Spatiotemporal Variations of Grassland Ecosystem Service Value and Its Influencing Factors in Inner Mongolia, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Dynamic ESV Assessment Method
2.1.1. The Equivalent Coefficients Table and the Standard Equivalent Factor
2.1.2. Construction of the Dynamic Equivalent Factors
2.2. Spatiotemporal Dynamic Analysis of ESV
2.2.1. Coefficient of Variation Method
2.2.2. Theil–Sen Median Trend Analysis and Mann–Kendall Test
2.2.3. Hurst Index
2.2.4. Geodetector Model
2.3. Study Area
2.4. Data Source and Preprocessing
3. Results
3.1. Spatial Distribution and Temporal Change in Grassland ESV
3.2. Spatiotemporal Dynamic Variation and Future Trend of Grassland ESV
3.2.1. Fluctuation Characteristics of Grassland ESV
3.2.2. Variation Trends of Grassland ESV
3.2.3. Future Trends of Grassland ESV
3.3. Analysis of Driving Forces of Grassland ESV
3.3.1. Individual Effect of Influencing Factors
3.3.2. Interaction Effects of Influencing Factors
4. Discussion
4.1. Spatiotemporal Dynamic of Grassland ESV
4.2. Influencing Factors of Spatial Distribution of ESV
4.3. Uncertainties and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daily, G.C. The value of nature and the nature of value. Science 2000, 289, 395–396. [Google Scholar] [CrossRef] [PubMed]
- Egoh, B.; Rouget, M.; Reyers, B.; Knight, A.T.; Cowling, R.M.; Jaarsveld, A.S.; Welz, A. Integrating ecosystem services into conservation assessment: A review. Ecol. Econ. 2007, 63, 714–721. [Google Scholar] [CrossRef]
- Lautenbach, S.; Kugel, C.; Lausch, A.; Seppelt, R. Analysis of historic changes in regional ecosystem service provisioning using land use data. Ecol. Indic. 2011, 11, 676–687. [Google Scholar] [CrossRef]
- Wainger, L.A.; King, D.M.; Mack, R.N.; Price, E.W.; Maslin, T. Can the concept of ecosystem services be practically applied to improve natural resource management decisions? Ecol. Econ. 2010, 69, 978–987. [Google Scholar] [CrossRef]
- Li, B. Achievements and prospects of grassland ecological research in China. Chin. J. Ecol. 1992, 11, 1–7. (In Chinese) [Google Scholar]
- Wen, L.; Dong, S.K.; Li, Y.Y.; Li, X.Y.; Shi, J.J.; Wang, Y.L.; Liu, D.M.; Ma, Y.S. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China. PLoS ONE 2013, 8, e58432. [Google Scholar]
- Turner, K.G.; Anderson, S.; Gonzales-Chang, M.; Costanza, R.; Courvile, S.; Dalgaard, T.; Dominati, E.; Kubiszewski, I.; Ogilvy, S.; Porfirio, L.; et al. A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration. Ecol. Model. 2016, 319, 190–207. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhen, L.; Zhang, L.M. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Zhang, L.L.; Yu, X.F.; Jiang, M.; Xue, Z.S.; Lu, X.G.; Zou, Y.C. A consistent ecosystem services valuation method based on Total Economic Value and Equivalent Value Factors: A case study in the Sanjiang Plain, Northeast China. Ecol. Complex. 2017, 29, 40–48. [Google Scholar] [CrossRef]
- Zhao, T.Q.; Ouyang, Z.Y.; Wang, X.K.; Miao, H.; Wei, Y.C. Ecosystem services and ecological and economic value evaluation of land surface water in China. J. Nat. Reso. 2003, 18, 443–452. (In Chinese) [Google Scholar]
- Zhao, T.Q.; Ouyang, Z.Y.; Zheng, H.; Wang, X.K.; Miao, H. Forest ecosystem services and their valuation of in China. J. Nat. Reso. 2004, 19, 480–491. (In Chinese) [Google Scholar]
- Wang, J.S.; Li, W.H.; Ren, Q.S.; Liu, M.C. The value of Tibet’s forest ecosystem services. J. Nat. Reso. 2007, 22, 831–841. (In Chinese) [Google Scholar]
