Enhancing Sustainability in Intensive Dill Cropping: Comparative Effects of Biobased Fertilizers vs. Inorganic Commodities on Greenhouse Gas Emissions, Crop Yield, and Soil Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Crop Management
2.3. Experimental Design and Treatment
2.4. Soil Analysis and Crop Measurements
2.5. GHG Measurements
2.6. Statistical Analyses
3. Results
3.1. Soil Properties
3.2. GHG Emissions
3.3. Dill Yield and Nutrient Content
4. Discussion
4.1. Effect of Fertilization Treatments on Soil Properties
4.2. Effect of Fertilization Treatments on GHG Emissions
4.3. Effect of Fertilization Treatments on Dill Yield and Nutrient Content
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jana, S.; Shekhawat, G.S. Anethum graveolens: An Indian traditional medicinal herb and spice. Pharmacogn. Rev. 2010, 4, 179–184. [Google Scholar]
- Bailer, J.; Aichinger, T.; Hackl, G.; Hueber, K.D.; Dachler, M. Essential oil content and composition in commercially available dill cultivars in comparison to caraway. Ind. Crops Prod. 2001, 14, 229–239. [Google Scholar] [CrossRef]
- Cano Ortiz, A.; Martínez Lombardo, M.C. Plantas medicinales con alcaloides en la provincia de Jaén. Boletín Del Inst. De Estud. Giennenses 2009, 200, 125–163. [Google Scholar]
- Carrubba, A. Sustainable Fertilization in Medicinal and Aromatic Plants. In Medicinal and Aromatic Plants of the World; Máthé, Á., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 1. [Google Scholar]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Tot. Environ. 2022, 805, 150106. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Anthropogenic influences on world soils and implications to global food security. Adv. Agron. 2007, 93, 69–93. [Google Scholar]
- Robertson, G.; Paul, E.; Harwood, R. Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science 2000, 80, 1922–1925. [Google Scholar] [CrossRef] [PubMed]
- Ashagrie, Y.; Zech, W.; Guggenberger, G.; Mamo, T. Soil aggregation, and total and particulate organic matter following conversion of native forests to continuous cultivation in Ethiopia. Soil Till. Res. 2007, 94, 101–108. [Google Scholar] [CrossRef]
- Pardo, G.; del Prado, A.; Martínez-Mena, M.; Bustamante, M.A.; Rodríguez Martín, J.A.; Alvaro-Fuentes, J.; Moral, R. Intensive orchard and horticulture systems in Spanish Mediterranean coastal areas: Is there a real possibility to contribute to C sequestration? Agric. Ecosyst. Environ. 2017, 238, 153–167. [Google Scholar] [CrossRef]
- Marín-Martínez, A.; Sanz-Cobeña, A.; Bustamante, M.A.; Agulló, E.; Paredes, C. Effect of Organic Amendment Addition on Soil Properties, Greenhouse Gas Emissions and Grape Yield in Semi-Arid Vineyard Agroecosystems. Agronomy 2021, 11, 1477. [Google Scholar] [CrossRef]
- Latini, A.; Giagnacovo, G.; Campiotti, C.A.; Bibbiani, C.; Mariani, S. A Narrative Review of the Facts and Perspectives on Agricultural Fertilization in Europe, with a Focus on Italy. Horticulturae 2021, 7, 158. [Google Scholar] [CrossRef]
- Orden, L.; Iocoli, G.A.; Bustamante, M.Á.; Moral, R.; Rodríguez, R.A. Nutrient Release Dynamics in Argentinean Pampean Soils Amended with Composts under Laboratory Conditions. Agronomy 2022, 12, 795. [Google Scholar] [CrossRef]
