Biochar and Compost Application either Alone or in Combination Affects Vegetable Yield in a Volcanic Mediterranean Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description and Soil Chemistry
2.2. Organic Amendments
2.3. Experiment Set-Up and Crop Yields Assessment
2.4. Soil Sampling and Analyses
2.5. Data Analyses
3. Results
3.1. Organic Amendment Chemistry
3.2. Soil Chemistry
3.3. Vegetable Yields
3.4. Soil Chemistry Drives Vegetable Yields
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanchez, P. Soil fertility and hunger in Africa. Science 2002, 295, 2019–2020. [Google Scholar] [CrossRef] [PubMed]
- Gruhn, P.; Goletti, F.; Yudelman, M. Integrated Nutrient Management, Soil Fertility, and Sustainable Agriculture: Current Issues and Future Challenges. Food, Agriculture, and the Environment—Discussion Paper 32; International Food Policy Research Institute: Washington, DC, USA, 2000; pp. 15–16. [Google Scholar]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Bationo, A.; Chianu, J.; Giller, J.E.; Merckx, R.; Mokwunye, U.; Ohiokpehai, O.; Pypers, P.; Tabo, R.; Shepherd, K.; et al. Integrated soil fertility management: Operational definition and consequences for implementation and dissemination. Outlook Agric. 2010, 39, 17–24. [Google Scholar] [CrossRef]
- Sohi, S.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar]
- Lehmann, J.; da Silva, J.P.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil. IBI Biochar Standards. 2012. Available online: https://www.semanticscholar.org/paper/Standardized-Product-Definition-and-Product-Testing-Ibi/d7f179afe9080d86b27be014109d4ebbd4b46a1b#paper-header (accessed on 14 July 2022).
- Mohan, D.; Kumar, H.; Sarswat, A.; Alexandre-Franco, M.; Pittman, C.U., Jr. Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chem. Eng. J. 2014, 236, 513–528. [Google Scholar] [CrossRef]
- Sarker, T.C.; Incerti, G.; Spaccini, R.; Piccolo, A.; Mazzoleni, S.; Bonanomi, B. Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy. Soil Biol. Biochem. 2018, 117, 175–184. [Google Scholar] [CrossRef]
- Taghizadeh-Toosi, A.; Clough, T.J.; Sherlock, R.R.; Condron, L.M. Biochar adsorbed ammonia is bioavailable. Plant Soil 2012, 350, 57–69. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Biochar sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Global Chang. 2006, 11, 395–419. [Google Scholar]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 2013, 203, 183–191. [Google Scholar] [CrossRef]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef]
- Thies, J.E.; Rillig, M.C.; Graber, E.R. Biochar Effects on the Abundance, Activity and Diversity of the Soil Biota. In Biochar for Environmental Management: Science Technology and Implementation; Lehmann, J., Joseph, S., Eds.; Routledge: New York, NY, USA, 2015; p. 928. [Google Scholar]
- Hagemann, N.; Joseph, S.; Schmidt, H.P.; Kammann, C.I.; Harter, J.; Borch, T.; Young, R.B.; Varga, K.; Taherymoosavi, S.; Elliott, R.B.; et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nat. Commun. 2017, 8, 1089. [Google Scholar] [CrossRef] [PubMed]
- Kammann, C.; Glaser, B.; Schmidt, H.P. Combining biochar and organic amendments. In Biochar in European Soils and Agriculture: Science and Practice; Shackley, S., Ruysschaert, G., Zwart, K., Glaser, B., Eds.; Routledge: New York, NY, USA, 2016; pp. 136–164. [Google Scholar]
- Schmidt, H.P.; Pandit, B.H.; Martinsen, V.; Cornelissen, G.; Conte, P.; Kammann, C.I. Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil. Agriculture 2015, 5, 723–741. [Google Scholar] [CrossRef]
- Liu, P.M.; Liu, W.J.; Jiang, H.; Chen, J.J.; Li, W.W.; Yu, H.Q. Modification of biochar derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour. Technol. 2012, 121, 235–240. [Google Scholar] [CrossRef]
- Fischer, D.; Glaser, B. Synergisms between Compost and Biochar for Sustainable Soil Amelioration. In Management of Organic Waste; Kumar, S.E., Ed.; In Tech: Shanghai, China, 2012; pp. 167–198. [Google Scholar]