- Wang, B.; Lu, S.W. Evaluation of economic forest ecosystem services in China. Chin. J. Appl. Ecol. 2009, 20, 417–425. (In Chinese) [Google Scholar]
- Niu, X.; Wang, B.; Liu, S.R.; Liu, C.J.; Wei, W.J.; Kauppi, P.E. Economical assessment of forest ecosystem services in China: Characteristics and implications. Ecol. Complex. 2012, 11, 1–11. [Google Scholar] [CrossRef]
- Zhang, D.; Min, Q.W.; Liu, M.C.; Cheng, S.K. Ecosystem service tradeoff between traditional and modern agriculture: A case study in Congjiang County, Guizhou Province, China. Front. Environ. Sci. Eng. 2012, 6, 743–752. [Google Scholar] [CrossRef]
- Zhang, B.; Li, W.H.; Xie, G.D. Ecosystem services research in China: Progress and perspective. Ecol. Econ. 2010, 69, 1389–1395. [Google Scholar] [CrossRef]
- Sun, J. Research advances and trends in ecosystem services and evaluation in China. Procedia Environ. Sci. 2011, 10, 1791–1796. [Google Scholar]
- Yu, Z.Y.; Bi, H. Status quo of research on ecosystem services value in China and suggestions to future research. Energy Procedia 2011, 5, 1044–1048. [Google Scholar]
- Yu, Z.Y.; Bi, H. The key problems and future direction of ecosystem services research. Energy Procedia 2011, 5, 64–68. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Global Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Chen, Z.X.; Zhang, X.S. The value of Chinese ecological system benefit. Chin. Sci. Bull. 2000, 45, 17–22. (In Chinese) [Google Scholar]
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.; Li, S.C. Ecological assets valuation of the Tibetan Plateau. J. Nat. Reso. 2003, 18, 189–196. (In Chinese) [Google Scholar]
- Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Reso. 2008, 23, 911–919. (In Chinese) [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Reso. 2015, 30, 1243–1254. (In Chinese) [Google Scholar]
- Shi, Y.; Wang, R.S.; Huang, J.L.; Yang, W.R. An analysis of the spatial and temporal changes in Chinese terrestrial ecosystem service functions. Chin. Sci. Bull. 2012, 57, 2120–2131. (In Chinese) [Google Scholar] [CrossRef]
- Wang, W.J.; Guo, H.C.; Chuai, X.W.; Dai, C.; Lai, L.; Zhang, M. The impact of land use change on the temporospatial variations of ecosystems services value in China and an optimized land use solution. Environ. Sci. Policy 2014, 44, 62–72. [Google Scholar] [CrossRef]
- Dade, M.C.; Mitchell, M.G.E.; McAlpine, C.A.; Rhodes, J.R. Assessing ecosystem service trade-offs and synergies: The need for a more mechanistic approach. Ambio 2019, 48, 1116–1128. [Google Scholar] [CrossRef]
- Song, F.; Su, F.; Mi, C.; Sun, D. Analysis of driving forces on wetland ecosystem services value change: A case in Northeast China. Sci. Total Environ. 2021, 751, 141778. [Google Scholar] [CrossRef]
- Hong, Y.Y.; Ding, Q.; Zhou, T.; Kong, L.Q.; Wang, M.Y.; Zhang, J.Y.; Yang, W. Ecosystem service bundle index construction, spatiotemporal dynamic display, and driving force analysis. Ecosyst. Health Sust. 2020, 6, 1843972. [Google Scholar] [CrossRef]
- Long, X.R.; Lin, H.; An, X.X.; Chen, S.D.; Qi, S.Y.; Zhang, M. Evaluation and analysis of ecosystem service value based on land use/cover change in Dongting Lake wetland. Ecol. Ind. 2022, 136, 108619. [Google Scholar] [CrossRef]
- Wang, Y.X. A Positive Study on the Grassland Degradation and Its Determinants in Inner Mongolia. Ph.D. Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2010. (In Chinese). [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Li, S.M. Studies on the Flow Processes of Typical Ecosystem Services Based on Observation Network. Ph.D. Thesis, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, China, 2010. (In Chinese). [Google Scholar]