- Razza, F.; D’Avino, L.; L’Abate, G.; Lazzeri, L. The role of compost in bio-waste management and circular economy. In Designing Sustainable Technologies, Products and Policies; Benetto, E., Gericke, K., Guiton, M., Eds.; Springer: Cham, Switzerland, 2018; pp. 133–143. [Google Scholar]
- Sanz-Cobena, A.; García-Marco, S.; Quemada, M.; Gabriel, J.L.; Almendros, P.; Vallejo, A. Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? Sci. Total Environ. 2014, 466–467, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Cobena, A.; Lassaletta, L.; Aguilera, E.; del Prado, A.; Garnier, J.; Billen, G.; Iglesias, A.; Sánchez, B.; Guardia, G.; Abalos, D.; et al. Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agric. Ecosyst. Environ. 2017, 238, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, B.; Orden, L.; Varela, P.; Garay, M.; Iocoli, G.A.; Montenegro, A.; Sáez-Tovar, J.; Bustamante, M.Á.; Juliarena, M.P.; Moral, R. Is Dairy Effluent an Alternative for Maize Crop Fertigation in Semiarid Regions? An Approach to Agronomic and Environmental Effects. Animals 2022, 12, 2025. [Google Scholar] [CrossRef] [PubMed]
- Cayuela, M.L.; Aguilera, E.; Sanz-Cobena, A.; Adams, D.C.; Abalos, D.; Barton, L.; Ryalsh, R.; Silver, W.L.; Alfaro, M.A.; Pappa, V.A.; et al. Direct nitrous oxide emissions in Mediterranean climate cropping systems: Emission factors based on a meta-analysis of available measurement data. Agric. Ecosyst. Environ. 2017, 238, 25–35. [Google Scholar] [CrossRef]
- Vico, A.; Sáez, J.A.; Pérez-Murcia, M.D.; Martinez-Tomé, J.; Andreu-Rodríguez, J.; Agulló, E.; Bustamante, M.A.; Sanz-Cobena, A.; Moral, R. Production of spinach in intensive Mediterranean horticultural systems can be sustained by organic-based fertilizers without yield penalties and with low environmental impacts. Agric. Syst. 2020, 178, 102765. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. In World Soil Resources Reports Nr. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water quality for agriculture. In FAO Irrigation and Drainage Paper; 29 Rev 1; FAO: Rome, Italy, 1994. [Google Scholar]
- Paredes, C.; Pérez-Murcia, M.D.; Pérez-Espinosa, A.; Bustamante, M.A.; Moreno-Caselles, J. Recycling of two-phase olive-mill cake “Alperujo” by co-composting with animal manures. Commun. Soil Sci. Plant Anal. 2015, 46, 238–247. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Paredes, C.; Moral, R.; Moreno-Caselles, J.; Perez-Murcia, M.D.; Perez- Espinosa, A.; Bernal, M.P. Co-composting of distillery and winery wastes with sewage sludge. Water Sci. Technol. 2007, 56, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Yeomans, J.; Bremner, J.M. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil Sci. Plant Anal. 1989, 19, 1467–1476. [Google Scholar] [CrossRef]
- Olsen, S.; Cole, C.; Watanabe, F.; Dean, L. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. In USDA Circular Nr 939; US Gov. Print. Office: Washington, DC, USA, 1954. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010; p. 548. [Google Scholar]
- Iammarino, M.; Di Taranto, A.; Cristino, M. Monitoring of nitrites and nitrates levels in leafy vegetables (spinach and lettuce): A contribution to risk assessment. J. Sci. Food Agric. 2014, 94, 773–778. [Google Scholar] [CrossRef]
- López-Bellido, L.; López-Bellido, J.; Redondo, R. Nitrogen efficiency in wheat under rainfed Mediterranean conditions as affected by split nitrogen application. Field Crop Res. 2005, 94, 86–97. [Google Scholar] [CrossRef]
