Effect of Biochar and Inorganic or Organic Fertilizer Co-Application on Soil Properties, Plant Growth and Nutrient Content in Swiss Chard
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Soil Analysis
2.3. Biochar and Organic Fertilizer Analysis
2.4. Plant Analysis
2.5. Statistical Analysis
3. Results
3.1. Soil Properties
3.2. Plant Growth Parameters
3.3. Leaf Nutrient Content
4. Discussion
4.1. Soil Properties
4.2. Plant Growth and Yield
4.3. Leaf Nutrient Content
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2018. Building Climate Resilience for Food Security and Nutrition; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- European Commission. The European Green Deal. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; COM/2019/640 Final; European Commission: Brussels, Belgium, 2019; pp. 1–24.
- European Commission. Farm to Fork Strategy. for a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020; pp. 1–23.
- Puglia, D.; Pezzolla, D.; Gigliotti, G.; Torre, L.; Bartucca, M.L.; Del Buono, D. The Opportunity of Valorizing Agricultural Waste, Through Its Conversion into Biostimulants, Biofertilizers, and Biopolymers. Sustainability 2021, 13, 2710. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Rovas, D.; Libutti, A.; Monteleone, M. Boosting Circular Economy and Closing the Loop in Agriculture: Case Study of a Small-Scale Pyrolysis-Biochar Based System Integrated in an Olive Farm in Simbiosi with an Olive Mill. Environ. Dev. 2015, 14, 22–23. [Google Scholar] [CrossRef]
- Monlau, F.; Francavilla, M.; Sambusiti, C.; Antoniou, N.; Solhy, A.; Libutti, A.; Zabaniotou, A.; Barakat, A.; Monteleone, M. Toward a Functional Integration of Anaerobic Digestion and Pyrolysis for a Sustainable Resource Management. Comparison between Solid-Digestate and Its Derived Pyrochar as Soil Amendment. Appl. Energy 2016, 169, 652–662. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Rovas, D.; Delivand, M.K.; Francavilla, M.; Libutti, A.; Cammerino, A.R.B.; Monteleone, M. Conceptual Vision of Bioenergy Sector Development in Mediterranean Regions Based on Decentralized Thermochemical Systems. Sustain. Energy Technol. Assess. 2017, 23, 33–47. [Google Scholar] [CrossRef]
- Ayaz, M.; Feiziene, D.; Tilvikiene, V.; Akhtar, K.; Stulpinaite, U.; Iqbal, R. Biochar Role in the Sustainability of Agriculture and Environment. Sustainability 2021, 13, 1330. [Google Scholar] [CrossRef]
- Kumar, A.; Bhattacharya, T. Biochar: A sustainable solution. Environ. Dev. Sustain. 2021, 23, 6642–6680. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 1–12. [Google Scholar]
- Wang, B.; Gao, B.; Fang, J. Recent advances in engineered biochar productions and applications. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2158–2207. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 1–9. [Google Scholar] [CrossRef]
- Kammann, C.; Ratering, S.; Eckchard, C.; Muller, C. Biochar and hydrochar effects on greenhouse gas fluxes from soils. J. Environ. Qual. 2012, 41, 1052–1066. [Google Scholar]
- Mukherjee, A.; Lal, R. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 2013, 3, 313–339. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Yu, W.; Wang, Y.; Zhang, K.; Zhu, X.; Zhang, Y.; Chen, B. Application of biochar-based materials in environmental remediation: From multi-level structures to specific devices. Biochar 2020, 2, 1–31. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Herath, H.M.S.K.; Camps-Arbestain, M.C.; Hedley, M. Effect of biochar on soil physical properties in two contrasting soils: An alfisol and an andisol. Geoderma 2013, 209, 188–197. [Google Scholar] [CrossRef]
- Githinji, L. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Arch. Agron. Soil Sci. 2014, 60, 457–470. [Google Scholar] [CrossRef]
