Recycling Electric Arc Furnace Slag into Fertilizer: Effects of “Waste Product” on Growth and Physiology of the Common Bean (Phaseolus vulgaris L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Preparation and Experimental Design
2.2. Physico-Chemical Analysis of Soil Samples and Plant Material
2.3. Analysis of Physiological and Oxidative Stress Parameters in Bean Plants
2.3.1. Growth Parameters
2.3.2. Gas Exchange Measurements
2.3.3. Chlorophyll a Fluorescence and Level of Photosynthetic Pigments
2.3.4. In Vivo Nitrate Reductase (NR) Assay
2.3.5. Oxidative Stress Parameters
2.3.6. Statistical Analysis
3. Results and Discussion
3.1. Effect of EAF Slag on Nutrient Status in Soil and Bean Plant Organs
3.2. Effect of EAF Slag on Growth and NR Activity of Bean Plant
3.3. Effect of EAF Slag on Photosynthetic Parameters of Bean Leaves
3.4. Effect of EAF Slag on Oxidative Stress Parameters of Bean Leaves
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heidrich, C.; Kiggins, K.; Reiche, T.; Merkel, T. Iron and Steel Slags: Global Perspective on the Circular Economy. 2017. Available online: https://issuu.com/hbmgroup/docs/2017_heidrich_etal (accessed on 5 April 2021).
- Branca, T.; Colla, V.; Algermissen, D.; Granbom, H.; Martini, U.; Morillon, A.; Pietruck, R.; Rosendahl, S. Reuse and recycling of by-products in the steel sector: Recent achievements paving the way to circular economy and industrial symbiosis in Europe. Metals 2020, 10, 345. [Google Scholar] [CrossRef]
- OECD (Organisation for Economic Co-Operation and Development). Latest Developments in Steelmaking Capacity. Directorate for Science, Technology and Innovation Steel Committee. 2019. Available online: http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=DSTI/SC(2019)3/FINAL&docLanguage=En (accessed on 5 April 2021).
- Gao, D.; Wang, F.P.; Wang, Y.T.; Zeng, Y.N. Sustainable utilization of steel slag from traditional industry and agriculture to catalysis. Sustainability 2020, 12, 9295. [Google Scholar] [CrossRef]
- Sofilić, T.; Mladenović, A.; Sofilić, U. Defining of EAF steel slag application possibilities in asphalt mixture production. J. Environ. Eng. Landsc. Manag. 2011, 19, 148–157. [Google Scholar]
- Rastovčan-Mioč, A.; Sofilić, T.; Mioč, B. Application of electric arc furnace slag. In Proceedings Matrib Vela Luka Otok/Island Korčula, Croatia; Grilec, K., Marić, G., Eds.; Croatian Society for Materials and Tribology: Zagreb, Croatia, 2009; pp. 436–444. [Google Scholar]
- Gomes, J.F.P.; Pinto, C.G. Leaching of heavy metals from steelmaking slags. Rev. Metal. 2006, 42, 409–416. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhang, H.; He, P.; Shao, L.; Wang, R.; Chen, R. Beneficial reuse of stainless steel slag and its heavy metals pollution risk. J. Environ. Sci. 2008, 21, 33–37. [Google Scholar]
