Accumulation of Volatile Fatty Acids from Hydrothermally Treated Strawberry Extrudate through Anaerobic Fermentation at Different pH Values
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inoculum and Substrates Used during the Experimentation
2.2. Experimental Set-Up and Experimental Design
2.3. Analytical Methods
2.4. Calculations
3. Results
3.1. Effect of the Hydrothermal Treatment in Organic Matter Solubilisation
3.2. Solubilisation of the Substrate and Methane Production
3.3. Accumulation of Volatile Fatty Acids
3.4. Concentration of Soluble Sugars and Soluble Phenols
3.5. Microbial Metabolic Activity Stages
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeong, H.; Park, S.-Y.; Ryu, G.-H.; Choi, J.-H.; Kim, J.-H.; Choi, W.-S.; Lee, S.M.; Choi, J.W.; Choi, I.-G. Catalytic conversion of hemicellulosic sugars derived from biomass to levulinic acid. Catal. Commun. 2018, 117, 19–25. [Google Scholar] [CrossRef]
- Fermoso, F.G.; Serrano, A.; Alonso-Fariñas, B.; Fernández-Bolaños, J.; Borja, R.; Rodríguez-Gutiérrez, G. Valuable Compound Extraction, Anaerobic Digestion, and Composting: A Leading Biorefinery Approach for Agricultural Wastes. Am. Chem. Soc. 2018, 66, 8451–8468. [Google Scholar] [CrossRef]
- Nilsson, A.E.; Sohn, J.; Vega, G.C.; Birkved, M.; Olsen, S.I. Testing the no agricultural waste concept—An environmental comparison of biorefinery value chains in various regions. Resour. Conserv. Recycl. 2021, 174, 105702. [Google Scholar] [CrossRef]
- Siles, J.; Serrano, A.; Martín, A. Biomethanization of waste derived from strawberry processing: Advantages of pretreatment. J. Clean. Prod. 2013, 42, 190–197. [Google Scholar] [CrossRef]
- Cubero-Cardoso, J.; Trujillo-Reyes, A.; Rodríguez-Gutiérrez, G.; Borja, R.; Fermoso, F. High-Value-Added Compound Recovery with High-Temperature Hydrothermal Treatment and Steam Explosion, and Subsequent Biomethanization of Residual Strawberry Extrudate. Foods 2020, 9, 1082. [Google Scholar] [CrossRef]
- Achinas, S.; Achinas, V.; Euverink, G.J.W. A Technological Overview of Biogas Production from Biowaste. Engineering 2017, 3, 299–307. [Google Scholar] [CrossRef]
- Obruca, S.; Benesova, P.; Marsalek, L.; Marova, I. Use of Lignocellulosic Materials for PHA Production. Chem. Biochem. Eng. Q. 2015, 29, 135–144. [Google Scholar] [CrossRef]
- Cabrera, F.; Serrano, A.; Torres, A.; Rodriguez-Gutierrez, G.; Jeison, D.; Fermoso, F.G. The accumulation of volatile fatty acids and phenols through a pH-controlled fermentation of olive mill solid waste. Sci. Total Environ. 2019, 657, 1501–1507. [Google Scholar] [CrossRef]
- Khiewwijit, R.; Temmink, H.; Labanda, A.; Rijnaarts, H.; Keesman, K.J. Production of volatile fatty acids from sewage organic matter by combined bioflocculation and alkaline fermentation. Bioresour. Technol. 2015, 197, 295–301. [Google Scholar] [CrossRef]
- Serrano, A.; Newton, G.; Alonso-Fariñas, B.; Fermoso, F.G.; Villa-Gomez, D.K. pH-Controlled fermentation of strawberry waste as phenol solubilisation method. J. Clean. Prod. 2020, 266, 121924. [Google Scholar] [CrossRef]
- Liu, H.; Han, P.; Liu, H.; Zhou, G.; Fu, B.; Zheng, Z. Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater. Bioresour. Technol. 2018, 260, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.; Massanet-Nicolau, J.; Fernandez–Feito, R.; Dinsdale, R.; Guwy, A. Fermentative volatile fatty acid production and recovery from grass using a novel combination of solids separation, pervaporation, and electrodialysis technologies. Bioresour. Technol. 2021, 342, 125926. [Google Scholar] [CrossRef]
- EIA, U.S. Energy Information Administration. Available online: https://www.eia.gov/dnav/ng/hist/n3035us3m.htm (accessed on 19 December 2022).