- Sanz-Cobena, A.; Sanchez-Martin, L.; Garcia-Torres, L.; Vallejo, A. Gaseous emissions of N2O and NO and NO3− leaching from urea applied with urease and nitrification inhibitors to a maize (Zea mays) crop. Agric. Ecosyst. Environ. 2012, 149, 64–73. [Google Scholar] [CrossRef]
- Arias-Navarro, C.; Díaz-Pinés, E.; Kiese, R.; Rosenstock, T.S.; Rufino, M.C.; Stern, D.; Neufeldt, H.; Verchot, L.V.; Butterbach, K. Gas pooling: A sampling technique to overcome spatial heterogeneity of soil carbón dioxide and nitrous oxide fluxes. Soil Biol. Biochem. 2013, 67, 20–23. [Google Scholar] [CrossRef]
- Sanz-Cobena, A.; Lassaletta, L.; Estellés, F.; Prado, A.D.; Guardia, G.; Abalos, D.; Aguilera, E.; Pardo, G.; Vallejo, A.; Sutton, M.A.; et al. Yieldscaled mitigation of ammonia emission from N fertilization: The Spanish case. Environ. Res. Lett. 2014, 9, 125005. [Google Scholar] [CrossRef]
- Guardia, G.; Cangani, M.T.; Andreu, G.; Sanz-Cobena, A.; García-Marco, S.; Álvarez, J.M.; Recio-Huetos, J.; Vallejo, A. Effect of inhibitors and fertigation strategies on GHG emissions, NO fluxes and yield in irrigated maize. Field Crop Res. 2017, 204, 135–145. [Google Scholar] [CrossRef]
- Menéndez, S.; Merino, P.; Pinto, M.; González-Murua, C.; Estavillo, J.M. 3,4-Dimethylpyrazol phosphate effect on nitrous oxide, nitric oxide, ammonia, and carbon dioxide emissions from grasslands. J. Environ. Qual. 2006, 35, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, E.; Lassaletta, L.; Gattinger, A.; Gimeno, B.S. Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis. Agric. Ecosyst. Environ. 2013, 168, 25–36. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Velthof, G.L.; Oenema, O.; van Groenigen, K.J.; van Kessel, C. Towards an agronomic assessment of N2O emissions: A case study on arable crops. Eur. J. Soil Sci. 2010, 61, 903–913. [Google Scholar] [CrossRef]
- IPCC Chapter 7: The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2021; p. 132.
- Di Rienzo, J.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat; FCA Universidad Nacional de Córdoba: Córdoba, Argentina, 2020. [Google Scholar]
- Sánchez-Monedero, M.A.; Roig, A.; Paredes, C.; Bernal, M.P. Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresour. Technol. 2001, 78, 301–308. [Google Scholar] [CrossRef]
- Scotti, R.; Pane, C.; Spaccini, R.; Palese, A.M.; Piccolo, A.; Celano, G.; Zaccardelli, M. On-farm compost: A useful tool to improve soil quality under intensive farming systems. Appl. Soil Ecol. 2016, 107, 13–23. [Google Scholar] [CrossRef]
- Chan, K.Y.; Dorahy, C.; Tyler, S. Determining the agronomic value of composts produced from garden organics from metropolitan areas of New South Wales, Australia. Aust. J. Exp. Agric. 2007, 47, 1377–1382. [Google Scholar] [CrossRef]
- Bonanomi, G.; D’Ascoli, R.; Scotti, R.; Gaglione, S.; Gonzalez, M.; Sultana, S.; Scelza, R.; Rao, M.; Zoina, A. Soil quality recovery and crop yield enhancement by combined application of compost and wood to vegetables grown under plastic tunnels. Agric. Ecosyst. Environ. 2014, 192, 1–7. [Google Scholar] [CrossRef]
- Orden, L.; Ferreiro, N.; Satti, P.; Navas-Gracia, L.M.; Chico-Santamarta, L.; Rodríguez, R.A. Effects of Onion Residue, Bovine Manure Compost and Compost Tea on Soils and on the Agroecological Production of Onions. Agriculture 2021, 11, 962. [Google Scholar] [CrossRef]