- Pei, S. Flow Processes of Typical Ecosystem Services and Their Value Based on Data from Field Stations. Ph.D. Thesis, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, China, 2013. (In Chinese). [Google Scholar]
- Yin, S.; Zhu, Z.; Wang, L.; Liu, B.; Xie, Y.; Wang, G.; Li, Y. Regional soil erosion assessment based on a sample survey and geostatistics. Hydrol. Earth Syst. Sci. 2018, 22, 1695–1712. [Google Scholar] [CrossRef] [Green Version]
- Ausseil, A.-G.E.; Dymond, J.R.; Kirschbaum, M.U.F.; Andrew, R.M.; Parfitt, R.L. Assessment of multiple ecosystem services in New Zealand at the catchment scale. Environ. Modell. Softw. 2013, 43, 36–48. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, F.; Zhang, Y. Spatio-temporal distribution characteristics and influencing factors of drought in Anhui province based on CWSI. J. Nat. Resour. 2018, 33, 853–866. [Google Scholar]
- Peng, J.; Chen, S.; Lü, H.; Liu, Y.; Wu, J. Spatiotemporal patterns of remotely sensed PM2.5 concentration in China from 1999 to 2011. Remote Sens. Environ. 2016, 174, 109–121. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. I, II and III. Proc. K. Nederl. Akad. Wetensch. 1950, 53, 386–392, 521–525, 1397–1412. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hoaglin, D.C.; Mosteller, F.; Tukey, J.W. Understanding Robust and Exploratory Data Analysis; Wiley: New York, NY, USA, 2000; pp. 169–181. [Google Scholar]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann-Kendall and Spearman’s Rho Tests for detecting monotonic trends in hydrological Series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Mann, H.B. Noparametric Tests Against Trend. Econometrica 1945, 3, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin: London, UK, 1975. [Google Scholar]
- Hurst, H.E. Long term storage capacity of reservoirs. Trans. Am. Soc. Civil. Eng. 1951, 116, 770–799. [Google Scholar] [CrossRef]
- Smadi, M.M.; Zghoul, A. A sudden change in rainfall characteristics in Amman, Jordan during the mid 1950s. Am. J. Environ. Sci. 2006, 2, 84–91. [Google Scholar] [CrossRef]
- Tong, S.Q.; Lai, Q.; Zhang, J.Q.; Bao, Y.H.; Lusi, A.; Ma, Q.Y.; Li, X.Q.; Zhang, F. Spatiotemporal drought variability on the Mongolian plateau from 1980–2014 based on the SPEI-PM, intensity analysis and Hurst exponent. Sci. Total Environ. 2018, 615, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhang, J.; Zhou, J.J.; Zhou, L.; Li, C.H. Monitoring drought dynamics in China using optimized meteorological drought index (OMDI) based on remote sensing data sets. J. Environ. Manag. 2021, 292, 112733. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.J.; Liu, Y.X.; Yang, X.J. A resilience-based analysis on the spatial heterogeneity of vegetation restoration and its affecting factors in the construction of eco-cities: A case study of Shangluo, Shaanxi. Acta Ecol. Sin. 2015, 35, 4377–4389. (In Chinese) [Google Scholar]
- Fang, L.; Wang, W.J.; Jiang, W.G.; Chen, M.; Wang, Y.; Jia, K.; Li, Y.S. Spatio-temporal variations of vegetation cover and its responses to climate change in the Heilongjiang basin of China from 2000 to 2014. Sci. Geogr. Sin. 2017, 37, 1745–1754. (In Chinese) [Google Scholar]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geograph. Sin. 2017, 72, 116–134. (In Chinese) [Google Scholar]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Liang, L. Spatio-temporal evolution of ozone pollution and its influencing factors in the Beijing-Tianjin-Hebei Urban Agglomeration. Environ. Pollut. 2020, 256, 113419. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, J.F.; Li, X.H.; Ren, D.; Zhu, J. Geographical detector-based risk assessment of the under-five mortality in the 2008 Wenchuan Earthquake, China. PLoS ONE 2011, 6, e214276. [Google Scholar] [CrossRef]
