethiopia. J. Indian Soc. Remote Sens. 2022, 50, 143–157. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Lu, L.; Fang, F. Estimating near Future Regional Corn Yields by Integrating Multi-Source Observations into a Crop Growth Model. Eur. J. Agron. 2013, 49, 126–140. [Google Scholar] [CrossRef]
- Yu, D.; Zha, Y.; Shi, L.; Ye, H.; Zhang, Y. Improving Sugarcane Growth Simulations by Integrating Multi-Source Observations into a Crop Model. Eur. J. Agron. 2022, 132, 126410. [Google Scholar] [CrossRef]
- Tanut, B.; Waranusast, R.; Riyamongkol, P. High Accuracy Pre-Harvest Sugarcane Yield Forecasting Model Utilizing Drone Image Analysis, Data Mining, and Reverse Design Method. Agriculture 2021, 11, 682. [Google Scholar] [CrossRef]
- Som-ard, J.; Hossain, M.D.; Ninsawat, S.; Veerachitt, V. Pre-Harvest Sugarcane Yield Estimation Using UAV-Based RGB Images and Ground Observation. Sugar Tech. 2018, 20, 645–657. [Google Scholar] [CrossRef]
- Rossi Neto, J.; de Souza, Z.M.; Kölln, O.T.; Carvalho, J.L.N.; Ferreira, D.A.; Castioni, G.A.F.; Barbosa, L.C.; de Castro, S.G.Q.; Braunbeck, O.A.; Garside, A.L.; et al. The Arrangement and Spacing of Sugarcane Planting Influence Root Distribution and Crop Yield. Bioenergy Res. 2018, 11, 291–304. [Google Scholar] [CrossRef]
- Zhao, D.; Irey, M.; Laborde, C.; Hu, C.J. Identifying Physiological and Yield-Related Traits in Sugarcane and Energy Cane. Agron. J. 2017, 109, 927–937. [Google Scholar] [CrossRef]
- Zhao, D.; Irey, M.; Laborde, C.; Hu, C.J. Physiological and Yield Characteristics of 18 Sugarcane Genotypes Grown on a Sand Soil. Crop Sci. 2019, 59, 2741–2751. [Google Scholar] [CrossRef]
- Zhou, M. Using Logistic Regression Models to Determine Optimum Combination of Cane Yield Components among Sugarcane Breeding Populations. S. Afr. J. Plant Soil 2019, 36, 211–219. [Google Scholar] [CrossRef]
- Shrivastava, A.K.; Solomon, S.; Rai, R.K.; Singh, P.; Chandra, A.; Jain, R.; Shukla, S.P. Physiological Interventions for Enhancing Sugarcane and Sugar Productivity. Sugar Tech. 2015, 17, 215–226. [Google Scholar] [CrossRef]
- Guo, Y.; Fu, Y.; Hao, F.; Zhang, X.; Wu, W.; Jin, X.; Robin Bryant, C.; Senthilnath, J. Integrated Phenology and Climate in Rice Yields Prediction Using Machine Learning Methods. Ecol. Indic. 2021, 120, 106935. [Google Scholar] [CrossRef]
- Jeong, J.H.; Resop, J.P.; Mueller, N.D.; Fleisher, D.H.; Yun, K.; Butler, E.E.; Timlin, D.J.; Shim, K.M.; Gerber, J.S.; Reddy, V.R.; et al. Random Forests for Global and Regional Crop Yield Predictions. PLoS ONE 2016, 11, e0156571. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of Winter-Wheat above-Ground Biomass Based on UAV Ultrahigh-Ground-Resolution Image Textures and Vegetation Indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Simões, M.D.S.; Rocha, J.V.; Lamparelli, R.A.C. Orbital Spectral Variables, Growth Analysis and Sugarcane Yield. Sci. Agric. 2009, 66, 451–461. [Google Scholar] [CrossRef]