- Wei, D.X.; Xu, A.J.; Dong, D.F.; Tian, N.Y.; Yang, Q.X. Beneficial reuse of EAF slag and its leaching behavior of Cr. Iron Steel 2012, 47, 92–96, (In Chinese with English Abstract). [Google Scholar]
- Fleischel, H. Basic slag in German agriculture. Agric. Digest. 1972, 25, 45–50. [Google Scholar]
- Prado, R.M.; Fernandes, F.M. Steel will residue and lime for soil acidity correction using sugar cane grown in pots. Sci. Agric. 2000, 57, 739–744. [Google Scholar] [CrossRef]
- Kühn, M.; Spiegel, H.; Lopez, A.F.; Rex, M.; Erdmann, R. Sustainable Agriculture Using Blast Furnace and Steel Slags as Liming Agents; Office for Official Publications of the European Communities: Luxembourg, 2006. [Google Scholar]
- Abbaspour, A.; Kalbasi, M.; Shariatmadari, H. Effect of steel converter sludge as iron fertilizer and amendment in some calcareous soils. J. Plant Nutr. 2004, 27, 377–394. [Google Scholar] [CrossRef]
- Wang, X.; Cai, Q.-S. Steel slag as an iron fertilizer for corn growth and soil improvement in a pot experiment. Pedosphere 2006, 16, 519–524. [Google Scholar] [CrossRef]
- Negim, O.; Eloifi, B.; Mench, M.; Bes, C.; Gaste, H.; Montelica-Heino, M.; Le Coustumer, P. Effect of basic slag addition on soil properties, growth and leaf mineral composition of beans in a Cu-contaminated soil. Soil Sediment Contam. 2010, 19, 174–187. [Google Scholar] [CrossRef]
- Torkashvand, A.M. Effect of steel converter slag as iron fertilizer in some calcareous soils. Acta Agric. Scand. Sect. B–Soil Plant Sci. 2011, 61, 14–22. [Google Scholar]
- Das, S.; Gwon, H.S.; Khan, M.I.; Jeong, S.T.; Kim, P.J. Steel slag amendment impacts on soil microbial communities and activities of rice (Oryza sativa L.). Sci. Rep. 2020, 10, 6746. [Google Scholar] [CrossRef] [PubMed]
- Islam, Z.; Tran, Q.; Koizumi, S.; Kato, F.; Ito, K.; Araki, K.; Kubo, M. Effect of steel slag on soil fertility and plant growth. J. Agric. Chem. Environ. 2022, 11, 209–221. [Google Scholar] [CrossRef]
- Smith, J.L.; Doran, J.W. Measurement and use of pH and electrical conductivity for soil quality analysis. In Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; Soil Science Society of America Journal, SSSA: Madison, WI, USA, 1996; p. 49. [Google Scholar]
- Allen, S.E.; Grimshaw, H.M.; Parkinson, J.A.; Quarmby, C. Chemical Analysis of Ecological Materials; Blackwell Scientific Publications: Oxford, UK, 1974. [Google Scholar]
- Temminghoff, E.J.M.; Houba, V.J.G. Plant Analysis Procedures; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- ISO/TR 11905; Water Quality—Determination of Nitrogen—Part 2: Determination of Bound Nitrogen, after Combustion and Oxidation to Nitrogen Dioxide, Chemiluminescence Detection. ISO: Geneva, Switzerland, 1997.
