Interaction of Biochar with Chemical, Green and Biological Nitrogen Fertilizers on Nitrogen Use Efficiency Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedure
2.2. Sampling and Measurements
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laskowski, W.; Górska-Warsewicz, H.; Rejman, K.; Czeczotko, M.; Zwolińska, J. How Important are Cereals and Cereal Products in the Average Polish Diet? Nutrients 2019, 11, 679. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Singh, P.; Kumar, S. Responses of Soil Carbon Pools, Enzymatic Activity, and Crop Yields to Nitrogen and Straw Incorporation in a Rice-Wheat Cropping System in North-Western India. Front. Sustain. Food Syst. 2020, 4, 532704. [Google Scholar] [CrossRef]
- Zuluaga, D.L.; Sonnante, G. The Use of Nitrogen and Its Regulation in Cereals: Structural Genes, Transcription Factors, and the Role of miRNAs. Plants 2019, 8, 294. [Google Scholar] [CrossRef] [PubMed]
- Yeboah, S.; Jun, W.; Liqun, C.; Oteng-Darko, P.; Narteh Tetteh, E.; Renzhi, Z. Nitrous oxide, methane emissions and grain yield in rainfed wheat grown under nitrogen enriched biochar and straw in a semiarid environment. PeerJ 2021, 9, e11937. [Google Scholar] [CrossRef]
- Powlson, D.S.; Dawson, C.J. Use of ammonium sulphate as a sulphur fertilizer: Implications for ammonia volatilization. Soil Use Manag. 2022, 38, 622–634. [Google Scholar] [CrossRef]
- Lin, W.; Lin, M.; Zhou, H.; Wu, H.; Li, Z.; Lin, W. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE 2019, 14, e0217018. [Google Scholar] [CrossRef]
- Raza, M.H.; Abid, M.; Faisal, M.; Yan, T.; Akhtar, S.; Adnan, K.M.M. Environmental and Health Impacts of Crop Residue Burning: Scope of Sustainable Crop Residue Management Practices. Int. J. Environ. Res. Public Health 2022, 19, 4753. [Google Scholar] [CrossRef] [PubMed]
- Kebede, E. Contribution, Utilization, and Improvement of Legumes-Driven Biological Nitrogen Fixation in Agricultural Systems. Front. Sustain. Food Syst. 2021, 5, 767998. [Google Scholar] [CrossRef]
- Pott, L.P.; Amado, T.J.C.; Schwalbert, R.A.; Gebert, F.H.; Reimche, G.B.; Pes, L.Z.; Ciampitti, I.A. Effect of hairy vetch cover crop on maize nitrogen supply and productivity at varying yield environments in Southern Brazil. Sci. Total Environ. 2021, 759, 144313. [Google Scholar] [CrossRef]
- Hu, A.; Huang, R.; Liu, G.; Huang, D.; Huan, H. Effects of Green Manure Combined with Phosphate Fertilizer on Movement of Soil Organic Carbon Fractions in Tropical Sown Pasture. Agronomy 2022, 12, 1101. [Google Scholar] [CrossRef]
- Kumar, S.; Diksha, S.; Sindhu, S.; Kumar, R. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Curr. Res. Microb. Sci. 2022, 3, 100094. [Google Scholar] [CrossRef]
- Yousaf, M.; Li, X.; Zhang, Z.; Ren, T.; Cong, R.; Ata-Ul-Karim, S.T.; Fahad, S.; Shah, A.N.; Lu, J. Nitrogen Fertilizer Management for Enhancing Crop Productivity and Nitrogen Use Efficiency in a Rice-Oilseed Rape Rotation System in China. Front. Plant Sci. 2016, 7, 1496. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Shah, F.; Zhou, C. Combining Rice Straw Biochar With Leguminous Cover Crop as Green Manure and Mineral Fertilizer Enhances Soil Microbial Biomass and Rice Yield in South China. Front. Plant Sci. 2022, 13, 778738. [Google Scholar] [CrossRef] [PubMed]
