Effect of Nitrogen on the Viscosity of the Erosive Sediment-Laden Flows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus and Procedures
- Slurry making: pour the configured muddy water into the storage tank after filtering through a 0.5 mm sieve and turn on the speed-controlled motor for stirring.
- Venting: after the sample is stirred evenly, open the flow control valve, let the sample flow into the funnel, give the tube funnel sufficient exhaust, seal the tube outlet with a plug, and then close the flow control valve.
- Pressure regulation: observe the pressure gauge; when the differential pressure of the gauge reaches the set value, close the switch of the vacuum pump and the vacuum valve to make the pressure stable.
- Flow measurement: open the flow control valve, then remove the plug at the outlet of the long tube (or short tube) and let the sample flow out, while observing the liquid level of the slurry in the funnel inside the isolation tank; use the flow adjustment valve to adjust the liquid level flush with the top edge of the funnel; at this time, use the measuring cylinder to collect the muddy water flowing out of the tube to a certain volume and use a stopwatch.
- Record: the volume of muddy water in the measuring cylinder; connected flow time; pressure gauge readings; the temperature before and after the test recorded one by one; at which point the first measurement point is completed.
- Repeat: repeat the operation of regulating pressure until the completion of more than 10 groups of measurement points; after changing the fine tube and test, repeat the above operation.
- Note: The above tests are conducted under laminar flow.
2.3. Simulation Accuracy Evaluation
2.4. Instrument Calibration
3. Results
3.1. Influence of Nitrogen Content on the Viscosity of Sediment-Laden Flows
3.2. Model for the Effect of Nitrogen on the Viscosity of Sediment-Laden Flows
3.2.1. Model Establishment
3.2.2. Model Verification
4. Discussion
4.1. Effect of Nitrogen on Sediment Flow Viscosity
4.2. Calculation Model of Viscosity Coefficient of Nitrogen–Sediment Suspension
4.3. The Relationship between Viscosity and Soil Erosion
5. Conclusions
- (1)
- The viscosity of nitrogen–sediment mixed flow is influenced by nitrogen concentration, sediment concentration, sediment particle size distribution and fluid temperature. The addition of nitrogen significantly increases the viscosity of the fluid, and the presence of sediment also promotes the growth rate of nitrogen on viscosity.
- (2)
- The model derived in this study for calculating the viscosity coefficient of mixed nitrogen–sediment flow can fully reflect the solute type, concentration, and gradation characteristics of sediment particles of the fluid, and has been verified by the data. The physical meaning is clear, the calculation method is simple and accurate, and it can better describe the rheological characteristics of erosive flow.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- William, D.A.; Fagents, S.A.; Greeley, R. A Reassessment of the Emplacement and Erosional Potential of Turbulent, Low-Viscosity Lavas on the Moon. J. Geophys. Res. 2003, 105, 20189–20205. [Google Scholar] [CrossRef]
- Pierson, T.C. Erosion and deposition by debris flows at Mt. Thomas, North Canterbury, New Zealand. Earth Surf. Processes 1980, 5, 227–247. [Google Scholar] [CrossRef]
- Gong, J.G.; Jia, Y.W.; Zhou, Z.H.; Wang, Y.; Wang, W.L.; Peng, H. An experimental study on dynamic processes of ephemeral gully erosion in loess landscapes. Geomorphology 2011, 125, 203–213. [Google Scholar] [CrossRef]
- Abrahams, A.D.; Gary, L.; Krishnan, C.; Atkinson, J.F.; Church, M.; Hassan, M.A. A sediment transport equation for interrill overland flow on rough surfaces. Earth Surf. Processes Landf. 2001, 26, 1443–1459. [Google Scholar] [CrossRef]