- Picoli, M.C.A.; Lamparelli, R.A.C.; Sano, E.E.; Rocha, J.V. The use of ALOS/PALSAR data for estimating sugarcane productivity. Eng. Agríc. 2014, 34, 1245–1255. [Google Scholar] [CrossRef]
- Xu, J.X.; Ma, J.; Tang, Y.N.; Wu, W.X.; Shao, J.H.; Wu, W.B.; Wei, S.Y.; Liu, Y.F.; Wang, Y.C.; Guo, H.Q. Estimation of Sugarcane Yield Using a Machine Learning Approach Based on Uav-Lidar Data. Remote Sens. 2020, 12, 2823. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; Embrapa: Brasília, Brazil, 2018; ISBN 8570358172. [Google Scholar]
- Caetano, J.M.; Casaroli, D. Sugarcane Yield Estimation for Climatic Conditions in the State of Goiás. Rev. Ceres 2017, 64, 298–306. [Google Scholar] [CrossRef]
- Inman-Bamber, N.G. Temperature and Seasonal Effects on Canopy Development and Light Interception of Sugarcane. Field Crops Res. 1994, 36, 41–51. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T. Coincident Detection of Crop Water Stress, Nitrogen Status and Canopy Density Using Ground Based Multispectral Data. In Proceedings of the Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000; Volume 1619. [Google Scholar]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Urolagin, S.; Sharma, N.; Datta, T.K. A Combined Architecture of Multivariate LSTM with Mahalanobis and Z-Score Transformations for Oil Price Forecasting. Energy 2021, 231, 120963. [Google Scholar] [CrossRef]
- Tedesco, D.; de Almeida Moreira, B.R.; Barbosa Júnior, M.R.; Papa, J.P.; da Silva, R.P. Predicting on Multi-Target Regression for the Yield of Sweet Potato by the Market Class of Its Roots upon Vegetation Indices. Comput. Electron. Agric. 2021, 191, 106544. [Google Scholar] [CrossRef]
- Miphokasap, P.; Wannasiri, W. Estimations of Nitrogen Concentration in Sugarcane Using Hyperspectral Imagery. Sustainability 2018, 10, 1266. [Google Scholar] [CrossRef]
- Chianucci, F.; Disperati, L.; Guzzi, D.; Bianchini, D.; Nardino, V.; Lastri, C.; Rindinella, A.; Corona, P. Estimation of Canopy Attributes in Beech Forests Using True Colour Digital Images from a Small Fixed-Wing UAV. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 60–68. [Google Scholar] [CrossRef]
- Costa, L.; Nunes, L.; Ampatzidis, Y. A New Visible Band Index (VNDVI) for Estimating NDVI Values on RGB Images Utilizing Genetic Algorithms. Comput. Electron. Agric. 2020, 172, 105334. [Google Scholar] [CrossRef]
- Sulik, J.J.; Long, D.S. Spectral Considerations for Modeling Yield of Canola. Remote Sens. Environ. 2016, 184, 161–174. [Google Scholar] [CrossRef]
- Wan, L.; Cen, H.; Zhu, J.; Zhang, J.; Zhu, Y.; Sun, D.; Du, X.; Zhai, L.; Weng, H.; Li, Y.; et al. Grain Yield Prediction of Rice Using Multi-Temporal UAV-Based RGB and Multispectral Images and Model Transfer—A Case Study of Small Farmlands in the South of China. Agric. For. Meteorol. 2020, 291, 108096. [Google Scholar] [CrossRef]
- Santos, F.; Diola, V. Physiology. In Sugarcane: Agricultural Production, Bioenergy and Ethanol; Academic Press: Cambridge, MA, USA, 2015; pp. 13–33. ISBN 9780128022399. [Google Scholar]