- Heidarzadeh, A.; Modarres-Sanavy, S.A.M.; Mokhtassi-Bidgoli, A. Changes in Yield and Essential Oil Compositions of Dracocephalum kotschyi Boiss in Response to Azocompost, Vermicompost, Nitroxin, and Urea Under Water Deficit Stress. J. Soil Sci. Plant Nutr. 2022, 22, 896–913. [Google Scholar] [CrossRef]
- Yousefzadeh, S.; Modarres-Sanavy, S.A.M.; Sefidkon, F.; Asgarzadeh, A.; Ghalavand, A.; Sadat-Asilan, K. Effects of Azocompost and urea on the herbage yield and contents and compositions of essential oils from two genotypes of dragonhead (Dracocephalum moldavica L.) in two regions of Iran. Food Chem. 2013, 138, 1407–1413. [Google Scholar] [CrossRef]
- Oni, B.A.; Oziegbe, O.; Olawole, O.O. Significance of biochar application to the environment and economy. Ann. Agric. Sci. 2019, 64, 222–236. [Google Scholar] [CrossRef]
- Asadi, H.; Ghorbani, M.; Rezaei-Rashti, M.; Abrishamkesh, S.; Amirahmadi, E.; Chengrong, C.; Gorji, M. Application of Rice Husk Biochar for Achieving Sustainable Agriculture and Environment. Rice Sci. 2021, 28, 325–343. [Google Scholar] [CrossRef]
- Ghorbani, M.; Konvalina, P.; Neugschwandtner, R.W.; Kopecký, M.; Amirahmadi, E.; Moudrý, J.; Menšík, L. Preliminary Findings on Cadmium Bioaccumulation and Photosynthesis in Rice (Oryza sativa L.) and Maize (Zea mays L.) Using Biochar Made from C3- and C4-Originated Straw. Plants 2022, 11, 1424. [Google Scholar] [CrossRef]
- Ghorbani, M.; Amirahmadi, E.; Zamanian, K. In-situ biochar production associated with paddies: Direct involvement of farmers in greenhouse gases reduction policies besides increasing nutrients availability and rice production. L. Degrad. Dev. 2021, 32, 3893–3904. [Google Scholar] [CrossRef]
- Amirahmadi, E.; Mohammad Hojjati, S.; Kammann, C.; Ghorbani, M.; Biparva, P. The Potential Effectiveness of Biochar Application to Reduce Soil Cd Bioavailability and Encourage Oak Seedling Growth. Appl. Sci. 2020, 10, 3410. [Google Scholar] [CrossRef]
- Gao, Y.; Shao, G.; Yang, Z.; Zhang, K.; Lu, J.; Wang, Z.; Wu, S.; Xu, D. Influences of soil and biochar properties and amount of biochar and fertilizer on the performance of biochar in improving plant photosynthetic rate: A meta-analysis. Eur. J. Agron. 2021, 130, 126345. [Google Scholar] [CrossRef]
- Liu, M.; Linna, C.; Ma, S.; Ma, Q.; Guo, J.; Wang, F.; Wang, L. Effects of Biochar With Inorganic and Organic Fertilizers on Agronomic Traits and Nutrient Absorption of Soybean and Fertility and Microbes in Purple Soil. Front. Plant Sci. 2022, 13, 871021. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Han, X.; Li, N.; Chen, K.; Yang, J.; Zhan, X.; Luo, P.; Liu, N. Combined application of biochar with fertilizer promotes nitrogen uptake in maize by increasing nitrogen retention in soil. Biochar 2021, 3, 367–379. [Google Scholar] [CrossRef]