- Petersen, A.M.; Franco, T.; Görgens, J.F. Comparison of recovery of volatile fatty acids and mixed ketones as alternative downstream processes for acetogenisis fermentation. Biofuels Bioprod. Biorefin. 2018, 12, 882–898. [Google Scholar] [CrossRef]
- Liu, C.-F.; Yuan, X.-Z.; Zeng, G.-M.; Li, W.-W.; Li, J. Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresour. Technol. 2008, 99, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Cubero-Cardoso, J.; Russo, E.; Serrano, A.; Trujillo-Reyes, A.; Villa-Gomez, D.; Esposito, G.; Fermoso, F.G. Enhancing the recovery of volatile fatty acids from strawberry extrudate through anaerobic fermentation at different pH values. Environ. Technol. Innov. 2022, 28, 102587. [Google Scholar] [CrossRef]
- Hendriks, A.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef]
- Rodríguez-Gutiérrez, G.; Cardoso, J.C.; Rubio-Senent, F.; Serrano, A.; Borja, R.; Fernández-Bolaños, J.; Fermoso, F.G. Thermally-treated strawberry extrudate: A rich source of antioxidant phenols and sugars. Innov. Food Sci. Emerg. Technol. 2019, 51, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Trujillo-Reyes, A.; Cubero-Cardoso, J.; Rodríguez-Gutiérrez, G.; García-Martín, J.F.; Rodríguez-Galán, M.; Borja, R.; Serrano, A.; Fermoso, F.G. Extraction of phenolic compounds and production of biomethane from strawberry and raspberry extrudates. Biochem. Eng. J. 2019, 147, 11–19. [Google Scholar] [CrossRef]
- Baird, R.B.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater; APHA/AWWA/WEF: Denver, CO, USA, 2012; p. 541. ISBN 9780875532356. [Google Scholar]
- García, A.; Alriols, M.G.; Spigno, G.; Labidi, J. Lignin as natural radical scavenger. Effect of the obtaining and purification processes on the antioxidant behaviour of lignin. Biochem. Eng. J. 2012, 67, 173–185. [Google Scholar] [CrossRef]
- Serrano, A.; Fermoso, F.G.; Alonso-Fariñas, B.; Rodríguez-Gutiérrez, G.; López, S.; Fernandez-Bolaños, J.; Borja, R. Performance evaluation of mesophilic semi-continuous anaerobic digestion of high-temperature thermally pre-treated olive mill solid waste. Waste Manag. 2019, 87, 250–257. [Google Scholar] [CrossRef]
- Garrote, G.; Domínguez, H.; Parajó, J.C. Hydrothermal processing of lignocellulosic materials. Holz. Als. Roh. Und Werkst. 1999, 57, 191–202. [Google Scholar] [CrossRef]
- Tan, Z.; Li, X.; Yang, C.; Liu, H.; Cheng, J.J. Inhibition and disinhibition of 5-hydroxymethylfurfural in anaerobic fermentation: A review. Chem. Eng. J. 2021, 424, 130560. [Google Scholar] [CrossRef]
- Ghasimi, D.S.; Aboudi, K.; de Kreuk, M.; Zandvoort, M.H.; van Lier, J.B. Impact of lignocellulosic-waste intermediates on hydrolysis and methanogenesis under thermophilic and mesophilic conditions. Chem. Eng. J. 2016, 295, 181–191. [Google Scholar] [CrossRef]
- Huang, C.; Xiong, L.; Guo, H.-J.; Li, H.-L.; Wang, C.; Chen, X.-F.; Zhao, C.; Chen, X.-D. Anaerobic digestion of elephant grass hydrolysate: Biogas production, substrate metabolism and outlet effluent treatment. Bioresour. Technol. 2019, 283, 191–197. [Google Scholar] [CrossRef]