- Iocoli, G.A.; Orden, L.; López, F.M.; Gómez, M.A.; Villamil, M.B.; Zabaloy, M.C. Towards Sustainable Dairy Production in Argentina: Evaluating Nutrient and CO2 Release from Raw and Processed Farm Waste. Agronomy 2021, 11, 2595. [Google Scholar] [CrossRef]
- Bernal, M.P.; Sommer, S.G.; Chadwick, D.; Qing, C.; Guoxue, L.; Michel, F.C. Current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits. Adv. Agron. 2017, 144, 143–233. [Google Scholar]
- Wang, Y.S.; Xue, M.; Zheng, X.H.; Ji, B.M.; Du, R.; Wang, Y.F. Effects of environmental factors on N2O emission from and CH4 uptake by the typical grasslands in the Inner Mongolia. Chemosphere 2005, 58, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Barth, G.; von Tucher, S.; Schmidhalter, U. Effectiveness of 3,4-dimethylpyrazole phosphate as nitrification inhibitor in soil as influenced by nitrification inhibitor concentration, application form, and soil matric potential. Pedosphere 2008, 18, 378–385. [Google Scholar] [CrossRef]
- Robinson, A.; Di, H.J.; Cameron, K.C.; Podolyan, A.; He, J. The effect of soil pH and dicyandiamide (DCD) on N2O emissions and ammonia oxidiser abundance in a stimulated grazed pasture soil. J. Soils Sediments 2014, 14, 1434–1444. [Google Scholar] [CrossRef]
- Marsden, K.A.; Scowen, M.; Hill, P.W.; Jones, D.L.; Chadwick, D.R. Plant acquisition and metabolism of the synthetic nitrification inhibitor dicyandiamide and naturally-occurring guanidine from agricultural soils. Plant Soil 2015, 395, 201–214. [Google Scholar] [CrossRef]
- Webb, J.; Pain, B.; Shabtai, B.; Morgan, J. The impact of manure application methods on emissions of ammonia, nitrous oxide and on crop response—A review. Agric. Ecosyst. Environ. 2010, 137, 39–46. [Google Scholar] [CrossRef]
- Elmi, A.; Madani, A.; Gordon, R.; MacDonald, P.; Stratton, G.W. Nitrate nitrogen in the soil profile and drainage water as influenced by manure and mineral fertilizer application in a Barley–Carrot production system. Water Air Soil Pollut. 2005, 160, 119–132. [Google Scholar] [CrossRef]
- Mondini, C.; Cayuela, M.L.; Sinicco, T.; Sánchez-Monedero, M.A.; Bertolone, E.; Bardi, L. Soil application of meat and bone meal. Short-term effects on mineralization dynamics and soil biochemical and microbiological properties. Soil Biol. Biochem. 2008, 40, 462–474. [Google Scholar] [CrossRef]
- Bernal, M.P.; Paredes, C.; Sánchez-Monedero, M.A.; Cegarra, J. Maturity and stability parameters of composts prepared with a wide range of organic residues. Bioresour. Technol. 1998, 63, 91–99. [Google Scholar] [CrossRef]
- de la Fuente, C.; Alburquerque, J.A.; Clemente, R.; Bernal, M.P. Soil C and N mineralisation and agricultural value of the products of an anaerobic digestion system. Biol. Fertil. Soils 2013, 49, 313–322. [Google Scholar] [CrossRef]
- Huérfano, X.; Fuertes-Mendizábal, T.; Dunabeitia, M.K.; González-Murua, C.; Estavillo, J.M.; Menéndez, S. Splitting the application of 3,4-dimethylpyrazole phosphate (DMPP): Influence on greenhouse gases emissions and wheat yield and quality under humid Mediterranean conditions. Eur. J. Agron. 2015, 64, 47–57. [Google Scholar] [CrossRef]