- Liao, J.; Liu, X.; Hu, A.; Song, H.; Chen, X.; Zhang, Z. Effects of biochar-based controlled release nitrogen fertilizer on nitrogen-use efficiency of oilseed rape (Brassica napus L.). Sci. Rep. 2020, 10, 11063. [Google Scholar] [CrossRef]
- Ullah, S.; Liang, H.; Ali, I.; Zhao, Q.; Iqbal, A.; Wei, S.; Shah, T.; Yan, B.; Jiang, L. Biochar coupled with contrasting nitrogen sources mediated changes in carbon and nitrogen pools, microbial and enzymatic activity in paddy soil. J. Saudi Chem. Soc. 2020, 24, 835–849. [Google Scholar] [CrossRef]
- Hussain, S.; Sharma, V.; Arya, V.M.; Sharma, K.R.; Rao, C.S. Total organic and inorganic carbon in soils under different land use/land cover systems in the foothill Himalayas. Catena 2019, 182, 104104. [Google Scholar] [CrossRef]
- Wojciechowski, K.L.; Barbano, D.M. Modification of the Kjeldahl noncasein nitrogen method to include bovine milk concentrates and milks from other species. J. Dairy Sci. 2015, 98, 7510–7526. [Google Scholar] [CrossRef]
- Tournassat, C.; Greneche, J.-M.; Tisserand, D.; Charlet, L. The titration of clay minerals. J. Colloid Interface Sci. 2004, 273, 224–233. [Google Scholar] [CrossRef]
- ZADOKS, J.C.; CHANG, T.T.; KONZAK, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Bohman, B.J.; Rosen, C.J.; Mulla, D.J. Relating nitrogen use efficiency to nitrogen nutrition index for evaluation of agronomic and environmental outcomes in potato. F. Crop. Res. 2021, 262, 108041. [Google Scholar] [CrossRef]
- Szczepaniak, W. Evaluating Nitrogen Use Efficiency (NUE) Indices on the Background of Mineral Status of the Seed Crop at Maturity: A Case Study of Maize. Polish J. Environ. Stud. 2016, 25, 2129–2138. [Google Scholar] [CrossRef]
- Hu, D.; Sun, Z.; Li, T.; Yan, H.; Zhang, H. Nitrogen Nutrition Index and Its Relationship with N Use Efficiency, Tuber Yield, Radiation Use Efficiency, and Leaf Parameters in Potatoes. J. Integr. Agric. 2014, 13, 1008–1016. [Google Scholar] [CrossRef]
- Baghaie, A.H.; Aghilizefreei, A. Iron Enriched Green Manure Can Increase Wheat Fe Concentration in Pb-polluted Soil in the Presence of Piriformospora Indica (P.indica). Soil Sediment Contam. An Int. J. 2020, 29, 721–743. [Google Scholar] [CrossRef]
- Aasfar, A.; Bargaz, A.; Yaakoubi, K.; Hilali, A.; Bennis, I.; Zeroual, Y.; Meftah Kadmiri, I. Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability. Front. Microbiol. 2021, 12, 628379. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, S.S.; Naresh, R.K.; Mandal, A.; Singh, R.; Dhaliwal, M.K. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environ. Sustain. Indic. 2019, 1–2, 100007. [Google Scholar] [CrossRef]