- Libutti, A.; Mucci, M.; Francavilla, M.; Monteleone, M. Effect of Biochar Amendment on Nitrate Retention in a Silty Clay Loam Soil. Ital. J. Agron. 2016, 11, 273–276. [Google Scholar] [CrossRef]
- Demiraj, E.; Libutti, A.; Malltezi, J.; Rroço, E.; Brahushi, F.; Monteleone, M.; Sulçe, S. Effect of Organic Amendments on Nitrate Leaching Mitigation in a Sandy Loam Soil of Shkodra District, Albania. Ital. J. Agron. 2018, 13, 1136. [Google Scholar] [CrossRef]
- Libutti, A.; Cammerino, A.R.B.; Francavilla, M.; Massimo, M. Soil Amendment with Biochar Affects Water Drainage and Nutrient Losses by Leaching: Experimental Evidence under Field-Grown Conditions. Agronomy 2019, 9, 758. [Google Scholar] [CrossRef]
- Libutti, A.; Francavilla, M.; Monteleone, M. Hydrological Properties of a Clay Loam Soil as Affected by Biochar Application in a Pot Experiment. Agronomy 2021, 11, 489. [Google Scholar] [CrossRef]
- Domingues, R.R.; Sánchez-Monedero, M.A.; Spokas, K.A.; Melo, L.C.A.; Trugilho, P.F.; Valenciano, M.N.; Silva, C.A. Enhancing Cation Exchange Capacity of Weathered Soils Using Biochar: Feedstock, Pyrolysis Conditions and Addition Rate. Agronomy 2020, 10, 824. [Google Scholar] [CrossRef]
- Ćwieląg-Piasecka, I.; Medy ńska-Juraszek, A.; Jerzykiewicz, M.; Dębicka, M.; Bekier, J.; Jamroz, E.; Kawałko, D. Humic acid and biochar as specific sorbents of pesticides. J. Soils Sediment 2018, 18, 2692–2702. [Google Scholar] [CrossRef] [Green Version]
- Zama, E.F.; Reid, B.J.; Arp, H.P.H.; Sun, G.; Yuan, H.; Zhu, Y. Advances in research on the use of biochar in soil for remediation: A review. J. Soils Sediment 2018, 18, 2433–2450. [Google Scholar] [CrossRef]
- Sajjadi, B.; Broome, J.W.; Chen, W.Y.; Mattern, D.L.; Egiebor, N.O.; Hammer, N.; Smith, C.L. Urea functionalization of ultrasound-treated biochar: A feasible strategy for enhancing heavy metal adsorption capacity. Ultrason. Sonochem. 2019, 51, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Luz Cayuela, M.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Tsai, W.T.; Liu, S.C.; Chen, H.R.; Chang, Y.M.; Tsai, Y.L. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere 2012, 89, 198–203. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Deng, X.; Zhao, J.; Luo, Y.; Novak, J.; Herbert, S.; Xing, B. Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresour. Technol. 2013, 130, 463–471. [Google Scholar] [CrossRef]
- Ghodake, G.S.; Shinde, S.K.; Kadam, A.A.; Saratale, R.G.; Saratale, G.D.; Kumar, M.; Palem, R.R.; AL-Shwaiman, H.A.; Elgorban, A.M.; Syed, A.; et al. Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy. J. Clean. Prod. 2021, 297, 126645. [Google Scholar] [CrossRef]
- Ilyas, M.; Arif, M.; Akhtar, K.; Riaz, M.; Wang, H. Diverse feedstock’s biochars as supplementary K fertilizer improves maize. Soil Till. Res. 2021, 211, 105015. [Google Scholar] [CrossRef]
- Farrell, M.; Macdonald, L.M.; Butler, G.; Chirino-Valle, I.; Condron, L.M. Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biol. Fertil. Soils 2014, 50, 169–178. [Google Scholar] [CrossRef]
- Hannet, G.; Singh, K.; Fidelis, C.; Farrar, M.B.; Muqaddas, B.; Bai, S.H. Effects of biochar, compost, and biochar-compost on soil total nitrogen and available phosphorus concentrations in a corn field in Papua New Guinea. Environ. Sci. Pollut. Res. 2021, 28, 27411–27419. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.H.; Omidvar, N.; Gallart, M.; Kämper, W.; Tahmasbian, I.; Farrar, M.B.; Singh, K.; Zhou, G.; Muqadass, B.; Xu, C.-Y.; et al. Combined effects of biochar and fertilizer applications on yield: A review and meta-analysis. Sci. Total Environ. 2022, 808, 152073. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Camps-Arbestain, M.; Shen, Q.; Lehmann, J.; Singh, B.; Sabir, M. Biochar effects on crop yields with and without fertiliser: A meta-analysis of field studies using separate controls. Soil Use Manag. 2020, 36, 2–18. [Google Scholar] [CrossRef]