- ISO 6878; Water Quality—Determination of Phosphorus—Ammonium Molybdate Spectrometric Method. ISO: Geneva, Switzerland, 2004.
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The fluorescent transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis: Mechanisms, Regulation and Adaptation; Yunus, M., Pathre, U., Mohanty, P., Eds.; Taylor and Francis: London, UK, 2000; pp. 445–483. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. Meth. Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Randall, P.J. Changes in nitrate and nitrate reductase levels on restoration of molybdenum to molybdenum-deficient plants. Aust. J. Agric. Res. 1969, 20, 635–642. [Google Scholar] [CrossRef]
- Radić, S.; Gregorović, G.; Stipaničev, D.; Cvjetko, P.; Šrut, M.; Vujčić, V.; Oreščanin, V.; Klobučar, G.I.V. Assessment of surface water in the vicinity of fertilizer factory using fish and plants. Ecotoxicol. Environ. Saf. 2013, 96, 32–40. [Google Scholar] [CrossRef]
- Rastovčan-Mioč, M.A.; Cerjan-Stefanović, S.; Ćurković, L. Aqueous leachate from electric furnace slag. Croat. Chem. Acta 2000, 73, 615–624. [Google Scholar]
- Khan, H.R.; Mukaddas, A.B.; Syed, M.K.; Blume, H.-P.; Yoko, O.; Tadashi, A. Consequences of basic slag on soil pH, calcium and magnesium status in acid sulfate soils under various water contents. J. Biol. Sci. 2007, 7, 896–903. [Google Scholar]
- George, E.; Horst, W.J.; Neumann, E. Adaptation of plants to adverse chemical soil conditions. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: London, UK, 2012; pp. 409–472. [Google Scholar]
- Sahrawat, K.L. Factors Affecting Nitrification in Soils. Commun. Soil Sci. Plant Anal. 2008, 39, 1436–1446. [Google Scholar] [CrossRef]
- Haynes, R.; Goh, K.M. Ammonium and nitrate nutrition of plants. Biol. Rev. 1978, 53, 465–510. [Google Scholar] [CrossRef]
- ten Hoopen, F.; Cuin, T.A.; Pedas, P.; Hegelund, J.N.; Shabala, S.; Schjoerring, J.K.; Jahn, T.P. Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: Molecular mechanisms and physiological consequences. J. Exp. Bot. 2010, 61, 2303–2315. [Google Scholar] [CrossRef]
- Welp, G.; Herms, U.; Brümmer, G. Influence of soil reaction, redox conditions and organic matter on phosphate concentrations of the soil solution. J. Plant Nutr. Soil Sci. 1983, 146, 38–52. (In German) [Google Scholar]
- Kristen, M.; Erstad, K.J. Converter slag as a liming material on organic soils. Norw. J. Agric. Sci. 1996, 10, 83–93. [Google Scholar]
- Römheld, V.; Marschner, H. Mobilization of iron in the rhizosphere of different plant species. In Advances in Plant Nutrition; Tinker, B., Läuchli, A., Eds.; Praeger Scientific: New York, NY, USA, 1986; Volume 2, pp. 155–204. [Google Scholar]
- Abou Seeda, M.; EI-Aila, H.I.; EI-Ashry, S. Assessment of basic slag as soil amelioration and their effects on the uptake of some nutrient elements by radish plants. Bull. Natl. Res. Cent. 2002, 27, 491–506. [Google Scholar]