- Yan, S.; Niu, Z.; Yan, H.; Yun, F.; Peng, G.; Yang, Y.; Liu, G. Biochar application significantly affects the N pool and microbial community structure in purple and paddy soils. PeerJ 2019, 7, e7576. [Google Scholar] [CrossRef] [PubMed]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol. Reports 2020, 28, e00570. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Ding, Y.; Yin, X.; Raza, S.; Tong, Y. Optimising nitrogen fertilisation: A key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008–2014). F. Crop. Res. 2017, 206, 1–10. [Google Scholar] [CrossRef]
- Mahmud, K.; Panday, D.; Mergoum, A.; Missaoui, A. Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem. Sustainability 2021, 13, 2400. [Google Scholar] [CrossRef]
- Guo, S.; Jiang, R.; Qu, H.; Wang, Y.; Misselbrook, T.; Gunina, A.; Kuzyakov, Y. Fate and transport of urea-N in a rain-fed ridge-furrow crop system with plastic mulch. Soil Tillage Res. 2019, 186, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Giordano, M.; Petropoulos, S.A.; Rouphael, Y. The Fate of Nitrogen from Soil to Plants: Influence of Agricultural Practices in Modern Agriculture. Agriculture 2021, 11, 944. [Google Scholar] [CrossRef]
- Longepierre, M.; Feola Conz, R.; Barthel, M.; Bru, D.; Philippot, L.; Six, J.; Hartmann, M. Mixed Effects of Soil Compaction on the Nitrogen Cycle Under Pea and Wheat. Front. Microbiol. 2022, 12, 822487. [Google Scholar] [CrossRef] [PubMed]
- Musyoka, M.W.; Adamtey, N.; Muriuki, A.W.; Cadisch, G. Effect of organic and conventional farming systems on nitrogen use efficiency of potato, maize and vegetables in the Central highlands of Kenya. Eur. J. Agron. 2017, 86, 24–36. [Google Scholar] [CrossRef]
- Xu, X.; He, C.; Yuan, X.; Zhang, Q.; Wang, S.; Wang, B.; Guo, X.; Zhang, L. Rice straw biochar mitigated more N2O emissions from fertilized paddy soil with higher water content than that derived from ex situ biowaste. Environ. Pollut. 2020, 263, 114477. [Google Scholar] [CrossRef]
- Abbruzzini, T.F.; Davies, C.A.; Toledo, F.H.; Cerri, C.E.P. Dynamic biochar effects on nitrogen use efficiency, crop yield and soil nitrous oxide emissions during a tropical wheat-growing season. J. Environ. Manage. 2019, 252, 109638. [Google Scholar] [CrossRef]
- Zhao, C.; Huang, H.; Qian, Z.; Jiang, H.; Liu, G.; Xu, K.; Hu, Y.; Dai, Q.; Huo, Z. Effect of side deep placement of nitrogen on yield and nitrogen use efficiency of single season late japonica rice. J. Integr. Agric. 2021, 20, 1487–1502. [Google Scholar] [CrossRef]
- Koppensteiner, L.J.; Obermayer-Böhm, K.; Hall, R.M.; Kaul, H.-P.; Wagentristl, H.; Neugschwandtner, R.W. Autumn sowing of facultative triticale results in higher biomass production and nitrogen uptake compared to spring sowing. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2021, 71, 806–814. [Google Scholar] [CrossRef]
- Mauceri, A.; Bassolino, L.; Lupini, A.; Badeck, F.; Rizza, F.; Schiavi, M.; Toppino, L.; Abenavoli, M.R.; Rotino, G.L.; Sunseri, F. Genetic variation in eggplant for Nitrogen Use Efficiency under contrasting NO3-supply. J. Integr. Plant Biol. 2020, 62, 487–508. [Google Scholar] [CrossRef]