- Zhu, Q.; Peng, X.; Huang, T. Contrasted effects of biochar on maize growth and N use efficiency depending on soil conditions. Int Agrophys 2015, 29, 257–266. [Google Scholar] [CrossRef]
- Gathorne-Hardy, A.; Knight, J.; Woods, J. Biochar as a soil amendment positively interacts with nitrogen fertilizer to improve barley yields in the UK. In IOP Conference Series. Earth and Environmental Science; IOP Publishing: Bristol, UK, 2009; Volume 6, p. 372052. [Google Scholar]
- MacCarthy, D.S.; Darko, E.; Nartey, E.K.; Adiku, S.G.K.; Tettey, A. Integrating Biochar and Inorganic Fertilizer ImprovesProductivity and Profitability of Irrigated Ricein Ghana, West Africa. Agronomy 2020, 10, 904. [Google Scholar] [CrossRef]
- Oladele, S.O.; Adeyemo, A.J.; Awodun, M.A. Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils. Geoderma 2019, 336, 1–11. [Google Scholar] [CrossRef]
- Jalal, F.; Arif, M.; Akhtar, K.; Khan, A.; Naz, M.; Said, F.; Zaheer, S.; Hussain, S.; Imtiaz, M.; Ali Khan, M.; et al. Biochar Integration with Legume Crops in Summer Gape Synergizes Nitrogen Use Efficiency and Enhance Maize Yield. Agronomy 2020, 10, 58. [Google Scholar] [CrossRef]
- Bedada, W.; Karltun, E.; Lemenih, M.; Tolera, M. Long-term addition of compost and NP fertilizer increases crop yield and improves soil quality in experiments on smallholder farms. Agric. Ecosyst. Environ. 2014, 195, 193–201. [Google Scholar] [CrossRef]
- Wang, Y.; Villamil, M.B.; Davidson, P.C.; Akdeniz, N. A quantitative understanding of the role of co-composted biochar in plant growth using meta-analysis. Sci. Total Environ. 2019, 685, 741–752. [Google Scholar] [CrossRef]
- Manolikaki, I.; Diamadopoulos, E. Positive Effects of Biochar and Biochar-Compost on Maize Growth and Nutrient Availabilityin Two Agricultural Soils. Commun. Soil Sci. Plant. Anal. 2019, 50, 512–526. [Google Scholar] [CrossRef]
- Liu, P.; Liu, W.J.; Jiang, H.; Chen, J.J.; Li, W.W.; Yu, H.Q. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour. Technol. 2012, 121, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The Role of Biochar and Biochar-Compost in Improving Soil Quality and CropPerformance: A Review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Muirhead, B.; Wright, G.; Bird, M.I. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agric. Ecosyst. Environ. 2015, 213, 72–85. [Google Scholar] [CrossRef]
- Libutti, A.; Trotta, V.; Rivelli, A.R. Biochar, Vermicompost, and Compost as Soil Organic Amendments: Influence on GrowthParameters, Nitrate and Chlorophyll Content of Swiss Chard (Beta vulgaris L. var. cycla). Agronomy 2020, 10, 346. [Google Scholar] [CrossRef]
- Libutti, A.; Rivelli, A.R. Quanti-qualitative response of Swiss chard (Beta vulgaris L. var. cycla) to soil amendment with biochar-compost mixtures. Agronomy 2021, 11, 307. [Google Scholar] [CrossRef]
- Gamba, M.; Raguindin, P.; Asllanaj, E.; Merlo, F.; Glisic, M.; Minder, B.; Bussler, W.; Metzger, B.; Kern, H.; Muka, T. Bioactive compounds and nutritional composition of Swiss Chard (Beta vulgaris L. var. cicla and flavescens): A Systematic review. Crit. Rev. Food Sci. Nutr. 2020, 4, 3465–3480. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosystem Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Michalski, R.; Muntean, E.; Pecyna-Utylska, P.; Kernert, J. Ion Chromatography—An Advantageous Technique in Soil Analysis. ProEnvironment 2019, 12, 82–88. [Google Scholar]