- Masse, M.; Conway, S.J.; Gargani, J.; Patel, M.R.; Pasquon, K.; Mcewen, A.; Carpy, S.; Chevrier, V.; Balme, M.R.; Ojha, L.; et al. Transport processes induced by metastable boiling water under Martian surface conditions. Nat. Geosci. 2016, 9, 425–428. [Google Scholar] [CrossRef]
- Issaka, S.; Ashraf, M.A. Impact of soil erosion and degradation on water quality: A review. Geol. Ecol. Landsc. 2017, 1, 1–11. [Google Scholar] [CrossRef]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef]
- Bolinches, A.; Paredes-Arquiola, J.; Garrido, A.; De Stefano, L. A comparative analysis of the application of water quality exemptions in the European Union: The case of nitrogen. Sci. Total Environ. 2020, 739, 139891. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Liang, L.; Zhang, Q. China must reduce fertilizer use too. Nature 2011, 473, 284–285. [Google Scholar] [CrossRef]
- Conway, G.R.; Pretty, J.N. Fertilizer risks in the developing countries. Nature 1988, 334, 207–208. [Google Scholar] [CrossRef]
- Xu, J. Erosion caused by hyperconcentrated flow on the Loess Plateau of China. Catena 1999, 36, 1–19. [Google Scholar]
- Rickenmann, D. Hyperconcentrated flow and sediment transport at steep slopes. J. Hydraul. Eng. 1991, 117, 1419–1439. [Google Scholar] [CrossRef]
- Wang, L.; Yen, H.; Huang, C.; Wang, Y. Erosion and covered zones altered by surface coverage effects on soil nitrogen and carbon loss from an agricultural slope under laboratory-simulated rainfall events. Int. Soil Water Conserv. Res. 2022, 10, 382–392. [Google Scholar] [CrossRef]
- Einstein, A. Eine neue Bestimmung der Moleküldimensionen. Ann. Der Phys. 1906, 324, 289–306. [Google Scholar] [CrossRef]
- Einstein, A. Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Moleküldimensionen. Ann. Der Phys. 1911, 339, 591–592. [Google Scholar] [CrossRef]
- Brinkmann, H.C. The Viscosity of Concentraed Suspensions and Solutions. J. Chem. Phys. 1952, 20, 571. [Google Scholar] [CrossRef]
- Roscoe, R. The viscosity of suspensions of rigid spheres. Br. J. Appl. Phys. 1952, 3, 267–269. [Google Scholar] [CrossRef]
- Mooney, M. The Viscosity of A Concentrated Suspension of Spherical Particles. Colloid 1951, 6, 162–170. [Google Scholar] [CrossRef]
- Lee, E.H. Proceedings of the Fourth International Congress on Rheology; Interscience Publishers: New York, NY, USA, 1965. [Google Scholar]
- Chien, N.; Wan, Z. Mechanics of Sediment Transport; Science Press: Beijing, China, 1983. (In Chinese) [Google Scholar]
- Frisch, H.L.; Simha, R. The viscosity of colloidal suspensions and macromolecular solutions. In Rheology; Eirich, F.R., Ed.; Academic Press: Cambridge, MA, USA, 1956; pp. 525–613. [Google Scholar]
- Ajwa, H.A.; Trout, T.J. Polyacrylamide and Water Quality Effects on Infiltration in Sandy Loam Soils. Soil Sci. Soc. Am. J. 2006, 70, 643–650. [Google Scholar] [CrossRef]
- Fei, X. Viscosity coefficient (stiffness coefficient) of high-concentration muddy water. J. Hydraul. Eng. 1982, 27, 57–63. (In Chinese) [Google Scholar]
- Zhu, Z.; Wang, H.; Peng, D. Dependence of Sediment Suspension Viscosity on Solid Concentration: A Simple General Equation. Water 2017, 9, 474. [Google Scholar] [CrossRef]
- O’Brien, J.S. Physical Process, Rheology and Modeling of Mudflows. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 1986. [Google Scholar]
- Chien, N. A Study of Hyperconcentrated Flows; Tsihua University Press: Beijing, China, 1989. (In Chinese) [Google Scholar]
- Zhang, Q.; Wang, Z.; Wu, B.; Shen, N.; Liu, J.E. Identifying sediment transport capacity of raindrop-impacted overland flow within transport-limited system of interrill erosion processes on steep loess hillslopes of China. Soil Tillage Res. 2018, 184, 109–117. [Google Scholar] [CrossRef]