- Galindo, F.S.; Pagliari, P.H.; Fernandes, G.C.; Rodrigues, W.L.; Boleta, E.H.M.; Jalal, A.; Céu, E.G.O.; de Lima, B.H.; Lavres, J.; Teixeira Filho, M.C.M. Improving Sustainable Field-Grown Wheat Production With Azospirillum brasilense Under Tropical Conditions: A Potential Tool for Improving Nitrogen Management. Front. Environ. Sci. 2022, 10, 821628. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Saberioon, M.; Borůvka, L.; Wayayok, A.; Mohd Soom, M.A. Leaf chlorophyll and nitrogen dynamics and their relationship to lowland rice yield for site-specific paddy management. Inf. Process. Agric. 2017, 4, 259–268. [Google Scholar] [CrossRef]
- Shetty, R.; Prakash, N.B. Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Sci. Rep. 2020, 10, 12249. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.I.; Fawzy, S.; Farghali, M.; El-Azazy, M.; Elgarahy, A.M.; Fahim, R.A.; Maksoud, M.I.A.A.; Ajlan, A.A.; Yousry, M.; Saleem, Y.; et al. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: A review. Environ. Chem. Lett. 2022, 20, 2385–2485. [Google Scholar] [CrossRef]
- Meng, Q.; Zhao, S.; Geng, R.; Zhao, Y.; Wang, Y.; Yu, F.; Zhang, J.; Ma, X. Does biochar application enhance soil salinization risk in black soil of northeast China (a laboratory incubation experiment)? Arch. Agron. Soil Sci. 2021, 67, 1566–1577. [Google Scholar] [CrossRef]
- Ali, I.; Ullah, S.; Iqbal, A.; Quan, Z.; Liang, H.; Ahmad, S.; Muhammad, I.; Amanullah; Imran; Guo, Z.; et al. Combined application of biochar and nitrogen fertilizer promotes the activity of starch metabolism enzymes and the expression of related genes in rice in a dual cropping system. BMC Plant Biol. 2021, 21, 600. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.; Li, Y.; Mao, L.; Xu, C.; Lin, W.; Ahmed, S.; Ahmed, W. Biochar Effects on Mineral Nitrogen Leaching, Moisture Content, and Evapotranspiration after 15N Urea Fertilization for Vegetable Crop. Agronomy 2019, 9, 331. [Google Scholar] [CrossRef]
- Ghorbani, M.; Asadi, H.; Abrishamkesh, S. Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. Int. Soil Water Conserv. Res. 2019, 7, 258–265. [Google Scholar] [CrossRef]
- Fidel, R.B.; Laird, D.A.; Spokas, K.A. Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent. Sci. Rep. 2018, 8, 17627. [Google Scholar] [CrossRef] [PubMed]
- Pratiwi, E.P.A.; Hillary, A.K.; Fukuda, T.; Shinogi, Y. The effects of rice husk char on ammonium, nitrate and phosphate retention and leaching in loamy soil. Geoderma 2016, 277, 61–68. [Google Scholar] [CrossRef]
pH | EC (ds cm−1) | CEC (cmolc kg−1) | Organic Carbon (%) | Available P (mg kg−1) | Available K (mg kg−1) | Total N (%) | C/N Ratio | SSA (m2 g−1) | Ash (%) | |
---|---|---|---|---|---|---|---|---|---|---|
Soil | 5.11 | 0.16 | 23.2 | 2.61 | 2.15 | 3.23 | 1.17 | - | - | - |
Azocompost | 6.23 | 0.32 | - | 11.8 | 25.6 | 184.1 | 5.25 | 1.24 | - | - |
Legume residues | 6.81 | 0.51 | - | 17.6 | 178.4 | 242.4 | 4.50 | 3.91 | - | - |
Biochar | 9.37 | 1.21 | 165.1 | 42.6 | 9.02 | 25.53 | 1.68 | 25.3 | 129 | 17.5 |
Nitrogen Index | Formula | Reference |
---|---|---|
Nitrogen use efficiency (g g−1) | [30] | |