- EBC, European Biochar Certificate. Guidelines for a Sustainable Production of Biochar; European Biochar Certificate (EBC): Arbaz, Switzerland, 2012. [Google Scholar]
- IBI, International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil; IBI-STD-2.0; IBI: Toronto, ON, Canada, 2014. [Google Scholar]
- Schimmelpfennig, S.; Glaser, B. One Step Forward toward Characterization: Some Important Material Properties to Distinguish Biochars. J. Environ. Qual. 2012, 41, 1001–1013. [Google Scholar] [CrossRef]
- Lazcano, C.; Domínguez, J. The Use of Vermicompost in Sustainable Agriculture: Impact on Plant Growth and Soil Fertility; Miransari, M., Ed.; Soil Nutrients; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2011; pp. 211–233. [Google Scholar]
- Zhao, H.T.; Li, T.P.; Zhang, Y.; Ke, F. Effects of vermicompost amendment as a basal fertilizer on soil properties and cucumber yield and quality under continuous cropping conditions in a greenhouse. J. Soils Sediment 2017, 17, 2718–2730. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Song, N. Biochar and vermicompost improve the soil properties and the yield and quality of cucumber (Cucumis sativus L.) grown in plastic shed soil continuously cropped for different years. Agric. Ecosyst. Environ. 2021, 315, 107425. [Google Scholar] [CrossRef]
- Gutiérrez-Miceli, F.A.; Santiago-Borraz, J.; Molina, J.A.M.; Nafate, C.C.; Abud-Archila, M.; Llaven, M.A.O.; Rincón-Rosales, R.; Dendooven, L. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculemntum). Bioresour. Technol 2007, 98, 2781–2786. [Google Scholar] [CrossRef] [PubMed]
- Sari, S.; Aksakal, E.L.; Angin, İ. Influence of vermicompost application on soil consistency limits and soil compactibility. Turk. J. Agric. For. 2017, 41, 357–371. [Google Scholar] [CrossRef]
- Fernández-Gómez, M.J.; Díaz-Raviña, M.; Romero, E.; Nogales, R. Recycling of environmentally problematic plant wastes generated from greenhouse tomato crops through vermicomposting. Int. J. Environ. Sci. Technol. 2013, 10, 697–708. [Google Scholar] [CrossRef]
- Qadir, M.; Ghaffoor, A.; Murtaza, G. Amelioration strategies for saline soils: A review. Land Degrad. Dev. 2000, 11, 501–521. [Google Scholar] [CrossRef]
- Gross, A.; Bromm, T.; Glaser, B. Soil Organic Carbon Sequestration after Biochar Application: A Global Meta-Analysis. Agronomy 2021, 11, 2474. [Google Scholar] [CrossRef]
- Sarma, B.; Farooq, M.; Gogoi, N.; Borkotoki, B.; Kataki, R.; Garg, A. Soil organic carbon dynamics in wheat—Green gram crop rotation amended with vermicompost and biochar in combination with inorganic fertilizers: A comparative study. J. Clean. Prod. 2018, 201, 471–480. [Google Scholar] [CrossRef]
- Khan, Z.; Zhang, K.; Khan, M.N.; Fahad, S.; Xu, Z.; Hu, L. Coupling of Biochar with Nitrogen Supplements Improve Soil Fertility, Nitrogen Utilization Efficiency and Rapeseed Growth. Agronomy 2020, 10, 1661. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef]
- Lehmann, J.; da Silva, J.P.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Mavi, M.S.; Singh, G.; Singh, B.P.; Sekhon, B.S.; Choudhary, O.P.; Sagi, S.; Berry, R. Interactive effects of rice-residue biochar and N-fertilizer on soil functions and crop biomass in contrasting soils. J. Soil Sci. Plant Nutr. 2018, 18, 41–59. [Google Scholar]
