Determination of Internal Quality Indices in Oriental Melon Using Snapshot-Type Hyperspectral Image and Machine Learning Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Hyperspectral Imaging System
2.3. Hyperspectral Data Extraction and Pre-Processing
2.4. Measurements
3. Data Analysis
3.1. Variable Importance in Projection
3.2. Support Vector Regression
3.3. Ridge Regression
3.4. K-Nearest Neighbors Regression
3.5. Random Forest Regression
3.6. Model Evaluation
3.7. Statistical Analysis
4. Results and Discussion
4.1. Quality Indices
4.2. Hyperspectral Data and VIP
4.3. Prediction Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Kakihara, F.; Kato, M. Characterization of six varieties of Cucumis melo L. based on morphological and physiological characters, including shelf-life of fruit. Euphytica 2004, 135, 305–313. [Google Scholar] [CrossRef]
- Nguyen, N.N.; Kwon, Y.S.; Park, J.R.; Sim, S.C. Development of a cor set of SSR markers for cultivar identification and seed purity tests in oriental melon (Cucumis melo L. var. makuwa). Hortic. Sci. Technol. 2019, 37, 119–129. [Google Scholar] [CrossRef]
- Jun, H.J.; Shin, Y.S.; Suh, J.K. Soil EC and yield and quality of oriental melon (Cucumis melo L. var. makuwa Mak.) as affected by fertigation. J. Bio-Environ. Control 2012, 21, 186–191. [Google Scholar]
- Jun, H.J.; Jo, I.H. Changes of nutrient contents of circulating solution in three different new hydroponics for oriental melons (Cucumis melo L. var. makuwa Mak.). J. Bio-Environ. Control 2002, 11, 168–174. [Google Scholar]
- Lee, D.S.; Kwon, J.K.; Yun, S.W.; Lee, S.Y.; Seo, M.T.; Lee, H.J.; Lee, S.G.; Kang, T.G. Comparison of yield and workload depending on stem training methods in oriental melon hydroponics. J. Bio-Environ. Control 2021, 30, 377–382. [Google Scholar] [CrossRef]
- Jia, W.; Tian, Y.; Luo, R.; Zhang, Z.; Lian, J.; Zheng, Y. Detection and segmentation of overlapped fruits based on optimized mask R-CNN application in apple harvesting robot. Comput. Electron. Agric. 2020, 172, 105380. [Google Scholar] [CrossRef]
- Seo, D.; Cho, B.H.; Kim, K.C. Development of monitoring robot system for tomato fruits in hydroponic greenhouses. Agronomy 2021, 11, 2211. [Google Scholar] [CrossRef]
- Gao, Z.; Shao, Y.; Xuan, G.; Wang, Y.; Liu, Y.; Han, X. Real-time hyperspectral imaging for the in-field estimation of strawberry ripeness with deep learning. Artif. Intell. Agric. 2020, 4, 31–38. [Google Scholar] [CrossRef]
- Kim, J.S.; Choi, H.R.; Chung, D.S.; Lee, Y.S. Current research status of postharvest and packaging technology of oriental melon (Cucumis melo var. makuwa) in Korea. Hortic. Sci. Technol. 2010, 28, 902–911. [Google Scholar]
- Lee, D.U.; Bae, J.M.; Lim, J.H.; Choi, J.H. Prediction of consumer acceptance of oriental melon based on physicochemical and sensory characteristics. Hortic. Sci. Technol. 2017, 35, 446–455. [Google Scholar] [CrossRef]
- Liang, H.; Li, Q. Hyperspectral imagery classification using sparse representations of convolutional neural network features. Remote Sens. 2016, 8, 99. [Google Scholar] [CrossRef]
- Liu, D.; Sun, D.W.; Zeng, X.A. Recent advances in wavelength selection techniques for hyperspectral image processing in the food industry. Food Bioprocess Technol. 2014, 7, 307–323. [Google Scholar] [CrossRef]