- Tampio, E.; Ervasti, S.; Paavola, T.; Heaven, S.; Banks, C.; Rintala, J. Anaerobic digestion of autoclaved and untreated food waste. Waste Manag. 2014, 34, 370–377. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Chen, Y.; Zhou, Q. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: Effect of pH. Water Res. 2009, 43, 3735–3742. [Google Scholar] [CrossRef]
- Wheatley, A. Anaerobic Digestion: A Waste Treatment Technology; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Li, Q.; Yang, S.; Li, Y.; Huang, Y.; Zhang, J. Antioxidant activity of free and hydrolyzed phenolic compounds in soluble and insoluble dietary fibres derived from hulless barley. LWT 2019, 111, 534–540. [Google Scholar] [CrossRef]
- Jie, W.; Peng, Y.; Ren, N.; Li, B. Volatile fatty acids (VFAs) accumulation and microbial community structure of excess sludge (ES) at different pHs. Bioresour. Technol. 2014, 152, 124–129. [Google Scholar] [CrossRef]
- Fang, W.; Zhang, X.; Zhang, P.; Wan, J.; Guo, H.; Ghasimi, D.S.; Morera, X.C.; Zhang, T. Overview of key operation factors and strategies for improving fermentative volatile fatty acid production and product regulation from sewage sludge. J. Environ. Sci. 2020, 87, 93–111. [Google Scholar] [CrossRef]
- Li, X.; Peng, Y.; Zhao, Y.; Zhang, L.; Han, B. Volatile Fatty Acid Accumulation by Alkaline Control Strategy in Anaerobic Fermentation of Primary Sludge. Environ. Eng. Sci. 2017, 34, 703–710. [Google Scholar] [CrossRef]
- Caroca, E.; Serrano, A.; Borja, R.; Jiménez, A.; Carvajal, A.; Braga, A.; Rodriguez-Gutierrez, G.; Fermoso, F. Influence of phenols and furans released during thermal pretreatment of olive mill solid waste on its anaerobic digestion. Waste Manag. 2020, 120, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.; Palmqvist, E.; Hahn-Hägerdal, B.; Tengborg, C.; Stenberg, K.; Zacchi, G.; Nilvebrant, N.-O. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzym. Microb. Technol. 1999, 24, 151–159. [Google Scholar] [CrossRef]
- Barakat, A.; Mayer-Laigle, C.; Solhy, A.; Arancon, R.A.D.; De Vries, H.; Luque, R. Mechanical pretreatments of lignocellulosic biomass: Towards facile and environmentally sound technologies for biofuels production. RSC Adv. 2014, 4, 48109–48127. [Google Scholar] [CrossRef]
- Ortega, L.; Husser, C.; Barrington, S.; Guiot, S.R. Evaluating limiting steps of anaerobic degradation of food waste based on methane production tests. Water Sci. Technol. 2008, 57, 419–422. [Google Scholar] [CrossRef]
- Kleerebezem, R.; Joosse, B.; Rozendal, R.; van Loosdrecht, M.C.M. Anaerobic digestion without biogas? Rev. Environ. Sci. Bio/Technol. 2015, 14, 787–801. [Google Scholar] [CrossRef] [Green Version]
- Peces, M.; Astals, S.; Jensen, P.D.; Clarke, W.P. Transition of microbial communities and degradation pathways in anaerobic digestion at decreasing retention time. New Biotechnol. 2021, 60, 52–61. [Google Scholar] [CrossRef]
- Wu, H.; Gao, J.; Yang, D.; Zhou, Q.; Liu, W. Alkaline fermentation of primary sludge for short-chain fatty acids accumulation and mechanism. Chem. Eng. J. 2010, 160, 1–7. [Google Scholar] [CrossRef]