- Wang, P.; Chen, X.; Qin, Z.; Zhu, Z. The influences of electrolyte on rheological properties of Poyang lake sand. IOP Conf. Ser. Earth Environ. Sci. 2017, 81, 12172. [Google Scholar] [CrossRef]
- Lin, Y.; Qin, H.; Guo, J.; Chen, J. Study on the Rheological Behavior of a Model Clay Sediment. J. Mar. Sci. Eng. 2021, 9, 81. [Google Scholar] [CrossRef]
- Gao, H.; Matyka, M.; Liu, B.; Khalili, A.; Kostka, J.E.; Collins, G.; Jansen, S.; Holtappels, M.; Jensen, M.M.; Badewien, T.H.; et al. Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea. Limnol. Oceanogr. 2012, 57, 185–198. [Google Scholar] [CrossRef]
- Ji, Q.; Gao, Z.; Li, X.; Gao, J.E.; Zhang, G.G.; Ahmad, R.; Liu, G.; Zhang, Y.; Li, W.; Zhou, F.; et al. Erosion Transportation Processes as Influenced by Gully Land Consolidation Projects in Highly Managed Small Watersheds in the Loess Hilly–Gully Region, China. Water 2021, 13, 1540. [Google Scholar] [CrossRef]
- China Huanqiu Chemical Engineering Company; China Wuhan Chemical Engineering Company. Nitrogen Fertilizer Process Design Manual Urea; Chemical Industry Press: Beijing, China, 1988. (In Chinese) [Google Scholar]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China and General Administration of Quality Supervision; Inspection and Quarantine of the People’s Republic of China. Code for Measurement of Suspended Load in Open Channels; GB/T 50159-2015; China Planning Press: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Moriasi, D.N. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. Asabe 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Chien, N.; Ma, H. The viscosity and flow pattern of muddy water. Sediment Res. 1958, 3, 52–77. (In Chinese) [Google Scholar]
- Chien, N. High Sediment Flow Movement; Tsinghua University Press: Beijing, China, 1989. (In Chinese) [Google Scholar]
- Chen, L. Experimental study on rheological parameters of high-sediment flow. J. Wuhan Inst. Hydraul. Electr. Eng. 1992, 25, 384–392. [Google Scholar]
- Ni, H.; Wu, J.; Sun, Z.; Lu, G.; Yu, J. Insight into the viscosity enhancement ability of Ca(NO3)2 on the binary molten nitrate salt: A molecular dynamics simulation study. Chem. Eng. J. 2018, 377, 120029. [Google Scholar] [CrossRef]
- Jeffrey, D.J.; Acrivos, A. The rheological properties of suspensions of rigid particles. Aiche J. 1976, 22, 417–432. [Google Scholar] [CrossRef]
- Godfrey, P.D.; Brown, R.D.; Hunter, A.N. The shape of urea. J. Mol. Struct. 1997, 413, 405–414. [Google Scholar] [CrossRef]
- Rupley, J.A. The Effect of Urea and Amides upon Water Structure. J. Phys. Chem. 1963, 68, 269–284. [Google Scholar]
- Bruning, W.; Holtzer, A. The effect of urea on hydrophobic bonds: The critical micelle concentration of N-dodecyltrimethylammonium bromide in aqueous solutions of urea1. J. Am. Chem. Soc. 1961, 83, 4865–4866. [Google Scholar] [CrossRef]
- Stolarski, M.; Eichholz, C.; Fuchs, B.; Nirschl, H. Sedimentation acceleration of remanent iron oxide by magnetic flocculation. China Particuology 2007, 5, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Coussot, P. Mudflow Rheology and Dynamic; A. A. Balkema Publishers: Rotterdam, The Netherlands, 1997. [Google Scholar]
- Pellegrino, A.; Schippa, L. Rheological modeling of macro viscous flows of granular suspension of regular and irregular particles. Water 2018, 10, 21. [Google Scholar] [CrossRef]
- Pellegrino, A.M.; Schippa, L. A laboratory experience on the effect of grains concentration and coarse sediment on the rheology of natural debris-flows. Environ. Earth Sci. 2018, 77, 1–13. [Google Scholar] [CrossRef]