- Güereña, D.; Lehmann, J.; Hanley, K.; Enders, A.; Hyland, C.; Riha, S. Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant Soil 2013, 365, 239–254. [Google Scholar] [CrossRef]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Malo, D.D.; Julson, J.L. Effect of biochar on chemical properties of acidic soil. Arch. Agron. Soil Sci. 2014, 60, 393–404. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Nutrient leaching in a Colombian savanna Oxisol amended with biochar. J. Environ. Qual. 2012, 41, 1076–1086. [Google Scholar] [CrossRef] [PubMed]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, Y.K.; Downie, A.; Rust, J. Effect of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Arif, M.; Ali, K.; Jan, M.T.; Shah, Z.; Jones, D.L.; Quilliam, R. Integration of biochar with animal manure and nitrogen for improving maize yields and soil properties in calcareous semi-arid agroecosystems. Field Crops Res. 2016, 195, 28–35. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Jing, Y.; Li, Q.; Zhang, J.; Huang, Q. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena 2014, 123, 45–51. [Google Scholar] [CrossRef]
- Robertson, G.P.; Groffman, P.M. Nitrogen transformations. In Soil Microbiology, Ecology and Biochemistry, 4th ed.; Paul, E.A., Ed.; Academic Press: Burlington, MA, USA, 2015; pp. 421–446. [Google Scholar]
- Gravel, V.; Dorais, M.; Menard, C. Organic potted plants amended with biochar: Its effect on growth and Pythium colonization. Can. J. Plant Sci. 2013, 93, 12171227. [Google Scholar] [CrossRef]
- Ali Jaaf, S.M.A.; Li, Y.; Günal, E.; Ali El Enshasy, H.; Salmen, S.H.; Sürücü, A. The impact of corncob biochar and poultry litter on pepper (Capsicum annuum L.) growth and chemical properties of a silty-clay soil. Saudi J. Biol. Sci. 2022, 29, 2998–3005. [Google Scholar] [CrossRef]
- Ghezzehei, T.A.; Sarkhot, D.V.; Berhe, A.A. Biochar can be used to capture essential nutrients from dairy wastewater and improve soil physico-chemical properties. Solid Earth 2014, 5, 953. [Google Scholar] [CrossRef]
- Joshi, R.; Singh, J.; Vig, A.P. Vermicompost as an effective organic fertilizer and biocontrol agent: Effect on growth, yield and quality of plants. Rev. Environ Sci. Biotechnol. 2015, 14, 137–159. [Google Scholar] [CrossRef]
- Madhu Mishra, M.; Kumar Pande, R.; Ray, S. A Comprehensive Review On Earthworms’ Vermicompost: A Strategy For Sustainable Waste Management. ECS Trans. 2022, 107, 20101. [Google Scholar] [CrossRef]
- Lim, S.L.; Wu, T.Y.; Lim, P.N.; Shak, K.P.Y. The use of vermicompost in organic farming: Overview, effects on soil and economics. J. Sci. Food Agric. 2015, 95, 1143–1156. [Google Scholar] [CrossRef] [PubMed]
- Ivanovìc, L.; Milaševic, I.; Topalovic, A.; Durovic, D.; Mugoša, B.; Kneževic, M.; Vrvic, M. Nutritional and Phytochemical Content of Swiss Chard from Montenegro, under Different Fertilization and Irrigation Treatments. Brit. Food J. 2018, 121, 411–425. [Google Scholar] [CrossRef]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Malo, D.D.; Papiernik, S.K.; Clay, D.E.; Kumar, S.; Gulbrandson, D.W. Nitrate Sorption and Desorption by Biochars Produced from Fast Pyrolysis. Micropor. Mesopor. Mater. 2013, 179, 250–257. [Google Scholar] [CrossRef]
- DeLuca, T.H.; Gundale, M.J.; MacKenzie, M.D. Biochar effects on soil nutrient transformations. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 251–270. [Google Scholar]
- Herencia, J.F.; Ruiz-Porras, J.C.; Melero, S.; Garcia-Galavis, P.A.; Morillo, E.; Maqueda, C. Comparison between organic and mineral fertilization for soil fertility levels, crop macronutrient concentration and yield. Agron. J. 2007, 99, 973–983. [Google Scholar] [CrossRef]
- Salehzaden, H.; Maleki, F.; Rezaee, R.; Shahmoradi, B.; Ponnet, K. The nitrate content of fresh and cooked vegetables and their health related risks. Public Libr. Sci. 2020, 15, e0227551. [Google Scholar]
- Hord, N.G.; Tang, Y.; Bryan, N.S. Food sources of nitrates and nitrites. The Physiological context for potential health benefits. Am. J. Clin. Nutr. 2009, 90, 1–10. [Google Scholar] [CrossRef] [Green Version]