- Duan, Y.; Zhou, A.; Yue, X.; Zhang, Z.; Gao, Y.; Luo, Y. Intensification of Short Chain Fatty Acid Production during the Alkaline Pretreatment of Fine-Sieving Fractions. Energies 2020, 13, 4690. [Google Scholar] [CrossRef]
SE | HTSE | |
---|---|---|
pH | 3.7 ± 0.1 | 4.1 ± 0.1 |
Moisture (%) | 85.5 | 87.0 |
TSs (g/kg SE) | 145 ± 4 | 130 ±2 |
FSs (g/kg SE) | 5 ± 1 | 6 ± 2 |
VSs (g/kg SE) | 139 ± 4 | 124 ± 3 |
CODtot (g O2/kg SE) | 200 ± 6 | 186 ± 3 |
CODS (g O2/kg SE) | 47 ± 1 | 61 ± 1 |
%Ratio (CODS/CODtot) | 23 | 33 |
Total Phenols (mg gallic acid/kg SE) | 2185 ± 64 | 1751 ± 62 |
Soluble Phenols (mg gallic acid/kg SE) | 103 ± 2 | 987 ± 34 |
Total Sugars (mg glucose/kg SE) | 29,466 ± 431 | 26,799 ± 1227 |
Soluble Sugars (mg glucose/kg VS) | 2023 ± 99 | 19,591 ± 721 |
Hydroxymethylfurfural (mg/g SE) | <D.L. | 505 ± 1 |
pH 5 | ||||
Days | Soluble Sugars (mg Glucose/L) | Soluble Phenols (mg Gallic Acid/L) | ||
SE | HTSE | SE | HTSE | |
0 | 48 ± 5 | 43 ± 7 | 99 ± 3 | 90 ± 2 |
7 | 41 ± 2 | 38 ± 5 | 170 ± 7 | 152 ± 23 |
21 | 19 ± 1 | 19 ± 2 | 119 ± 6 | 112 ± 2 |
28 | 66 ± 9 | 63 ± 3 | 107 ± 5 | 101 ± 3 |
35 | 59 ± 6 | 57 ± 4 | 166 ± 6 | 162 ± 5 |
43 | 49 ± 5 | 49 ± 2 | 149 ± 10 | 141 ± 23 |
pH 9 | ||||
Days | Soluble Sugars (mg Glucose/L) | Soluble Phenols (mg Gallic Acid/L) | ||
SE | HTSE | SE | HTSE | |
0 | - | - | 19 ± 7 | 23 ± 5 |
13 | 157 ± 136 | 152 ± 142 | 58 ± 3 | 53 ± 7 |
20 | 51 ± 9 | 47 ± 5 | 67 ± 5 | 65 ± 9 |
28 | 57 ± 13 | 53 ± 2 | 72 ± 15 | 69 ± 17 |
34 | 63 ± 10 | 63 ± 4 | 102 ± 15 | 100 ± 31 |
42 | 62 ± 9 | 89 ± 2 | 95 ± 21 | 86 ± 25 |
49 | 65 ± 5 | 89 ± 7 | 89 ± 31 | 106 ± 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, A.; Russo, E.; Chaves-Quesada, B.; Cubero-Cardoso, J.; Trujillo-Reyes, Á.; Esposito, G.; Xu, X.; Fermoso, F.G. Accumulation of Volatile Fatty Acids from Hydrothermally Treated Strawberry Extrudate through Anaerobic Fermentation at Different pH Values. Agronomy 2023, 13, 120. https://doi.org/10.3390/agronomy13010120
Serrano A, Russo E, Chaves-Quesada B, Cubero-Cardoso J, Trujillo-Reyes Á, Esposito G, Xu X, Fermoso FG. Accumulation of Volatile Fatty Acids from Hydrothermally Treated Strawberry Extrudate through Anaerobic Fermentation at Different pH Values. Agronomy. 2023; 13(1):120. https://doi.org/10.3390/agronomy13010120
Chicago/Turabian StyleSerrano, Antonio, Egidio Russo, Blanca Chaves-Quesada, Juan Cubero-Cardoso, Ángeles Trujillo-Reyes, Giovanni Esposito, Xiaofan Xu, and Fernando G. Fermoso. 2023. "Accumulation of Volatile Fatty Acids from Hydrothermally Treated Strawberry Extrudate through Anaerobic Fermentation at Different pH Values" Agronomy 13, no. 1: 120. https://doi.org/10.3390/agronomy13010120
APA StyleSerrano, A., Russo, E., Chaves-Quesada, B., Cubero-Cardoso, J., Trujillo-Reyes, Á., Esposito, G., Xu, X., & Fermoso, F. G. (2023). Accumulation of Volatile Fatty Acids from Hydrothermally Treated Strawberry Extrudate through Anaerobic Fermentation at Different pH Values. Agronomy, 13(1), 120. https://doi.org/10.3390/agronomy13010120