- Kranck, K. Flocculation of Suspended Sediment the Sea. Nature 1973, 246, 348–350. [Google Scholar] [CrossRef]
- Liu, D.; Cui, Y.; Guo, J.; Yu, Z.; Dave, C.; Lei, M. Investigating the effects of clay/sand content on depositional mechanisms of submarine debris flows through physical and numerical modeling. Landslides 2020, 17, 1863–1880. [Google Scholar] [CrossRef]
- Einstein, A. Zur theorie der brownschen bewegung. Ann. Der Phys. 1906, 324, 371–381. [Google Scholar] [CrossRef]
- Guy, B.T.; Rudra, R.P.; Dickenson, W.T.; Sohrabi, T.M. Empirical model for calculating sediment-transport capacity in shallow overland flows: Model development. Biosyst. Eng. 2009, 103, 105–115. [Google Scholar] [CrossRef]
- Deng, L.; Sun, T.; Fei, K.; Zhang, L.; Fan, X.; Wu, Y.; Ni, L. Effects of erosion degree, rainfall intensity and slope gradient on runoff and sediment yield for the bare soils from the weathered granite slopes of SE China. Geomorphology 2020, 352, 106997. [Google Scholar] [CrossRef]
- Wang, D.; Yuan, Z.; Cai, Y.; Jing, D.; Liu, F.; Tang, Y.; Song, N.; Li, Y.; Zhao, C.; Fu, X. Characterisation of soil erosion and overland flow on vegetation-growing slopes in fragile ecological regions: A review. J. Environ. Manag. 2021, 285, 112165. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, J.; Zhang, M.; Zhang, T.; Wang, F. Response of roll wave to suspended load and hydraulics of overland flow on steep slope. Catena 2015, 133, 394–402. [Google Scholar] [CrossRef]
- Beuselinck, L.; Govers, G.; Steegen, A.; Quine, T.A. Sediment transport by overland flow over an area of net deposition. Hydrol. Processes 1999, 13, 2769–2782. [Google Scholar] [CrossRef]
- Zhang, G.; Shen, R.; Luo, R.; Cao, Y.; Zhang, X. Effects of sediment load on hydraulics of overland flow on steep slopes. Earth Surf. Processes Landf. 2010, 35, 1811–1819. [Google Scholar] [CrossRef]
Evaluation lndexes | R2 | RSR | NSE | PBIAS |
---|---|---|---|---|
value | 0.87 | 0.37 | 0.86 | 1.5% |
Group | d < 0.01 mm Content (%) | d50 (mm) | d90 (mm) | d75/d25 | Source | |
---|---|---|---|---|---|---|
AB1 | 2.68 | 72 | 0.0044 | 0.034 | 7.06 | Huayuankou [23] |
AB2 | 2.71 | 51.5 | 0.009 | 0.126 | 24 | Huayuankou and Lugou Bridg [23] |
AB3 | 2.74 | 37 | 0.038 | 0.15 | 28 | |
AB4 | 2.78 | 15.8 | 0.09 | 0.154 | 3.71 | |
AB5 | 2.79 | 9 | 0.106 | 0.155 | 2.64 | |
AB6 | 2.8 | <2.0 | 0.114 | 0.155 | 2.09 | Yongding River [23] |
AB7 | 2.65 | 26.23 | 0.025 | 0.066 | 4.2 | Yan’an (this study) |
References | Samples | R2 | RSR | NSE | PBIAS |
---|---|---|---|---|---|
Overall | 138 | 0.87 | 0.365 | 0.877 | 5% |
Measurement data | 16 | 0.76 | 0.498 | 0.752 | −3% |
Fei (1985) [23] | 58 | 0.90 | 0.316 | 0.900 | 6% |
Chen (1992) [37] | 26 | 0.99 | 0.063 | 0.991 | 1% |
Van (1948) [16] | 13 | 0.70 | 0.638 | 0.593 | 22% |
Wang (2017) [28] | 12 | 0.70 | 0.915 | 0.163 | 6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Gao, J.; Gao, Z.; Wang, Z.; Wang, L.; Kang, Y.; Ahmad, R. Effect of Nitrogen on the Viscosity of the Erosive Sediment-Laden Flows. Agronomy 2022, 12, 2029. https://doi.org/10.3390/agronomy12092029
Zhang Y, Gao J, Gao Z, Wang Z, Wang L, Kang Y, Ahmad R. Effect of Nitrogen on the Viscosity of the Erosive Sediment-Laden Flows. Agronomy. 2022; 12(9):2029. https://doi.org/10.3390/agronomy12092029
Chicago/Turabian StyleZhang, Yuanyuan, Jianen Gao, Zhe Gao, Zhaorun Wang, Lu Wang, Youcai Kang, and Rafiq Ahmad. 2022. "Effect of Nitrogen on the Viscosity of the Erosive Sediment-Laden Flows" Agronomy 12, no. 9: 2029. https://doi.org/10.3390/agronomy12092029
APA StyleZhang, Y., Gao, J., Gao, Z., Wang, Z., Wang, L., Kang, Y., & Ahmad, R. (2022). Effect of Nitrogen on the Viscosity of the Erosive Sediment-Laden Flows. Agronomy, 12(9), 2029. https://doi.org/10.3390/agronomy12092029