- Alam, S.; Kamaei, S.; Kawai, S. Amelioration of manganese toxicity in barley with iron. J. Plant Nutr. 2001, 24, 1421–1433. [Google Scholar] [CrossRef]
- El-Jaoual, T.; Cox, D.A. Manganese toxicity in plants. J. Plant Nutr. 1998, 21, 353–386. [Google Scholar] [CrossRef]
- Ning, D.; Liang, Y.; Liu, Z.; Xiao, J.; Duan, A. Impacts of steel-slag-based silicate fertilizer on soil acidity and silicon availability and metals-immobilization in a paddy soil. PLoS ONE 2016, 11, e0168163. [Google Scholar] [CrossRef]
- Gwon, H.S.; Khan, M.I.; Alam, M.A.; Das, S.; Kim, P.J. Environmental risk assessment of steel-making slags and the potential use of LD slag in mitigating methane emissions and the grain arsenic level in rice (Oryza sativa L.). J. Hazard. Mater. 2018, 353, 236–243. [Google Scholar] [CrossRef]
- Chen, D.; Meng, Z.-W.; Chen, Y.-P. Toxicity assessment of molybdenum slag as a mineral fertilizer: A case study with pakchoi (Brassica chinensis L.). Chemosphere 2019, 217, 816–824. [Google Scholar] [CrossRef]
- Kong, L.; Xie, Y.; Hu, L.; Si, J.; Wang, Z. Excessive nitrogen application dampens antioxidant capacity and grain filling in wheat as revealed by metabolic and physiological analyses. Sci. Rep. 2017, 7, 43363. [Google Scholar] [CrossRef] [PubMed]
- Campbell, W.H. Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 277–303. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, U.; Bilger, W.; Neubauer, C. Chlorophyll Fluorescence as a Nonintrusive Indicator of Rapid Assessment of In Vivo Photosynthesis; Springer: Berlin, Germany, 1994. [Google Scholar]
- Sato, R.; Ito, H.; Tanaka, A. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions. Photosyn. Res. 2015, 126, 249–259. [Google Scholar] [CrossRef]
- Long, S.P.; Bernacchi, C.J. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J. Exp. Bot. 2003, 54, 2393–2401. [Google Scholar] [CrossRef] [PubMed]
- Sage, R.F.; Pearcy, R.W.; Seemann, J.R. The nitrogen use efficiency of C3 and C4 plants III. Leaf nitrogen effects on the activity of carboxylating enzymes in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiol. 1987, 85, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 1989, 78, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Makino, A. Rubisco and nitrogen relationships in rice: Leaf photosynthesis and plant growth. Soil Sci. Plant Nutr. 2003, 49, 319–327. [Google Scholar] [CrossRef]
- Demidchik, V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ. Exp. Bot. 2015, 109, 212–228. [Google Scholar] [CrossRef]
- Zhu, Z.; Gerendás, J.; Bendixen, R.; Schinner, K.; Tabrizi, H.; Sattelmacher, B.; Hansen, U.-P. Different tolerance to light stress in NO3−- and NH4+-grown Phaseolus vulgaris L. Plant Biol. 2000, 2, 558–570. [Google Scholar] [CrossRef]