- Svetlana, N.D.; Dunfield, P.F. Chapter three—Facultative and Obligate Methanotrophs: How to Identify and Differentiate Them. In Methods in Enzymology; Rosenzweig, A.C., Ragsdale, S.W., Eds.; Academic Press: Cambridge, MA, USA, 2011; Volume 495, pp. 31–44. [Google Scholar]
- Liu, J.; Chen, H.; Yang, X.; Gong, Y.; Zheng, X.; Fan, M.; Kuzyakov, Y. Annual methane uptake from different land uses in an agro-pastoral ecotone of northern China. Agric. For. Meteorol. 2017, 236, 67–77. [Google Scholar] [CrossRef]
- Sanchez-Martin, L.; Sanz-Cobena, A.; Meijide, A.; Quemada, M.; Vallejo, A. The importance of the fallow period for N2O and CH4 fluxes and nitrate leaching in a Mediterranean irrigated agroecosystem. Eur. J. Soil Sci. 2010, 61, 710–720. [Google Scholar] [CrossRef]
- Meijide, A.; Gruening, C.; Goded, I.; Seufert, G.; Cescatti, A. Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field. Agric. Ecosyst. Environ. 2017, 238, 168–178. [Google Scholar] [CrossRef]
- Le Mer, J.; Roger, P. Production, Oxidation, Emission and Consumption of Methane by Soils: A Review. Eur. J. Soil Biol 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Tate, K.R. Soil methane oxidation and land-use change—From process to mitigation. Soil Biol. Biochem. 2015, 80, 260–272. [Google Scholar] [CrossRef]
- van Kessel, C.; Venterea, R.; Six, J.; Adviento-Borbe, M.A.; Linquist, B.; van Groenigen, K.J. Climate, duration, and N placement determine N2O emissions in reduced tillage systems: A meta-analysis. Glob. Chang. Biol. 2013, 19, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.M.; Zhong, X.H.; Huang, N.R.; Lampayan, R.M.; Pan, J.F.; Tian, K.; Liu, Y.Z. Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China Agric. Water Manag. 2016, 163, 319–331. [Google Scholar] [CrossRef]
- IPCC Volume 4: Agriculture, Forestry and Other Land Use. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. (Eds.) IGES: Kamiyamaguchi Hayama, Japan, 2006; Volume 4, ISBN 4-88788-032-4. [Google Scholar]
- Aguilera, E.; Lassaletta, L.; Sanz-Cobena, A.; Garnier, J.; Vallejo, A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agric. Ecosyst. Environ. 2013, 164, 32–52. [Google Scholar] [CrossRef]
- Philibert, A.; Loyce, C.; Makowski, D. Assessment of the quality of meta-analysis in agronomy. Agric. Ecosyst. Environ. 2012, 148, 72–82. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Glob. Biogeochem. Cycles 2002, 16, 1058. [Google Scholar] [CrossRef]
- Birkmose, T.S. Nitrogen recovery from organic manures: Improved slurry application techniques and treatment; the Danish scenario. In Proceedings of the International Fertilizer Society 656, York, UK, 12 December 2009; p. 24. [Google Scholar]
- El-Zaeddi, H.; Martínez-Tomé, J.; Calín-Sánchez, A.; Burló, F.; Carbonell-Barrachina, A. Irrigation dose and plant density affect the volatile composition and sensory quality of dill (Anethum graveolens L.). J. Sci. Food Agric. 2017, 97, 427–433. [Google Scholar] [CrossRef]
- Fjelkner-Modig, S.; Bengtsson, H.; Nystrõm, S.; Stegmark, R. The Influence of Organic and Integrated Production on Nutritional, Sensory and Agricultural Aspects of Vegetable Raw Materials for Food Production. Acta Agric. Scand. Sect. B Plant Soil Sci. 2000, 50, 102–113. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on possible health risks for infants and young children from the presence of nitrates in leafy vegetables. EFSA J. 2010, 8, 1935. [Google Scholar]