Biochar (B) | Fertilizer (F) | Abbreviation 1 | ||
---|---|---|---|---|
Wood Chips | Vineyard Prunings | Ammonium Nitrate | Vermicompost | |
− | − | − | − | B0-F0 (control) |
− | − | + | − | B0-IF |
− | − | − | + | B0-OF |
+ | − | − | − | Bw-F0 |
+ | − | + | − | Bw-IF |
+ | − | − | + | Bw-OF |
− | + | − | − | Bv-F0 |
− | + | + | − | Bv-IF |
− | + | − | + | Bv-OF |
Parameter | Unit | Biochar | Organic Fertilizer | |
---|---|---|---|---|
Wood Chips | Vineyard Prunings | Vermicompost | ||
pH | - | 8.9 ± 0.13 | 10.6 ± 0.06 | 7.6 ± 0.07 |
EC | mS m−1 | 52.0 ± 0.04 | 249.0 ± 0.04 | 265.0 ± 0.03 |
Moisture | % dw | 5.6 ± 0.11 | 15.3 ± 0.31 | 4.0 ± 0.17 |
Volatile solids | % dw | 42.3 ± 0.44 | 15.3 ± 0.31 | 27.5 ± 0.58 |
Ash | % dw | 4.4 ± 0.21 | 9.9 ± 0.04 | 72.2 ± 0.57 |
Fixed carbon | % dw | 53.3 ± 0.24 | 74.8 ± 0.33 | 0.2 ± 0.02 |
C | % dw | 68.3 ± 0.11 | 67.7 ± 0.87 | 11.3 ± 0.05 |
H | % dw | 4.0 ± 0.04 | 2.1 ± 0.04 | 1.5 ± 0.06 |
N | % dw | 1.0 ± 0.03 | 1.0 ± 0.01 | 1.5 ± 0.05 |
Corg | % dw | 66.3 ± 0.06 | 67.0 ± 0.86 | 7.8 ± 0.08 |
C/N | - | 67.2 ± 1.96 | 66.2 ± 0.15 | 5.2± 0.24 |
S | % dw | 0.03 ± 0.01 | 0.2 ± 0.01 | 0.3 ± 0.01 |
O | % dw | 22.3 ± 0.29 | 17.9 ± 1.46 | 5.2 ± 0.24 |
H/Corg ratio | - | 0.7 ± 0.01 | 0.4 ± 0.01 | - |
O/Corg ratio | - | 0.4 ± 0.01 | 0.2 ± 0.01 | - |
pH | EC | P2O43− | SO42− | NO3− | NH4+ | Na+ | K+ | Ca2+ | Mg2+ | Total N | Corg | C/N | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | |||||||||||||
Biochar (B) | * | *** | *** | *** | ns | *** | * | *** | ns | * | * | *** | *** |
Fertilizer (F) | * | *** | *** | *** | *** | *** | *** | *** | *** | *** | ** | *** | *** |
B × F | * | *** | *** | * | * | *** | * | *** | * | * | * | *** | *** |
T2 | |||||||||||||
Biochar (B) | * | *** | *** | ns | *** | ns | *** | *** | *** | *** | * | *** | *** |
Fertilizer (F) | ** | *** | *** | *** | *** | ns | *** | *** | *** | *** | ns | *** | ns |
B × F | *** | *** | *** | *** | *** | ns | *** | *** | *** | *** | ** | *** | ** |
Experimental Factor | pH | EC | P2O43− | SO42− | NO3− | NH4+ | Na+ | K+ | Ca2+ | Mg2+ | Total N | Corg | C/N | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | ||||||||||||||
Biochar (B) | ||||||||||||||
B0 | 7.6 ab | 1.2 a | 7.2 c | 108.5 b | 294.2 | 5.7 a | 82.7 ab | 75.1 b | 325.3 | 22.7 b | 0.2 a | 0.7 c | 4.4 b | |
Bw | 7.6 b | 1.0 b | 8.9 b | 96.4 c | 275.5 | 3.0 c | 77.4 b | 77.4 b | 332.8 | 24.2 ab | 0.1 b | 2.2 a | 18.0 a | |
Bv | 7.6 a | 0.9 b | 14.6 a | 143.3 a | 297.3 | 4.7 b | 88.0 a | 199.8 a | 306.9 | 25.7 a | 0.1 ab | 2.1 b | 17.6 a | |
Fertilizer (F) | ||||||||||||||
F0 | 7.6 a | 0.6 c | 10.5 b | 88.0 b | 31.3 c | 0.0 b | 72.6 b | 82.2 c | 258.6 c | 18.6 b | 0.1 b | 1.4 c | 12.3 b | |
IF | 7.6 b | 0.8 b | 7.7 c | 94.6 b | 632.5 a | 13.5 a | 75.8 b | 120.9 b | 378.4 a | 26.8 a | 0.2 a | 1.6 b | 11.7 b | |
OF | 7.6 ab | 1.6 a | 12.4 a | 165.7 a | 203.2 b | 0.0 b | 99.8 a | 149.2 a | 328.1 b | 27.3 a | 0.1 b | 2.0 a | 15.9 a | |
Biochar × Fertilizer | ||||||||||||||
B0 | F0 | 7.6 ab | 0.6 d | 8.8 c | 84.3 e | 49.1 c | 0.0 d | 74.2 bc | 62.9 ef | 287.1 bc | 19.9 cd | 0.2 ab | 0.6 d | 3.9 c |
IF | 7.6 ab | 0.9 c | 4.8 d | 80.0 e | 618.1 a | 17.2 a | 70.9 a | 79.0 def | 351.5 ab | 22.9 bcd | 0.2 a | 0.7 d | 3.6 c | |
OF | 7.6 ab | 2.1 a | 7.9 c | 161.3 b | 215.4 b | 0.0 d | 103.0 a | 83.4 de | 337.5 ab | 25.4 abc | 0.1 b | 0.7 d | 5.8 c | |
Bw | F0 | 7.7 ab | 0.5 d | 8.8 c | 66.3 e | 0.0 c | 0.0 d | 67.0 c | 53.6 f | 245.1 c | 17.9 d | 0.1 b | 1.8 c | 13.0 b |
IF | 7.5 b | 0.6 d | 6.2 cd | 79.4 e | 649.2 a | 9.0 c | 72.6 bc | 91.8 d | 404.9 a | 27.5 ab | 0.1 b | 2.5 b | 21.0 a | |