- Song, Y.Q.; Zhao, X.; Su, H.Y.; Li, B.; Hu, Y.M.; Cui, X.S. Predicting spatial variations in soil nutrients with hyperspectral remote sensing at regional scale. Sensors 2018, 18, 3086. [Google Scholar] [CrossRef] [Green Version]
- López-Andreu, F.J.; López-Morales, J.A.; Erena, M.; Skarmeta, A.F.; Martínez, J.A. Monitoring system for the management of the common agricultural policy using machine learning and remote sensing. Electronics 2022, 11, 325. [Google Scholar] [CrossRef]
- Lee, M.S.; Kim, K.S.; Min, G.; Son, D.H.; Kim, J.E.; Kim, S.C. Recent trends of hyperspectral imaging technology. Electron. Telecommun. Trends 2019, 34, 86–97. [Google Scholar] [CrossRef]
- Elmasry, G.; Kamruzzaman, M.; Sun, D.W.; Allen, P. Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review. Crit. Rev. Food Sci. Nutr. 2012, 52, 999–1023. [Google Scholar] [CrossRef]
- Fadock, M.; Brown, R.B.; Reynolds, A.G. Visible-near infrared reflectance spectroscopy for nondestructive analysis of red wine grapes. Am. J. Enol. Vitic. 2016, 67, 38–46. [Google Scholar] [CrossRef]
- Gómez, A.H.; He, Y.; Pereira, A.G. Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using Vis/NIR-spectroscopy techniques. J. Food Eng. 2006, 77, 313–319. [Google Scholar] [CrossRef]
- Li, X.; Wei, Y.; Xu, J.; Feng, X.; Wu, F.; Zhou, R.; Jin, J.; Xu, K.; Yu, X.; He, Y. SSC and pH for sweet assessment and maturity classification of harvested cherry fruit based on NIR hyperspectral imaging technology. Postharvest Biol. Technol. 2018, 143, 112–118. [Google Scholar] [CrossRef]
- Qin, J.; Kim, M.S.; Chao, K.; Chan, D.; Delwiche, S.R.; Cho, B.K. Line-scan hyperspectral imaging techniques for food safety and quality applications. Appl. Sci. 2017, 7, 125. [Google Scholar] [CrossRef]
- Al-Sarayreh, M.; Reis, M.M.; Yan, W.Q.; Klette, R. Potential of deep learning and snapshot hyperspectral imaging for classification of species in meat. Food Control 2020, 117, 107332. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, L.; Liang, D.; Xu, C.; Jin, X.; Weng, S. Fast prediction of sugar content in Dangshan pear (Pyrus spp.) using hyperspectral imagery data. Food Anal. Methods 2018, 11, 2336–2345. [Google Scholar] [CrossRef]
- Osco, L.P.; Ramos, A.P.M.; Pinheiro, M.M.F.; Moriya, E.A.S.; Imai, N.N.; Estrabis, N.; Ianczyk, F.; de Araujo, F.F.; Liesenberg, V.; Jorge, L.A.d.C.; et al. A machine learning framework to predict nutrient content in Valencia-orange leaf hyperspectral measurements. Remote Sens. 2020, 12, 906. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Hong, S.J.; Kim, E.; Lee, C.; Kim, G. Neural network based prediction of soluble solids concentration in oriental melon using VIS/NIR spectroscopy. Appl. Eng. Agric. 2021, 37, 653–663. [Google Scholar] [CrossRef]
- Fearn, T.; Riccioli, C.; Garrido-Varo, A.; Guerrero-Ginel, J.E. On the geometry of SNV and MSC. Chemometr. Intell. Lab. Syst. 2009, 96, 22–26. [Google Scholar] [CrossRef]