- Tamme, T.; Reinik, M.; Roasto, M.; Meremäe, K.; Kiis, A. Nitrate in leafy vegetables, culinary herbs, and cucumber grown under cover in Estonia: Content and intake. Food Addit. Contam. 2010, 3, 108–113. [Google Scholar] [CrossRef]
- De Martin, S.; Restani, P. Determination of nitrates by a novel ion chromatographic method: Occurrence in leafy vegetables (organic and conventional) and exposure assessment for Italian consumers. Food Addit. Contam. 2003, 20, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, D.; John, F.; Pain, B.; Chambers, B.; Williams, J. Plant uptake of nitrogen from the organic nitrogen fraction of animal manures: A laboratory experiment. J. Agric. Sci. 2000, 134, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Brentrup, F.; Pallière, C. Nitrogen Use Efficiency as an Agro-Environmental Indicator. In Proceedings of the OECD Workshop on OECD Agri-environmental Indicators: Lessons Learned and Future Directions, Leysin, Switzerland, 23–26 March 2010. [Google Scholar]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition; Kluwer Academic Publishers: Dordrecht, Switzerland, 2001; p. 849. [Google Scholar]
pH | EC | Na+ | HCO3− | Cl− | SAR |
---|---|---|---|---|---|
(dS m−1) | (mg L−1) | (mg L−1) | (mg L−1) | ||
8.64 | 2.96 | 243 | 192 | 408 | 4.2 |
Parameters | Treatment | |||||||
---|---|---|---|---|---|---|---|---|
HP | HP-2 | VT | LO | EST | NOLI | LI-2 | ||
Moisture | (%) | 51.4 | 34.9 | 27.6 | 77.2 | 76.7 | nd | nd |
pH | 5.8 | 7.4 | 8.2 | 6.8 | 9.6 | nd | 5.5 | |
EC | (dS m−1) | 9.0 | 8.3 | 4.1 | 4.0 | 6.9 | nd | nd |
COT | (g kg−1) | 314 | 371 | 173 | 332 | 408 | nd | nd |
TN | (g kg−1) | 31.9 | 28.7 | 14.7 | 49.7 | 27.4 | 150 | 210 |
NO3−-N | (g kg−1) | 4.66 | 1.20 | 0.92 | 0.04 | 0.03 | 20 | 99 |
NH4+-N | (g kg−1) | 0.06 | 0.07 | 0.02 | 2.16 | nd | 130 | 111 |
COT/TN | 9.8 | 12.9 | 11.8 | 6.7 | 23.4 | nd | nd | |
P | (g kg−1) | 11.1 | 4.1 | 8.6 | 13.5 | 3.0 | 65.5 | 34.8 |
K | (g kg−1) | 11.4 | 22.5 | 10.2 | 3.5 | 27.7 | 125 | 91.6 |
Na | (g kg−1) | 7.4 | 10.7 | 4.4 | 2.3 | 9.2 | nd | nd |
Treatment | pH | EC (dS m−1) | Pe (mg kg−1) | TN (g kg−1) | NO3−-N (mg kg−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
0 d | 55 d | 0 d | 55 d | 0 d | 55 d | 0 d | 55 d | 0 d | 55 d | |
B | 8.39 c | 7.99 bc | 0.33 a | 0.57 b | 62 ab | 77 b | 0.72 a | 0.67 a | 18 a | 11 a |
HP | 7.94 a | 7.97 abc | 0.58 b | 0.67 c | 76 cd | 92 cd | 1.14 d | 0.92 d | 60 de | 23 b |
HP-2 | 8.11 c | 8.04 bc | 0.51 b | 0.59 bc | 82 cde | 85 cd | 1.01 c | 0.82 bc | 55 cd | 18 ab |
VT | 8.18 c | 8.06 c | 0.57 b | 0.66 c | 180 g | 137 e | 1.12 d | 0.84 cd | 52 c | 14 a |
LO | 8.18 c | 8.17 d | 0.37 a | 0.59 bc | 72 bc | 85 bc | 0.95 c | 0.85 d | 28 b | 31 c |
EST | 8.26 c | 7.99 bc | 0.39 a | 0.57 bc | 89 de | 87 bc | 0.82 cd | 0.83 d | 23 ab | 13 a |
NOLI | 8.29 c | 7.87 a | 0.67 c | 0.90 d | 105 f | 102 d | 0,94 c | 0.78 c | 20 a | 50 d |
LI-2 | 8.19 c | 7.85 a | 0.73 d | 0.56 b | 93 fe | 96 cd | 1.04 c | 0.83 d | 65 e | 60 e |
FERTI | 8.22 bc | 8.18 d | 0.32 a | 0.45 a | 51 a | 64 a | 0.67 a | 0.72 b | 17 a | 78 f |
F-anova | 7.7 *** | 14.4 *** | 57.3 *** | 29.3 *** | 133 *** | 41.1 *** | 45.71 *** | 8.35 *** | 165 *** | 191 *** |
Treatment | CH4 | N2O | CO2 | CO2eq |
---|---|---|---|---|
(mg m−2) | (mg m−2) | (mg m−2) | (kg ha−1) | |