- Sumesh, K.C.; Ninsawat, S.; Som-ard, J. Integration of RGB-Based Vegetation Index, Crop Surface Model and Object-Based Image Analysis Approach for Sugarcane Yield Estimation Using Unmanned Aerial Vehicle. Comput. Electron. Agric. 2021, 180, 105903. [Google Scholar] [CrossRef]
- Hamzeh, S.; Naseri, A.A.; AlaviPanah, S.K.; Bartholomeus, H.; Herold, M. Assessing the Accuracy of Hyperspectral and Multispectral Satellite Imagery for Categorical and Quantitative Mapping of Salinity Stress in Sugarcane Fields. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 412–421. [Google Scholar] [CrossRef]
- Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X.; et al. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives. Front. Plant Sci. 2017, 8, 1111. [Google Scholar] [CrossRef] [PubMed]
- Homolová, L.; Malenovský, Z.; Clevers, J.G.P.W.; García-Santos, G.; Schaepman, M.E. Review of Optical-Based Remote Sensing for Plant Trait Mapping. Ecol. Complex. 2013, 15, 1–16. [Google Scholar] [CrossRef]
- Asner, G.P. Biophysical and Biochemical Sources of Variability in Canopy Reflectance. Remote Sens. Environ. 1998, 64, 234–253. [Google Scholar] [CrossRef]
- Fortes, C.; Demattê, J.A.M. Discrimination of Sugarcane Varieties Using Landsat 7 ETM+ Spectral Data. Int. J. Remote Sens. 2006, 27, 1395–1412. [Google Scholar] [CrossRef]
- Lisboa, I.P.; Damian, M.; Cherubin, M.R.; Barros, P.P.S.; Fiorio, P.R.; Cerri, C.C.; Cerri, C.E.P. Prediction of Sugarcane Yield Based on NDVI and Concentration of Leaf-Tissue Nutrients in Fields Managed with Straw Removal. Agronomy 2018, 8, 196. [Google Scholar] [CrossRef]
- Luciano, A.C.D.S.; Picoli, M.C.A.; Duft, D.G.; Rocha, J.V.; Leal, M.R.L.V.; le Maire, G. Empirical Model for Forecasting Sugarcane Yield on a Local Scale in Brazil Using Landsat Imagery and Random Forest Algorithm. Comput. Electron. Agric. 2021, 184, 106063. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Remote Sensing Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef]
- Yu, D.; Zha, Y.; Shi, L.; Jin, X.; Hu, S.; Yang, Q.; Huang, K.; Zeng, W. Improvement of Sugarcane Yield Estimation by Assimilating UAV-Derived Plant Height Observations. Eur. J. Agron. 2020, 121, 126159. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, C.; Zhang, X.; Cheng, X.; Feng, G.; Wang, Y.; Gao, Q. Estimating the Maize Biomass by Crop Height and Narrowband Vegetation Indices Derived from UAV-Based Hyperspectral Images. Ecol. Indic. 2021, 129, 107985. [Google Scholar] [CrossRef]
- Shendryk, Y.; Sofonia, J.; Garrard, R.; Rist, Y.; Skocaj, D.; Thorburn, P. Fine-Scale Prediction of Biomass and Leaf Nitrogen Content in Sugarcane Using UAV LiDAR and Multispectral Imaging. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102177. [Google Scholar] [CrossRef]
Band Name | Center Wavelength (nm) | Bandwidth FWHM (nm) |
---|---|---|
Blue | 475 | 20 |
Green | 560 | 20 |
Red | 668 | 10 |
RedEdge | 717 | 10 |
NIR | 840 | 40 |
Vegetation Index | Equation | Reference |
---|---|---|
Normalized Difference Vegetation Index | [24] | |