- Rahman, A.; Kandpal, L.M.; Lohumi, S.; Kim, M.S.; Lee, H.; Mo, C.; Cho, B.K. Nondestructive estimation of moisture content, pH and soluble slid contents in intact tomatoes using hyperspectral imaging. Appl. Sci. 2017, 7, 109. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, Y.; Chen, S.; Chen, Y.; Zhang, W.; Sun, X.; Zhao, Y. Using Cucurbita rootstocks to reduce fusarium wilt incidence and increase fruit yield and carotenoid content in oriental melons. J. Am. Soc. Hortic. Sci. 2014, 49, 1365–1369. [Google Scholar] [CrossRef]
- Choi, J.W.; Chang, M.S.; Lee, J.H.; Hong, Y.; Kim, J.G. Changes in quality of oriental melon ‘Smartkkul’ during vessel transportation. Hortic. Sci. Technol. 2018, 36, 552–559. [Google Scholar] [CrossRef]
- Jo, Y.J.; Jang, S.Y.; Kim, O.M.; Park, C.W.; Jeong, Y.J. Effects of sugars addition in alcohol fermentation of oriental melon. J. Korean Soc. Food Sci. Nutr. 2010, 39, 1359–1365. [Google Scholar] [CrossRef]
- Kang, Y.S.; Jang, S.H.; Park, J.W.; Song, H.Y.; Ryu, C.S.; Jun, S.R.; Kim, S.H. Yield prediction and validation of onion (Allium cepa L.) using key variables in narrowband hyperspectral imagery and effective accumulated temperature. Comput. Electron. Agric. 2020, 178, 105667. [Google Scholar] [CrossRef]
- Farrés, M.; Platikanov, S.; Tsakovski, S.; Tauler, R. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J. Chemom. 2015, 29, 528–536. [Google Scholar] [CrossRef]
- Allouhi, A.; Choab, N.; Hamrani, A.; Saadeddine, S. Machine learning algorithms to assess the thermal behavior of a Moroccan agriculture greenhouse. Clean. Eng. Technol. 2021, 5, 100346. [Google Scholar] [CrossRef]
- Uzal, L.C.; Grinblat, G.L.; Namías, R.; Larese, M.G.; Bianchi, J.S.; Morandi, E.N.; Granitto, P.M. Seed-per-pod estimation for plant breeding using deep learning. Comput. Electron. Agric. 2018, 150, 196–204. [Google Scholar] [CrossRef]
- McDonald, G.C. Ridge regression. WIREs Comp. Stats. 2009, 1, 93–100. [Google Scholar] [CrossRef]
- Jamal, N.; Rind, M.Q. Ridge regression: A tool to forecast wheat area and production. Pak. J. Stat. Oper. Res. 2009, 3, 125–134. [Google Scholar] [CrossRef]
- Kramer, O. K-Nearest Neighbors; Springer: Berlin, Germany, 2013; pp. 13–23. [Google Scholar] [CrossRef]
- Martínez, F.; Frías, M.P.; Pérez, M.D.; Rivera, A.J. A methodology for applying k-nearest neighbor to time series forecasting. Artif. Intell. Rev. 2017, 52, 2019–2037. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Singh, B.; Sihag, P.; Singh, K. Modelling of impact of water quality on infiltration rate of soil by random forest regression. Model. Earth Syst. Environ. 2017, 3, 999–1004. [Google Scholar] [CrossRef]
- Shin, Y.S.; Park, S.D.; Kim, J.H. Influence of pollination methods on fruit development and sugar contents of oriental melon (Cucumis melo L. cv. Sagyejeol-Ggul). Sci. Hortic. 2007, 112, 388–392. [Google Scholar] [CrossRef]
- Guo, X.; Xu, J.; Cui, X.; Chen, H.; Qi, H. iTRAQ-based protein profiling and fruit quality changes at different development stages of oriental melon. BMC Plant Biol. 2017, 17, 28. [Google Scholar] [CrossRef]
- Akar, R.; Aydin, C. Some physical properties of gumbo fruit varieties. J. Food Eng. 2005, 66, 387–393. [Google Scholar] [CrossRef]
- Nelson, S.O.; Trabelsi, S.; Kays, S.J. Dielectric spectroscopy of melons for potential quality sensing. Trans. ASABE 2008, 51, 2209–2214. [Google Scholar] [CrossRef]