- Schulz, H.; Glaser, B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Plant Nutrit. Soil Sci. 2012, 175, 410–422. [Google Scholar] [CrossRef]
- Bonanomi, G.; Ippolito, F.; Cesarano, G.; Nanni, B.; Lombardi, N.; Rita, A.; Saracino, A.; Scala, F. Biochar as plant growth promoter: Better off alone or mixed with organic amendments? Front. Plant Sci. 2017, 8, 1570. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; Van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Bonanomi, G.; Maisto, G.; De Marco, A.; Cesarano, G.; Zotti, M.; Mazzei, P.; Libralato, G.; Staropoli, A.; Siciliano, A.; De Filippis, F.; et al. The fate of cigarette butts in different environments: Decay rate, chemical changes and ecotoxicity revealed by a 5-years decomposition experiment. Environ. Pollut. 2020, 261, 114108. [Google Scholar] [CrossRef]
- Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 2002, 34, 139–162. [Google Scholar] [CrossRef]
- Bonanomi, G.; D’Ascoli, R.; Scotti, R.; Gaglione, S.A.; Caceres, M.G.; Sultana, S.; Rao, M.; Zoina, A. Soil quality recovery and crop yield enhancement by combined application of compost and wood to vegetables grown under plastic tunnels. Agric. Ecosyst. Environ. 2014, 92, 1–7. [Google Scholar] [CrossRef]
- Glaser, B. Prehistorically modified soils of central Amazonia: A model for sustainable agriculture in the twenty-first century. Phil. Trans. R. Soc. 2007, B362, 187–196. [Google Scholar] [CrossRef]
- Sparks, D.L. Methods of Soil Analysis. Part 3. Chemical Methods; SSSA; ASA: Madison, WI, USA, 1996. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Schnürer, J.; Rosswall, T. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microbiol. 1982, 43, 1256–1261. [Google Scholar] [CrossRef]
- Trupiano, D.; Cocozza, C.; Baronti, S.; Amendola, C.; Vaccari, F.P.; Lustrato, G.; Di Lonardo, S.; Fantasma, F.; Tognetti, R.; Scippa, G.S. The Effects of Biochar and Its Combination with Compost on Lettuce (Lactuca sativa L.) Growth, Soil Properties, and Soil Microbial Activity and Abundance. Int. J. Agron. 2017, 2017, 3158207. [Google Scholar] [CrossRef]
- Seehausen, M.L.; Gale, N.V.; Dranga, S.; Hudson, V.; Liu, N.; Michener, J.; Thurston, E.; Williams, C.; Smith, S.M.; Thomas, S.C. Is there a positive synergistic effect of biochar and compost soil amendments on plant growth and physiological performance? Agronomy 2017, 7, 13. [Google Scholar] [CrossRef]
- Manzoni, S.; Jackson, R.B.; Trofymow, J.A.; Porporato, A. The global stoichiometry of litter nitrogen mineralization. Science 2008, 321, 684–686. [Google Scholar] [CrossRef]
- Bonanomi, G.; Sarker, T.C.; Zotti, M.; Cesarano, G.; Allevato, E.; Mazzoleni, S. Predicting nitrogen mineralization from organic amendments: Beyond C/N ratio by 13 C-CPMAS NMR approach. Plant Soil 2019, 441, 129–146. [Google Scholar] [CrossRef]
- Hodge, A.; Robinson, D.; Fitter, A. Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci. 2000, 5, 304–308. [Google Scholar] [CrossRef]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012. [Google Scholar]
- Elad, Y.; Cytryn, E.; Harel, Y.M.; Lew, B.; Graber, E.R. The biochar effect: Plant resistance to biotic stresses. Phytopathol. Mediterr. 2011, 50, 335–349. [Google Scholar]
- Karlen, D.L.; Andrews, S.S.; Doran, J.W. Soil quality: Current concepts and applications. Adv. Agron. 2001, 74, 1–40. [Google Scholar]
- Zhang, D.; Pan, G.; Wu, G.; Kibue, G.W.; Li, L.; Zhang, X.; Zheng, J.J.; Cheng, K.; Joseph, S.; Liu, X. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol. Chemosphere 2016, 142, 106–113. [Google Scholar] [CrossRef]
- Jeffrey, M.; Achurch, H. Save our soil to save the planet. In Global Soil Security, Progress in Soil Science; Field, D.J., Morgan, C.L.S., McBratney, A.B., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 389–395. [Google Scholar]