OF | 7.5 b | 1.8 b | 11.7 b | 143.4 bc | 177.1 b | 0.0 d | 92.7 ab | 86.7 de | 348.5 ab | 27.1 ab | 0.1 b | 2.4 b | 19.9 a | |
Bv | F0 | 7.6 ab | 0.6 d | 13.9 b | 113.3 d | 44.9 c | 0.0 d | 76.7 bc | 130.1 c | 243.5 c | 17.9 d | 0.1 b | 1.8 c | 20.1 a |
IF | 7.6 ab | 1.0 c | 12.1 b | 124.3 cd | 630.0 a | 14.2 b | 83.8 abc | 192.0 b | 378.8 a | 29.9 a | 0.2 a | 1.7 c | 10.6 b | |
OF | 7.7 a | 1.0 c | 17.7 a | 192.2 a | 217.1 b | 0.0 d | 103.6 a | 277.4 a | 298.2 bc | 29.4 a | 0.1 b | 2.8 a | 22.1 a | |
T2 | ||||||||||||||
Biochar (B) | ||||||||||||||
B0 | 7.9 a | 0.5 b | 14.0 b | 75.1 | 77.6 b | 0.5 | 53.1 a | 47.1 c | 234.6 b | 17.2 c | 0.1 ab | 0.8 c | 9.0 c | |
Bw | 7.9 ab | 0.5 b | 11.4 c | 74.1 | 90.4 a | 0.5 | 47.1 b | 50.3 b | 251.9 a | 19.1 a | 0.1 b | 2.2 b | 29.0 a | |
Bv | 7.9 b | 1.0 a | 19.6 a | 73.4 | 9.3 c | 0.5 | 53.0 a | 118.2 a | 209.0 c | 17.5 b | 0.1 a | 2.3 a | 19.0 b | |
Fertilizer (F) | ||||||||||||||
F0 | 7.9 a | 0.7 a | 13.5 b | 71.8 b | 1.3 b | 0.5 | 60.6 a | 74.9 a | 222.8 b | 17.6 c | 0.1 | 1.6 c | 17.0 | |
IF | 7.9 a | 0.6 b | 12.7 c | 60.3 c | 175.3 a | 0.5 | 35.8 c | 65.2 b | 255.4 a | 18.0 b | 0.1 | 1.7 b | 23.1 | |
OF | 7.9 b | 0.7 a | 18.8 a | 90.5 a | 0.7 b | 0.5 | 56.9 b | 75,6 a | 217.1 c | 18.2 a | 0.1 | 1.9 a | 16.9 | |
Biochar × Fertilizer | ||||||||||||||
F0 | 7.9 bcd | 0.4 d | 12.3 e | 82.7 c | 0.0 d | 0.5 | 67.8 a | 47.7 f | 218.2 e | 16.3 g | 0.1 b | 0.8 cd | 6.4 c | |
B0 | IF | 8.0 ab | 0.7 b | 10.0 f | 64.5 d | 232.9 b | 0.5 | 31.4 f | 39.4 h | 265.7 b | 17.2 f | 0.1 b | 0.7 d | 9.4 bc |
OF | 7.9 abc | 0.4 d | 19.9 b | 78.0 c | 0.0 d | 0.5 | 60.2 b | 54.2 e | 219.7 e | 18.0 d | 0.1 b | 0.9 c | 11.2 bc | |
F0 | 8.0 a | 0.4 d | 10.3 f | 68.1 d | 4.0 d | 0.5 | 59.2 b | 58.7 d | 248.4 c | 20.1 a | 0.1 b | 2.1 b | 20.4 bc | |
Bw | IF | 7.8 cd | 0.6 bc | 9.7 f | 53.8 e | 265.2 a | 0.5 | 30.6 f | 43.9 g | 281.9 a | 19.4 b | 0.0 b | 2.1 b | 45.7 a |
OF | 7.8 d | 0.5 cd | 14.1 d | 100.4 a | 2.0 b 0.1 f | 0.5 | 51.6 d | 48.3 f | 225.4 d | 17.7 e | 0.1 b | 2.4 a | 20.9 bc | |
F0 | 7.8 cd | 1.2 a | 17.9 c | 64.6 d | 0.0 d | 0.5 | 54.7 c | 118.2 b | 201.9 g | 16.3 g | 0.1 b | 2.0 b | 24.1 b | |
Bv | IF | 7.9 abc | 0.4 d | 18.4 c | 62.8 d | 27.8 c | 0.5 | 45.3 e | 112.1 c | 218.7 e | 17.2 f | 0.2 a | 2.4 a | 14.3 bc |
OF | 7.9 bcd | 1.3 a | 22.4 a | 93.0 b | 0.0 d | 0.5 | 59.0 b | 124.2 a | 206.2 f | 18.9 c | 0.1 b | 2.4 a | 18.6 bc |
Experimental | I Cut | II Cut | III Cut | IV Cut | V Cut | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Factor | LN | LL | LFW | LN | LL | LFW | LN | LL | LFW | LN | LL | LFW | LN | LL | LFW | |
Biochar (B) | ||||||||||||||||
B0 | 4.4 a | 10.5 | 9.4 a | 1.9 | 14.2 | 7.3 | 2.0 | 13.9 | 7.9 | 2.6 | 14.0 | 6.7 | 2.8 | 11.4 | 5.2 | |
Bw | 4.2 a | 9.4 | 6.7 b | 1.8 | 14.3 | 6.2 | 2.1 | 13.6 | 7.8 | 2.7 | 13.0 | 4.8 | 2.4 | 10.0 | 3.4 | |
Bw | 4.1 | 10.2 | 7.6 ab | 2.0 | 15.7 | 8.6 | 2.3 | 15.7 | 9.8 | 2.7 | 12.8 | 5.4 | 3.0 | 10.8 | 4.3 | |
Fertilizer (F) | ||||||||||||||||
F0 | 4.2 | 9.3 b | 6.4 b | 1.8 | 13.3 | 4.7 b | 1.5 b | 10.2 b | 2.8 b | 2.0 b | 8.9 c | 2.2 b | 2.1 b | 8.1 b | 2.4 b | |
IF | 4.4 | 9.8 ab | 8.0 ab | 1.9 | 15.2 | 8.2 a | 2.5 a | 16.5 a | 11.5 a | 3.1 a | 17.1 a | 9.0 a | 3.3 a | 12.1 a | 5.6 a | |
OF | 4.2 | 10.9 a | 9.3 a | 1.9 | 15.3 | 8.9 a | 2.4 ab | 16.2 a | 11.1 a | 2.8 a | 13.9 b | 5.8 a | 2.8 a | 11.9 a | 4.9 a | |
Biochar × Fertilizer | ||||||||||||||||
F0 | 4.3 | 9.5 | 6.1 b | 4.4 | 13.0 | 4.4 | 1.0 | 9.1 | 2.3 | 2.0 | 8.5 | 2.4 | 2.5 | 8.6 | 2.9 | |
B0 | IF | 4.3 | 9.7 | 8.7 b | 8.2 | 14.9 | 8.2 | 2.5 | 17.0 | 11.5 | 3.0 | 20.0 | 11.6 | 3.0 | 13.8 | 7.2 |
OF | 4.8 | 12.5 | 13.4 a | 9.2 | 14.6 | 9.2 | 2.5 | 15.8 | 9.9 | 2.8 | 13.6 | 6.2 | 3.0 | 11.8 | 5.6 | |