- Zhu, Q.; He, C.; Lu, R.; Mendoza, F.; Cen, H. Ripeness evaluation of ‘Sun Bright’ tomato using optical absorption and scattering properties. Postharvest Biol. Technol. 2015, 103, 27–34. [Google Scholar] [CrossRef]
- Cho, B.H.; Kang, T.H.; Han, C.S.; Lee, J.H.; Lee, D.I.; Noh, H.K. Estimation of lettuce growth characteristics under different LED light intensities in a closed-type plant factory. Hortic. Sci. Technol. 2018, 36, 350–361. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
Maturity | Description | L* Value | a* Value | b* Value |
---|---|---|---|---|
Green; Entirely green | 53.28 ± 3.38 | −8.43 ± 1.15 | 40.01 ± 7.17 | |
Turning; Over 10% but not more than 90% Yellow | 63.15 ± 4.25 | 0.59 ± 5.84 | 57.33 ± 6.52 | |
Yellow; Over 90% Yellow | 64.67 ± 1.94 | 20.05 ± 3.57 | 63.02 ± 2.80 |
Variable | Specification | |
---|---|---|
VIS | Red-NIR | |
Sensor | AMS/CMOSIS CMV2000 mono | |
Resolution | 2048 × 1088, 2.2 MPixel | |
Pixel size | ||
Sensor size/diagonal | 11.3 × 6.0 mm | |
Optical size | 2/3″ | |
FPS | 170 (USB3.0) | |
Focal length | 12.5 mm | |
Exposure time | 2.0 ms | 1.3 ms |
Wavelength range | 460–600 nm | 600–860 nm |
Number of bands | 16 bands | 15 bands |
Band: peak central wavelengths (nm) | 464, 472, 480, 489, 499, 508, 516, 526, 534, 544, 552, 561, 571, 580, 588, 597 | 609, 625, 648, 666, 683, 700, 718, 736, 754, 770, 786, 802, 818, 833, 849 |
Model | SVR | RR | K-NNR | RFR | ||||
---|---|---|---|---|---|---|---|---|
SSC | NB | 8 | NB | 10 | NB | 7 | NB | 3 |
C | 200 | 0 | k | 6 | NE | 20 | ||
gamma | 2.9 | ND | 15 | |||||
MC | NB | 4 | NB | 6 | NB | 2 | NB | 4 |
C | 400 | 0 | K | 11 | NE | 10 | ||
gamma | 2.9 | ND | 10 |
Factor | Model | Training Set | Validation Set | Testing Set | |||
---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | ||
SSC | SVR | 0.88 | 0.88% Brix | 0.87 | 0.95% Brix | 0.86 | 1.06% Brix |
RR | 0.75 | 1.27% Brix | 0.72 | 1.32% Brix | 0.71 | 1.43% Brix | |
K-NNR | 0.74 | 1.31% Brix | 0.68 | 1.50% Brix | 0.62 | 1.64% Brix | |
RFR | 0.95 | 0.60% Brix | 0.69 | 1.48% Brix | 0.66 | 1.55% Brix | |
MC | SVR | 0.83 | 0.76% | 0.79 | 0.99% | 0.74 | 1.05% |
RR | 0.72 | 0.97% | 0.68 | 1.03% | 0.64 | 1.21% | |
K-NNR | 0.70 | 1.01% | 0.61 | 1.19% | 0.57 | 1.30% | |
RFR | 0.97 | 0.33% | 0.75 | 1.05% | 0.70 | 1.11% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, B.-H.; Lee, K.-B.; Hong, Y.; Kim, K.-C. Determination of Internal Quality Indices in Oriental Melon Using Snapshot-Type Hyperspectral Image and Machine Learning Model. Agronomy 2022, 12, 2236. https://doi.org/10.3390/agronomy12092236
Cho B-H, Lee K-B, Hong Y, Kim K-C. Determination of Internal Quality Indices in Oriental Melon Using Snapshot-Type Hyperspectral Image and Machine Learning Model. Agronomy. 2022; 12(9):2236. https://doi.org/10.3390/agronomy12092236
Chicago/Turabian StyleCho, Byeong-Hyo, Ki-Beom Lee, Youngki Hong, and Kyoung-Chul Kim. 2022. "Determination of Internal Quality Indices in Oriental Melon Using Snapshot-Type Hyperspectral Image and Machine Learning Model" Agronomy 12, no. 9: 2236. https://doi.org/10.3390/agronomy12092236
APA StyleCho, B.-H., Lee, K.-B., Hong, Y., & Kim, K.-C. (2022). Determination of Internal Quality Indices in Oriental Melon Using Snapshot-Type Hyperspectral Image and Machine Learning Model. Agronomy, 12(9), 2236. https://doi.org/10.3390/agronomy12092236