- Dai, H.Y.; Yang, L.P.; Wu, Y.J.; Chao, L.M.; Li, D. Two kinds of dry and wet climate type evaluation method application in the Inner Mongolia Region. Arid Land Geogr. 2015, 38, 1095–1102. (In Chinese) [Google Scholar]
- Loveland, T.; Reed, B.; Brown, J.; Ohlen, D.; Zhu, Z.; Yang, L.; Merchant, J. Development of a global land characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Rem. Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Peng, S. 1-km Monthly Precipitation Dataset for China (1901–2020); National Tibetan Plateau Data Center: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Peng, S. 1-km Monthly Mean Temperature Dataset for China (1901–2020); National Tibetan Plateau Data Center: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Wang, B.; Yang, T.B. Value evaluation and driving force analysis of ecosystem ser-vices in Yinchuan City from 1980 to 2018. Arid. Land Geogr. 2021, 44, 552–564. (In Chinese) [Google Scholar]
- Kang, L.; Jia, Y.; Zhang, S.L. Spatiotemporal distribution and driving forces of ecological service value in the Chinese section of the “Silk Road Economic Belt”. Ecol. Indic. 2022, 141, 109074. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.F.; Ge, Y.; Xu, C.D. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. Gisci. Remote. Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Wong, C.P.; Jiang, B.; Kinzig, A.P.; Lee, K.N.; Ouyang, Z.; Knops, J. Linking ecosystem characteristics to final ecosystem services for public policy. Ecol. Lett. 2015, 18, 108–118. [Google Scholar] [CrossRef]
- Pedro, L.; María, O.; Gisel, B. Spatial complexity and ecosystem services in rural landscapes. Agric. Ecosyst. Environ. 2012, 154, 56–67. [Google Scholar]
- Su, C.H.; Fu, B.J. Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes. Glob. Planet. Chang. 2013, 101, 119–128. [Google Scholar] [CrossRef]
- Sun, M.H.; Niu, W.H.; Zhang, B.B.; Geng, Q.L.; Yu, Q. Spatial-temporal evolution and responses of ecosystem service value under land use change in the Yellow River Basin: A case study of Shaanxi-Gansu-Ningxia region. Chin. J. Appl. Ecol. 2021, 32, 3913–3922. (In Chinese) [Google Scholar]
- Zuo, L.Y.; Gao, J.B.; Du, F.J. The pairwise interaction of environmental factors for ecosystem services relationships in karst ecological priority protection and key restora-tion areas. Ecol. Indic. 2021, 131, 108125. [Google Scholar] [CrossRef]
- Sun, W.Y.; Ding, X.T.; Su, J.B.; Mu, X.M.; Zhang, Y.Q.; Gao, P.; Zhao, G.J. Land use and cover changes on the Loess Plateau: A comparison of six global or national land use and cover datasets. Land Use Policy 2022, 119, 106165. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Liu, H.X.; Zhang, A.B.; Cui, X.M.; Zhao, A.Z. Spatiotemporal variations and its influencing factors of grassland net primary productivity in Inner Mongolia, China during the period 2000–2014. J. Arid. Environ. 2019, 165, 106–118. [Google Scholar] [CrossRef]
Primary Classification | Secondary Classification | Grassland Ecosystem Classification | |
---|---|---|---|
Prairie | Meadow | ||
Provisioning services | Food supply | 0.10 | 0.22 |
Raw material supply | 0.14 | 0.33 | |
Water supply | 0.08 | 0.18 | |
Regulating services | Air quality regulation | 0.51 | 1.14 |
Climate regulation | 1.34 | 3.02 | |