- Niu, L.; Liao, W. Hydrogen peroxide signaling in plant development and abiotic responses: Crosstalk with nitric oxide and calcium. Front. Plant Sci. 2016, 7, 230. [Google Scholar] [CrossRef] [Green Version]
Parameter | C | F | FS2 | S1 | S2 |
---|---|---|---|---|---|
pH | 7.71 | 7.42 | 8.47 | 8.53 | 8.77 |
EC (µS/cm) | 398 | 494 | 595 | 473 | 464 |
N (g/kg) | 7.01 | 7.92 | 8.05 | 7.84 | 7.57 |
paN (g/kg) | 3.04 | 3.69 | 3.96 | 3.46 | 3.37 |
P (g/kg) | 6.22 | 6.97 | 7.13 | 7.36 | 6.87 |
paP (g/kg) | 3.86 | 4.01 | 4.17 | 4.30 | 4.00 |
Mg (g/kg) | 6.86 | 6.61 | 8.32 | 8.70 | 9.25 |
K (g/kg) | 5.56 | 5.61 | 5.85 | 6.07 | 6.11 |
Ca (g/kg) | 36.5 | 41.5 | 46.3 | 56.9 | 50.8 |
Fe (g/kg) | 4.77 | 5.25 | 5.34 | 5.49 | 5.20 |
Si (g/kg) | 1.20 | 1.42 | 1.56 | 3.38 | 1.78 |
Mn (mg/kg) | 128 | 139 | 153 | 201 | 158 |
Cd (mg/kg) | 0.534 | 0.551 | 0.562 | 0.568 | 0.584 |
Cr (mg/kg) | 25.0 | 23.5 | 34.6 | 31.3 | 35.5 |
Pb (mg/kg) | 52.5 | 51.6 | 49.9 | 54.0 | 59.6 |
Zn (mg/kg) | 106 | 117 | 123 | 107 | 120 |
Co (mg/kg) | 8.07 | 8.56 | 9.19 | 8.55 | 9.81 |
Cu (mg/kg) | 46.0 | 42.8 | 44.4 | 46.8 | 50.8 |
V (mg/kg) | 173 | 178 | 182 | 194 | 220 |
Parameter | C | F | FS2 | S1 | S2 |
---|---|---|---|---|---|
Leaf | |||||
Mn (mg/kg) | 35.00 a | 38.57 a | 35.03 a | 36.78 a | 35.78 a |
Fe (mg/kg) | 78.43 c | 155.88 a | 105.05 b | 115.72 b | 109.72 b |
Mg (g/kg) | 3.49 c | 4.27 b | 4.38 b | 4.47 b | 5.04 a |
N (g/kg) | 21.28 c | 29.67 a | 29.52 a | 25.68 b | 23.21 c |
P (g/kg) | 1.96 c | 2.00 c | 2.05 c | 2.93 a | 2.61 b |
K (g/kg) | 15.57 c | 20.63 a | 17.99 b | 18.19 b | 15.92 c |
Husk | |||||
Mn (mg/kg) | 35.01 d | 40.26 cd | 44.25 bc | 56.69 a | 51.65 ab |
Fe (mg/kg) | 37.59 c | 44.86 bc | 57.02 a | 48.96 ab | 53.14 a |
Mg (g/kg) | 3.55 a | 3.79 a | 3.85 a | 3.69 a | 3.53 a |
N (g/kg) | 17.47 b | 20.80 a | 21.20 a | 20.98 a | 20.96 a |
P (g/kg) | 4.31 a | 4.21 a | 4.72 a | 4.59 a | 4.33 a |
K (g/kg) | 30.71 b | 35.40 ab | 33.21 ab | 37.58 a | 35.22 ab |
Seed | |||||
Mn (mg/kg) | 30.03 a | 22.92 b | 29.10 a | 31.32 a | 31.36 a |
Fe (mg/kg) | 82.17 a | 84.14 a | 88.47 a | 90.22 a | 88.93 a |
Mg (g/kg) | 1.90 b | 1.64 c | 1.94 b | 2.19 a | 2.11 a |
N (g/kg) | 30.14 c | 32.94 bc | 38.63 a | 37.17 a | 35.93 ab |
P (g/kg) | 5.41 b | 5.49 b | 5.77 ab | 6.48 a | 5.53 b |
K (g/kg) | 18.51 a | 18.29 a | 19.19 a | 20.40 a | 19.77 a |
Chl a + b | Height | No. Husk | DW Leaf | DW Seed | DW Husk | PS | NR | Fe Leaf | Mg Leaf | N Leaf | P Leaf | K Leaf | Fe Husk | Mg Husk | N Husk | P Husk | K Husk | Fe Seed | Mg Seed | N Seed | P Seed | K Seed | MDA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Height | 0.16 | |||||||||||||||||||||||
No. husk | −0.19 | 0.42 | ||||||||||||||||||||||
DW leaf | 0.14 | −0.17 | 0.28 | |||||||||||||||||||||