Normalized Difference Red Edge Index | [25] | |
Soil-Adjusted Vegetation Index | [26] |
Algorithms | Metrics | Variables | Growing Degree Days | ||
---|---|---|---|---|---|
349 | 397 | 349 + 397 | |||
RF | R2 | Two best | 0.85 | 0.82 | 0.88 |
Three best | 0.90 | 0.84 | 0.91 | ||
MAE | Two best | 1.42 | 1.59 | 1.29 | |
Three best | 1.13 | 1.41 | 1.04 | ||
RMSE | Two best | 1.83 | 2.08 | 1.67 | |
Three best | 1.50 | 1.87 | 1.40 | ||
MLR | R2 | Two best | 0.56 | 0.48 | 0.57 |
Three best | 0.65 | 0.52 | 0.67 | ||
MAE | Two best | 2.50 | 2.73 | 2.47 | |
Three best | 2.16 | 2.61 | 2.11 | ||
RMSE | Two best | 3.15 | 3.50 | 3.11 | |
Three best | 2.78 | 3.34 | 2.73 |
Algorithms | Metrics | Variables | Growing Degree Days | ||
---|---|---|---|---|---|
349 | 397 | 349 + 397 | |||
RF | R2 | Two best | 0.81 | 0.72 | 0.86 |
Three best | 0.84 | 0.83 | 0.88 | ||
MAE (cm) | Two best | 8.60 | 10.24 | 7.54 | |
Three best | 7.77 | 8.08 | 6.97 | ||
RMSE (cm) | Two best | 11.16 | 13.50 | 9.71 | |
Three best | 10.18 | 10.44 | 8.90 | ||
MLR | R2 | Two best | 0.46 | 0.32 | 0.60 |
Three best | 0.49 | 0.53 | 0.65 | ||
MAE (cm) | Two best | 14.60 | 16.42 | 12.89 | |
Three best | 14.45 | 14.09 | 11.98 | ||
RMSE (cm) | Two best | 18.81 | 21.02 | 16.32 | |
Three best | 18.34 | 17.49 | 15.17 |
Algorithms | Metrics | Variables | Growing Degree Days | |||
---|---|---|---|---|---|---|
349 | 397 | 349 + 397 | 349 + 397 + 410 | |||
RF | R2 | Two best | 0.49 | 0.32 | 0.50 | 0.50 |
Three best | 0.51 | 0.39 | 0.52 | 0.52 | ||
MAE (mm) | Two best | 1.54 | 1.78 | 1.53 | 1.52 | |
Three best | 1.53 | 1.69 | 1.51 | 1.50 | ||
RMSE (mm) | Two best | 1.97 | 2.27 | 1.95 | 1.93 | |
Three best | 1.95 | 2.16 | 1.91 | 1.88 | ||
MLR | R | Two best | 0.35 | 0.15 | 0.36 | 0.36 |
Three best | 0.38 | 0.34 | 0.40 | 0.43 | ||
MAE (mm) | Two best | 1.72 | 2.00 | 1.70 | 1.68 | |
Three best | 1.64 | 1.75 | 1.64 | 1.55 | ||
RMSE (mm) | Two best | 2.22 | 2.55 | 2.21 | 2.19 | |
Three best | 2.17 | 2.25 | 2.14 | 2.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, R.P.; Barbosa Júnior, M.R.; Pinto, A.A.; Oliveira, J.L.P.; Zerbato, C.; Furlani, C.E.A. Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning. Agronomy 2022, 12, 1992. https://doi.org/10.3390/agronomy12091992
de Oliveira RP, Barbosa Júnior MR, Pinto AA, Oliveira JLP, Zerbato C, Furlani CEA. Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning. Agronomy. 2022; 12(9):1992. https://doi.org/10.3390/agronomy12091992
Chicago/Turabian Stylede Oliveira, Romário Porto, Marcelo Rodrigues Barbosa Júnior, Antônio Alves Pinto, Jean Lucas Pereira Oliveira, Cristiano Zerbato, and Carlos Eduardo Angeli Furlani. 2022. "Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning" Agronomy 12, no. 9: 1992. https://doi.org/10.3390/agronomy12091992
APA Stylede Oliveira, R. P., Barbosa Júnior, M. R., Pinto, A. A., Oliveira, J. L. P., Zerbato, C., & Furlani, C. E. A. (2022). Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning. Agronomy, 12(9), 1992. https://doi.org/10.3390/agronomy12091992