Waste treatment | 0.44 | 1.00 | |
Regulation of water flows | 0.98 | 2.21 | |
Erosion prevention | 0.62 | 1.39 | |
Maintenance of soil fertility | 0.05 | 0.11 | |
Habitat services | Habitat services | 0.56 | 1.27 |
Cultural services | Cultural and amenity services | 0.25 | 0.56 |
Primary Classification | Secondary Classification | Regulation Factors |
---|---|---|
Provisioning services | Food production | NPP |
Raw material supply | ||
Water supply | Precipitation | |
Regulating services | Air quality regulation | NPP |
Climate regulation | ||
Waste treatment | ||
Regulation of water flows | Precipitation | |
Erosion prevention | Erosion prevention | |
Maintenance of soil fertility | NPP | |
Habitat services | Habitat services | |
Cultural services | Cultural and amenity services |
Interaction Mode | Criterion |
---|---|
Weaken, nonlinear | q(X1∩X2) < Min(q(X1), q(X2)) 1 |
Weaken, univariate | Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2)) |
Enhance, bivariate | q(X1∩X2) > Max(q(X1), q(X2)) |
Independent | q(X1∩X2) = q(X1) + q(X2) |
Enhance, nonlinear | q(X1∩X2) > q(X1) + q(X2) |
ESV (Million CNY/km2) | Area Ratio (%) |
---|---|
<1 | 10.73 |
1–2 | 42.74 |
2–3 | 32.72 |
3–4 | 9.92 |
4–5 | 2.43 |
>5 | 1.46 |
The Volatility of ESV | Area Ratio (%) |
---|---|
Low volatility (CV < 0.1) | 6.72 |
Middle low volatility (0.1 ≤ CV < 0.15) | 34.30 |
Medium volatility (0.15 ≤ CV < 0.2) | 44.90 |
Middle high volatility (0.2 ≤ CV < 0.25) | 12.52 |
High volatility (CV ≥ 0.25) | 1.56 |
Variation Trends of ESV | Area Ratio (%) |
---|---|
Decreased significantly (β < 0, || > 1.96) | 2.97 |
Decreased slightly (β < 0, || ≤ 1.96) | 40.59 |
Increased slightly (β > 0, || ≤ 1.96) | 45.51 |
Increased significantly (β > 0, || > 1.96) | 10.93 |
ID | Future Trends of ESV | Area Ratio (%) | Change in the Future | ||
---|---|---|---|---|---|
1 | Medium anti-sustainability | decreased significantly | 0.42 | 24.89 | From decrease to increase |
2 | decreased slightly | 11.86 | |||
3 | increased slightly | 11.04 | From increase to decrease | ||
4 | increased significantly | 1.57 | |||
5 | Weak anti-sustainability | decreased significantly | 1.94 | 66.46 | From decrease to increase |
6 | decreased slightly | 25.30 | |||
7 | increased slightly | 30.73 | From increase to decrease | ||
8 | increased significantly | 8.49 | |||
9 | Weak sustainability | reduced significantly | 0.62 | 8.65 | Continuously decrease |
10 | reduced slightly | 3.43 | |||
11 | increased slightly | 3.73 | Continuously increase | ||
12 | increased significantly | 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, W.; Shen, B.; Xin, X.; Gu, Q.; Guo, T. Spatiotemporal Variations of Grassland Ecosystem Service Value and Its Influencing Factors in Inner Mongolia, China. Agronomy 2022, 12, 2090. https://doi.org/10.3390/agronomy12092090
Cheng W, Shen B, Xin X, Gu Q, Guo T. Spatiotemporal Variations of Grassland Ecosystem Service Value and Its Influencing Factors in Inner Mongolia, China. Agronomy. 2022; 12(9):2090. https://doi.org/10.3390/agronomy12092090
Chicago/Turabian StyleCheng, Wei, Beibei Shen, Xiaoping Xin, Qian Gu, and Tao Guo. 2022. "Spatiotemporal Variations of Grassland Ecosystem Service Value and Its Influencing Factors in Inner Mongolia, China" Agronomy 12, no. 9: 2090. https://doi.org/10.3390/agronomy12092090
APA StyleCheng, W., Shen, B., Xin, X., Gu, Q., & Guo, T. (2022). Spatiotemporal Variations of Grassland Ecosystem Service Value and Its Influencing Factors in Inner Mongolia, China. Agronomy, 12(9), 2090. https://doi.org/10.3390/agronomy12092090