B | −12.07 a | 9 a | 27,740 bc | 20 a |
HP | −6.53 ab | 12 ab | 28,671 cd | 30 ab |
HP-2 | −6.33 ab | 13 ab | 31,072 de | 33 ab |
VT | 6.23 c | 13 ab | 34,868 f | 36 ab |
LO | 16.07 d | 181 d | 38,236 g | 485 d |
EST | −0.30 bc | 10 ab | 32,590 ef | 29 ab |
NOLI | −8.00 ab | 31 c | 26,551 bc | 82 c |
LI-2 | −10.67 a | 18 b | 24,851 b | 47 b |
FERTI | −4.07 ab | 8 a | 19,518 a | 20 a |
SEM | 3.2 | 3 | 1073 | 9 |
F-anova | 7.7 *** | 327 *** | 27 *** | 303 *** |
Treatment | Fresh Weight Basis | Dry Weight Basis | NO3−-N |
---|---|---|---|
(Mg ha−1) | (mg kg −1) | ||
B | 20.6 a | 3.6 a | 829b |
HP | 25.8 bc | 4.5 bcd | 703 b |
HP-2 | 26.3 bc | 4.6 cd | 505 ab |
VT | 26.2 bc | 4.7 d | 469 ab |
LO | 25.6 bc | 4.4 bcd | 650 ab |
EST | 20.6 a | 3.6 a | 201 a |
NOLI | 22.1 ab | 3.9 ab | 1373 c |
LI-2 | 22.4 ab | 3.9 ab | 5387 e |
FERTI | 28.9 c | 4.6 d | 2896 d |
F-anova | 11.5 *** | 10.28 *** | 109 *** |
Treatment | N | P | K | NUE | PUE | KUE |
---|---|---|---|---|---|---|
(kg ha−1) | % index | |||||
B | 79 a | 5.89 a | 25.5 a | - | - | - |
HP | 116 cde | 8.09 d | 35.3 d | 23 bc | 19 a | 1.67 ab |
HP-2 | 104 bcd | 8.03 cd | 35.9 de | 15 b | 40 a | 0.67 a |
VT | 95 ab | 8.24 d | 35.7 de | 13 ab | 12 a | 1.00 a |
LO | 104 bcd | 6.69 ab | 26.9 ab | 15 b | 53 ab | 6.33 c |
EST | 83 a | 7.19 bcd | 35.1 d | 2 a | 12 a | 0.33 a |
NOLI | 101 bc | 6.87 abc | 30.7 bc | 14 b | 61 ab | 3.00 b |
LI-2 | 127 e | 7.86 cd | 32.9 cd | 30 c | 219 c | 6.00 c |
FERTI | 119 de | 6.39 ab | 39.2 e | 25 bc | 183 bc | 25.67 d |
F-anova | 6.67 *** | 4.55 ** | 11.18 *** | 5.18 ** | 3.13 * | 223.08 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Sabater, E.; Pérez-Murcia, M.D.; Andreu-Rodríguez, F.J.; Orden, L.; Agulló, E.; Sáez-Tovar, J.; Martínez-Tome, J.; Bustamante, M.Á.; Moral, R. Enhancing Sustainability in Intensive Dill Cropping: Comparative Effects of Biobased Fertilizers vs. Inorganic Commodities on Greenhouse Gas Emissions, Crop Yield, and Soil Properties. Agronomy 2022, 12, 2124. https://doi.org/10.3390/agronomy12092124
Martínez-Sabater E, Pérez-Murcia MD, Andreu-Rodríguez FJ, Orden L, Agulló E, Sáez-Tovar J, Martínez-Tome J, Bustamante MÁ, Moral R. Enhancing Sustainability in Intensive Dill Cropping: Comparative Effects of Biobased Fertilizers vs. Inorganic Commodities on Greenhouse Gas Emissions, Crop Yield, and Soil Properties. Agronomy. 2022; 12(9):2124. https://doi.org/10.3390/agronomy12092124
Chicago/Turabian StyleMartínez-Sabater, Encarnación, María Dolores Pérez-Murcia, Francisco Javier Andreu-Rodríguez, Luciano Orden, Enrique Agulló, José Sáez-Tovar, Juan Martínez-Tome, María Ángeles Bustamante, and Raul Moral. 2022. "Enhancing Sustainability in Intensive Dill Cropping: Comparative Effects of Biobased Fertilizers vs. Inorganic Commodities on Greenhouse Gas Emissions, Crop Yield, and Soil Properties" Agronomy 12, no. 9: 2124. https://doi.org/10.3390/agronomy12092124
APA StyleMartínez-Sabater, E., Pérez-Murcia, M. D., Andreu-Rodríguez, F. J., Orden, L., Agulló, E., Sáez-Tovar, J., Martínez-Tome, J., Bustamante, M. Á., & Moral, R. (2022). Enhancing Sustainability in Intensive Dill Cropping: Comparative Effects of Biobased Fertilizers vs. Inorganic Commodities on Greenhouse Gas Emissions, Crop Yield, and Soil Properties. Agronomy, 12(9), 2124. https://doi.org/10.3390/agronomy12092124