Nitrogen uptake efficiency (g g−1) | [30] | |
Nitrogen utilization efficiency (g g−1) | [31] | |
Nitrogen physiological efficiency (g g−1) | [31] | |
Nitrogen agronomic efficiency (g g−1) | [30] | |
Nitrogen harvest index (%) | [32] | |
Nitrogen recovery efficiency (%) | [32] | |
Soil nitrogen dependent rate (%) | [31] |
Treatments | N Supply (g pot−1) | Yield (g pot−1) | N Yield (g pot−1) | |||
---|---|---|---|---|---|---|
Fertilizer | Supply 1 | Grain | Shoot | Grain | Shoot | |
Control | - | 1.17 c | 15.63 e | 58.90 e | 0.16 e | 0.21 e |
U | 0.53 b | 1.70 b | 54.07 c | 120.4 c | 0.87 c | 1.07 c |
A | 0.51 b | 1.68 b | 52.23 c | 114.9 c | 0.78 c | 1.02 c |
L | 0.54 b | 1.71 b | 58.27 b | 114.7 c | 0.99 c | 1.27 c |
B | 0.41 b | 1.58 b | 35.83 d | 79.50 d | 0.47 d | 0.61 d |
UB | 0.94 a | 2.11 a | 68.37 a | 141.9 a | 1.37 ab | 1.57 a |
AB | 0.91 a | 2.08 a | 56.13 b | 119.1 c | 1.23 b | 1.45 b |
LB | 0.95 a | 2.12 a | 64.40 ab | 131.6 b | 1.55 a | 1.70 a |
Treatments | NUE | NUpE | NUtE | NPE | NAE | NHI | NRE | SNDR |
---|---|---|---|---|---|---|---|---|
(g g−1) | (%) | |||||||
Control | 13.65 d | 0.18 d | 76.00 a | - | - | 76.19 d | - | - |
U | 31.78 b | 0.63 b | 50.63 c | 44.41 b | 71.70 b | 81.31 c | 50.42 d | 19.67 b |
A | 31.15 b | 0.61 b | 51.33 c | 44.92 b | 71.53 b | 76.47 cd | 48.15 d | 20.65 b |
L | 34.01 a | 0.74 a | 45.88 d | 39.91 c | 77.83 a | 77.95 cd | 61.85 b | 16.54 c |
B | 22.74 c | 0.39 c | 58.46 b | 49.32 a | 48.93 c | 77.04 d | 25.56 e | 34.28 a |
UB | 32.44 ab | 0.75 a | 43.50 d | 38.49 c | 55.90 c | 87.26 b | 64.61 b | 13.37 d |
AB | 26.95 c | 0.70 a | 38.64 e | 32.32 d | 43.99 d | 84.82 b | 59.66 c | 14.46 d |
LB | 30.38 b | 0.80 a | 37.92 e | 32.54 d | 51.01 c | 91.17 a | 70.22 a | 12.37 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghorbani, M.; Konvalina, P.; Neugschwandtner, R.W.; Kopecký, M.; Amirahmadi, E.; Bucur, D.; Walkiewicz, A. Interaction of Biochar with Chemical, Green and Biological Nitrogen Fertilizers on Nitrogen Use Efficiency Indices. Agronomy 2022, 12, 2106. https://doi.org/10.3390/agronomy12092106
Ghorbani M, Konvalina P, Neugschwandtner RW, Kopecký M, Amirahmadi E, Bucur D, Walkiewicz A. Interaction of Biochar with Chemical, Green and Biological Nitrogen Fertilizers on Nitrogen Use Efficiency Indices. Agronomy. 2022; 12(9):2106. https://doi.org/10.3390/agronomy12092106
Chicago/Turabian StyleGhorbani, Mohammad, Petr Konvalina, Reinhard W. Neugschwandtner, Marek Kopecký, Elnaz Amirahmadi, Daniel Bucur, and Anna Walkiewicz. 2022. "Interaction of Biochar with Chemical, Green and Biological Nitrogen Fertilizers on Nitrogen Use Efficiency Indices" Agronomy 12, no. 9: 2106. https://doi.org/10.3390/agronomy12092106
APA StyleGhorbani, M., Konvalina, P., Neugschwandtner, R. W., Kopecký, M., Amirahmadi, E., Bucur, D., & Walkiewicz, A. (2022). Interaction of Biochar with Chemical, Green and Biological Nitrogen Fertilizers on Nitrogen Use Efficiency Indices. Agronomy, 12(9), 2106. https://doi.org/10.3390/agronomy12092106