DW seed | 0.07 | −0.04 | −0.17 | 0.09 | ||||||||||||||||||||
DW husk | −0.22 | −0.17 | −0.07 | −0.06 | −0.16 | |||||||||||||||||||
PS | −0.06 | 0.18 | 0.31 | 0.00 | 0.14 | −0.05 | ||||||||||||||||||
NR | 0.00 | 0.36 | 0.10 | −0.42 | −0.24 | 0.31 | 0.64 | |||||||||||||||||
Fe leaf | −0.28 | 0.35 | 0.28 | −0.32 | −0.04 | 0.54 | 0.03 | 0.42 | ||||||||||||||||
Mg leaf | 0.11 | 0.36 | 0.49 | 0.33 | 0.39 | 0.01 | 0.35 | 0.20 | 0.34 | |||||||||||||||
N leaf | −0.16 | 0.37 | 0.33 | −0.46 | −0.40 | 0.41 | 0.56 | 0.89 | 0.59 | 0.22 | ||||||||||||||
P leaf | 0.21 | 0.27 | 0.61 | 0.65 | 0.23 | −0.12 | 0.08 | −0.16 | 0.06 | 0.56 | −0.14 | |||||||||||||
K leaf | −0.13 | 0.42 | 0.22 | 0.55 | −0.25 | 0.55 | 0.21 | 0.75 | 0.81 | 0.15 | 0.84 | −0.04 | ||||||||||||
Fe husk | 0.12 | 0.32 | 0.43 | 0.26 | 0.12 | −0.10 | 0.78 | 0.58 | 0.07 | 0.72 | 0.48 | 0.33 | 0.13 | |||||||||||
Mg husk | 0.00 | 0.28 | 0.22 | 0.53 | 0.14 | 0.30 | 0.47 | 0.55 | 0.31 | 0.24 | 0.61 | −0.18 | 0.53 | 0.28 | ||||||||||
N husk | −0.04 | 0.45 | 0.54 | 0.07 | 0.18 | 0.19 | 0.68 | 0.65 | 0.56 | 0.80 | 0.66 | 0.43 | 0.54 | 0.83 | 0.43 | |||||||||
P husk | 0.08 | 0.35 | 0.09 | −0.27 | 0.37 | −0.43 | 0.53 | 0.21 | −0.24 | 0.26 | 0.18 | 0.01 | −0.08 | 0.40 | 0.54 | 0.26 | ||||||||
K husk | 0.02 | 0.56 | 0.63 | 0.20 | 0.17 | 0.17 | 0.22 | 0.27 | 0.64 | 0.65 | 0.37 | 0.76 | 0.52 | 0.42 | 0.14 | 0.75 | 0.05 | |||||||
Fe seed | 0.17 | 0.48 | 0.64 | 0.49 | 0.21 | −0.21 | 0.60 | 0.29 | 0.05 | 0.72 | 0.24 | 0.77 | 0.06 | 0.82 | 0.09 | 0.76 | 0.36 | 0.71 | ||||||
Mg seed | 0.45 | 0.07 | 0.33 | 0.71 | 0.37 | −0.32 | 0.24 | −0.28 | −0.39 | 0.36 | −0.34 | 0.77 | −0.45 | 0.40 | −0.21 | 0.21 | 0.23 | 0.37 | 0.71 | |||||
N seed | 0.14 | 0.47 | 0.47 | 0.23 | 0.16 | −0.18 | 0.80 | 0.59 | 0.04 | 0.65 | 0.47 | 0.48 | 0.19 | 0.94 | 0.28 | 0.82 | 0.51 | 0.55 | 0.91 | 0.49 | ||||
P seed | 0.02 | 0.46 | 0.62 | 0.20 | 0.15 | −0.04 | 0.40 | 0.19 | 0.07 | 0.30 | 0.23 | 0.73 | 0.26 | 0.31 | 0.28 | 0.45 | 0.38 | 0.67 | 0.71 | 0.55 | 0.59 | |||
K seed | 0.15 | 0.39 | 0.60 | 0.59 | 0.42 | −0.22 | 0.37 | −0.06 | −0.10 | 0.58 | −0.10 | 0.87 | −0.13 | 0.52 | 0.01 | 0.50 | 0.29 | 0.64 | 0.88 | 0.82 | 0.68 | 0.80 | ||
MDA | 0.08 | 0.27 | −0.13 | −0.43 | −0.22 | −0.12 | 0.28 | 0.65 | 0.03 | −0.03 | 0.47 | −0.27 | 0.40 | 0.32 | 0.08 | 0.23 | 0.05 | −0.06 | 0.10 | −0.31 | 0.34 | −0.04 | −0.13 | |
APX | −0.07 | 0.19 | −0.19 | −0.44 | −0.40 | 0.10 | 0.11 | 0.58 | 0.24 | −0.06 | 0.57 | −0.34 | 0.40 | 0.25 | 0.08 | 0.22 | 0.16 | 0.04 | −0.02 | −0.35 | 0.21 | −0.21 | −0.40 | 0.45 |
Parameter | C | F | FS2 | S1 | S2 |
---|---|---|---|---|---|
PAR | 1301 | 1393 | 1359 | 1302 | 1379 |
Ci | 239 (13.38) b | 255 (11.68) b | 271 (6.50) a | 262 (23.13) ab | 249 (24.0) b |
T | 8.05 (0.30) a | 8.06 (0.14) a | 8.73 (0.73) a | 8.06 (0.77) a | 8.28 (0.54) a |