- Gaskin, J.W.; Steiner, C.; Harris, K.; Das, K.C.; Bibens, B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. ASABE 2008, 51, 2061–2069. [Google Scholar] [CrossRef]
- Tsai, W.T.; Lee, M.K.; Chang, Y.M. Fast pyrolysis of rice husk: Product yields and compositions. Bioresour. Technol. 2007, 98, 22–28. [Google Scholar] [CrossRef]
Parameters | Biochar | Compost1 | Compost2 |
---|---|---|---|
Chemical | |||
C % | 87.51 a | 38.30 b | 36.71 b |
N % | 0.20 c | 1.25 b | 3.18 a |
C/N ratio | 437.55 a | 30.64 b | 12.54 c |
pH | 9.28 a | 6.89 b | 6.11 b |
EC mS/cm | 0.13 b | 0.96 a | 1.18 a |
13C CPMAS NMR | |||
Carbonyl-C (161–190 ppm) | 4.08 | 7.06 | 8.34 |
O-subst. aromatic C (141–160 ppm) | 5.23 | 5.75 | 4.00 |
H-C subst. aromatic C (111–140 ppm) | 65.38 | 12.31 | 6.93 |
di-O-alkyl C (91–110 ppm) | 5.98 | 11.32 | 6.00 |
O-alkyl C (61–90 ppm) | 5.29 | 34.54 | 32.59 |
Methoxyl C (46–60 ppm) | 4.49 | 11.63 | 15.32 |
Alkyl C (0–45 ppm) | 9.55 | 17.39 | 26.82 |
Sum Squares | Degree of Freedom | Mean Squares | F-Value | p-Value | |
---|---|---|---|---|---|
Treatment | 59,864 | 5 | 11,972 | 980.0283 | 0.2377 |
Crop Type | 2,331,863 | 5 | 466,372 | 1.3624 | 0.0000 * |
Year | 2309 | 1 | 2309 | 53.0697 | 0.6085 |
Treatment × Crop | 277,540 | 25 | 11,101 | 0.2628 | 0.1810 |
Treatment × Year | 39,702 | 5 | 7940 | 1.2633 | 0.4787 |
Crop × Year | 106,372 | 5 | 21,274 | 0.9036 | 0.0353 * |
Treatment × Crop × Year | 144,659 | 25 | 5786 | 2.4208 | 0.8959 |
Treatment | Year | pH | FDA | EC | C org. | NH4 | Total N | P2O5 |
---|---|---|---|---|---|---|---|---|
Control | I | 7.53 a | 0.53 a | 247.68 a | 0.25 a | 0.19 a | 16.8 a | 96.65 a |
Biochar | I | 7.57 a | 0.48 a | 216.50 a | 0.23 a | 0.30 b | 30.9 b | 126.24 b |
Compost1 | I | 7.47 a | 0.59 a | 203.48 a | 0.24 a | 0.35 b | 35.9 b | 119.64 b |
Compost2 | I | 7.48 a | 0.55 a | 193.80 a | 0.29 ab | 0.57 c | 47.9 c | 130.81 b |
Compost1+Biochar | I | 7.58 a | 0.63 b | 215.75 a | 0.31 ab | 1.19 d | 67.5 d | 132.88 b |
Compost2+Biochar | I | 7.54 a | 0.54 a | 343.10 b | 0.32 ab | 0.42 bc | 48.2 c | 119.24 b |
Control | II | 5.82 b | 0.21 c | 217.98 a | 0.27 a | 0.19 a | 30.2 b | 85.34 a |
Biochar | II | 5.70 b | 0.21 c | 192.77 a | 0.37 b | 0.31 b | 90.2 e | 110.41 b |
Compost1 | II | 5.87 b | 0.34 c | 267.5 ab | 0.32 ab | 0.66 c | 41.7 c | 105.76 b |
Compost2 | II | 6.00 b | 0.23 c | 216.88 a | 0.34 ab | 0.67 c | 36.8 b | 124.9 b |
Compost1+Biochar | II | 5.99 b | 0.24 c | 201.05 a | 0.32 ab | 1.02 d | 23.8 a | 114.94 b |
Compost2+Biochar | II | 5.82 b | 0.12 d | 216.15 a | 0.37 b | 0.41 bc | 23.6 a | 113.62 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iacomino, G.; Sarker, T.C.; Ippolito, F.; Bonanomi, G.; Vinale, F.; Staropoli, A.; Idbella, M. Biochar and Compost Application either Alone or in Combination Affects Vegetable Yield in a Volcanic Mediterranean Soil. Agronomy 2022, 12, 1996. https://doi.org/10.3390/agronomy12091996
Iacomino G, Sarker TC, Ippolito F, Bonanomi G, Vinale F, Staropoli A, Idbella M. Biochar and Compost Application either Alone or in Combination Affects Vegetable Yield in a Volcanic Mediterranean Soil. Agronomy. 2022; 12(9):1996. https://doi.org/10.3390/agronomy12091996
Chicago/Turabian StyleIacomino, Giuseppina, Tushar C. Sarker, Francesca Ippolito, Giuliano Bonanomi, Francesco Vinale, Alessia Staropoli, and Mohamed Idbella. 2022. "Biochar and Compost Application either Alone or in Combination Affects Vegetable Yield in a Volcanic Mediterranean Soil" Agronomy 12, no. 9: 1996. https://doi.org/10.3390/agronomy12091996
APA StyleIacomino, G., Sarker, T. C., Ippolito, F., Bonanomi, G., Vinale, F., Staropoli, A., & Idbella, M. (2022). Biochar and Compost Application either Alone or in Combination Affects Vegetable Yield in a Volcanic Mediterranean Soil. Agronomy, 12(9), 1996. https://doi.org/10.3390/agronomy12091996