F0 | 4.3 | 8.8 | 6.1 b | 4.3 | 12.7 | 4.3 | 1.8 | 10.7 | 3.3 | 2.0 | 8.8 | 2.1 | 1.8 | 7.8 | 2.1 | |
Bw | IF | 4.5 | 9.6 | 7.5 b | 6.5 | 15.0 | 6.5 | 2.3 | 14.8 | 8.8 | 3.3 | 15.6 | 7.7 | 3.0 | 10.9 | 4.5 |
OF | 3.8 | 9.8 | 6.6 b | 7.8 | 15.1 | 7.8 | 2.3 | 15.3 | 12.5 | 2.8 | 14.5 | 4.7 | 2.5 | 11.3 | 3.6 | |
F0 | 4.0 | 9.7 | 7.2 b | 5.5 | 14.5 | 5.5 | 1.7 | 10.9 | 3.0 | 2.0 | 9.6 | 2.0 | 2.0 | 8.0 | 2.2 | |
Bv | IF | 4.3 | 10.4 | 8.0 b | 10.3 | 16.0 | 10.3 | 3.0 | 18.3 | 14.9 | 3.0 | 15.1 | 7.3 | 4.0 | 11.6 | 4.8 |
OF | 4.0 | 10.5 | 7.5 b | 9.9 | 16.7 | 9.9 | 2.3 | 18.0 | 11.4 | 3.0 | 13.8 | 6.8 | 3.0 | 12.9 | 5.9 | |
Significance | ||||||||||||||||
B | ns | ns | ** | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | |
F | ns | * | ** | ns | ns | *** | * | *** | *** | *** | *** | *** | *** | *** | ** | |
B × F | ns | ns | ** | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Experimental Factor | P2O43− | SO42− | NO3− | NH4+ | Na+ | K+ | Ca2+ | Mg2+ | Total N |
---|---|---|---|---|---|---|---|---|---|
Biochar (B) | |||||||||
B0 | 1143.5 a | 378.2 a | 1723.8 a | 92.5 b | 2247.9 a | 4414.0 b | 1.6 c | 156.3 c | 4.9 b |
Bw | 1149.3 a | 339.1 b | 1696.5 a | 104.9 a | 2187.6 a | 4754.2 a | 3.1 a | 184.5 a | 4.8 c |
Bv | 761.5 b | 291.6 c | 859.4 b | 77.5 c | 1743.7 b | 4054.6 c | 2.0 b | 172.1 b | 5.1 a |
Fertilizer (F) | |||||||||
F0 | 1500.1 a | 562.5 a | 0.0 c | 132.7 a | 2306.2 a | 4253.7 a | 3.2 a | 164.3 b | 4.0 b |
IF | 788.4 b | 163.4 b | 3612.7 a | 85.1 b | 2088.6 b | 5229.6 b | 1.7 b | 188.8 a | 5.8 a |
OF | 765.7 b | 283.0 c | 667.0 b | 57.2 c | 1784.3 c | 3739.4 c | 1.8 b | 159.9 b | 5.0 c |
Biochar × Fertilizer | |||||||||
B0-F0 | 1594.4 a | 673.0 a | 0.0 g | 137.2 a | 2360.5 b | 4357.8 cd | 2.3 b | 155.0 cd | 3.7 f |
B0-IF | 810.7 de | 98.9 h | 4568.0 a | 62.0 d | 2180.6 ac | 4835.4 b | 1.0 d | 155.7 cd | 6.0 a |
B0-OF | 1025.4 c | 362.7 d | 603.5 e | 78.3 cd | 2202.8 ac | 4048.9 d | 1.4 c | 158.4 c | 5.1 c |
Bw-F0 | 1684.4 a | 541.8 b | 0.0 g | 138.0 a | 2385.3 a | 4054.8 d | 5.6 a | 179.6 b | 3.7 f |
Bw-IF | 840.9 de | 141.5 g | 3923.5 b | 106.8 b | 2012.6 c | 5503.3 a | 2.1 b | 193.0 b | 5.8 ab |
Bw-OF | 922.5 cd | 334.1 e | 1166.1 d | 70.0 cd | 2164.8 ac | 4704.4 bc | 1.6 c | 180.8 b | 4.8 d |
Bv- F0 | 1221.6 b | 472.7 c | 0.0 g | 122.8 ab | 2172.9 ac | 4348.4 cd | 1.7 c | 158.2 c | 4.6 e |
Bv-IF | 713.5 e | 249.9 f | 2346.7 c | 86.4 c | 2072.7 bc | 5350.3 a | 2.0 b | 217.6 a | 5.7 b |
Bv-OF | 349.3 f | 152.2 g | 231.4 f | 23.4 e | 985.5 d | 2465.0 e | 2.3 b | 140.5 d | 5.1 c |
Significance | |||||||||
B | *** | *** | *** | *** | *** | *** | *** | *** | *** |
F | *** | *** | *** | *** | *** | *** | *** | *** | *** |
B × F | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivelli, A.R.; Libutti, A. Effect of Biochar and Inorganic or Organic Fertilizer Co-Application on Soil Properties, Plant Growth and Nutrient Content in Swiss Chard. Agronomy 2022, 12, 2089. https://doi.org/10.3390/agronomy12092089
Rivelli AR, Libutti A. Effect of Biochar and Inorganic or Organic Fertilizer Co-Application on Soil Properties, Plant Growth and Nutrient Content in Swiss Chard. Agronomy. 2022; 12(9):2089. https://doi.org/10.3390/agronomy12092089
Chicago/Turabian StyleRivelli, Anna Rita, and Angela Libutti. 2022. "Effect of Biochar and Inorganic or Organic Fertilizer Co-Application on Soil Properties, Plant Growth and Nutrient Content in Swiss Chard" Agronomy 12, no. 9: 2089. https://doi.org/10.3390/agronomy12092089
APA StyleRivelli, A. R., & Libutti, A. (2022). Effect of Biochar and Inorganic or Organic Fertilizer Co-Application on Soil Properties, Plant Growth and Nutrient Content in Swiss Chard. Agronomy, 12(9), 2089. https://doi.org/10.3390/agronomy12092089