gs | 0.27 (0.026) b | 0.27 (0.013) b | 0.32 (0.014) a | 0.30 (0.021) ab | 0.28 (0.011) b |
NR | 274.3 (27.9) e | 615.0 (85.9) b | 720.6 (47.9) a | 474.4 (63.1) c | 360.0 (32.1) d |
Parameter | C | F | FS2 | S1 | S2 |
---|---|---|---|---|---|
MDA | 17.6 (1.91) b | 21.8 (2.17) a | 20.9 (0.88) a | 17.2 (0.86) b | 17.4 (0.81) b |
C=O | 40.8 (4.77) a | 43.3 (5.28) a | 40.6 (2.55) a | 42.1 (3.88) a | 40.7 (1.27) a |
SOD | 10.9 (0.70) a | 9.7 (0.21) a | 10.4 (0.94) a | 11.0 (0.42) a | 10.8 (0.83) a |
APX | 2.67 (0.13) b | 3.45 (0.37) a | 3.56 (0.57) a | 2.79 (0.31) b | 2.83 (0.20) b |
POX | 2.73 (0.10) a | 2.56 (0.28) a | 2.38 (0.13) a | 2.36 (0.23) a | 2.41 (0.17) a |
Parameter | C | F | FS2 | S1 | S2 |
---|---|---|---|---|---|
PS | 11.96 (1.66) c | 13.77 (0.95) bc | 19.68 (1.75) a | 16.05 (1.49) b | 14.21 (1.55) bc |
Fv/Fm | 0.846 (0.010) a | 0.848 (0.008) a | 0.843 (0.009) a | 0.848 (0.006) a | 0.843 (0.011) a |
Chl a | 0.832 (0.028) a | 0.839 (0.047) a | 0.848 (0.045) a | 0.863 (0.045) a | 0.831 (0.069) a |
Chl b | 0.337 (0.020) a | 0.337 (0.040) a | 0.350 (0.056) a | 0.364 (0.030) a | 0.339 (0.042) a |
Chl a + b | 1.169 (0.034) a | 1.176 (0.087) a | 1.198 (0.099) a | 1.227 (0.009) a | 1.169 (0.109) a |
Car | 0.346 (0.015) a | 0.332 (0.021) a | 0.346 (0.025) a | 0.355 (0.009) a | 0.340 (0.024) a |
Chl a/b | 2.479 (0.165) a | 2.51 (0.167) a | 2.457 (0.239) a | 2.375 (0.087) a | 2.462 (0.151) a |
Chl a + b/Car | 3.382 (0.111) a | 3.537 (0.079) a | 3.460 (0.103) a | 3.459 (0.125) a | 3.436 (0.139) a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radić, S.; Sandev, D.; Maldini, K.; Vujčić Bok, V.; Lepeduš, H.; Domijan, A.-M. Recycling Electric Arc Furnace Slag into Fertilizer: Effects of “Waste Product” on Growth and Physiology of the Common Bean (Phaseolus vulgaris L.). Agronomy 2022, 12, 2218. https://doi.org/10.3390/agronomy12092218
Radić S, Sandev D, Maldini K, Vujčić Bok V, Lepeduš H, Domijan A-M. Recycling Electric Arc Furnace Slag into Fertilizer: Effects of “Waste Product” on Growth and Physiology of the Common Bean (Phaseolus vulgaris L.). Agronomy. 2022; 12(9):2218. https://doi.org/10.3390/agronomy12092218
Chicago/Turabian StyleRadić, Sandra, Dubravka Sandev, Krešimir Maldini, Valerija Vujčić Bok, Hrvoje Lepeduš, and Ana-Marija Domijan. 2022. "Recycling Electric Arc Furnace Slag into Fertilizer: Effects of “Waste Product” on Growth and Physiology of the Common Bean (Phaseolus vulgaris L.)" Agronomy 12, no. 9: 2218. https://doi.org/10.3390/agronomy12092218
APA StyleRadić, S., Sandev, D., Maldini, K., Vujčić Bok, V., Lepeduš, H., & Domijan, A. -M. (2022). Recycling Electric Arc Furnace Slag into Fertilizer: Effects of “Waste Product” on Growth and Physiology of the Common Bean (Phaseolus vulgaris L.). Agronomy, 12(9), 2218. https://doi.org/10.3390/agronomy12092218