Evaluation of Copper-Free Alternatives to Control Grey Mould in Organic Mediterranean Greenhouse Tomato Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Screening of Alternatives to Copper as Fungicides against Botrytis cinerea
2.1.1. Pathogen Isolates
2.1.2. Alternatives to Copper Tested
- Mineral foliar fertilisers with low or no copper content (three products): copper gluconate, zinc, and silicon;
- Formulations based on basic substances as defined by the European Commission [26] (three products): Equisetum arvense (two formulations: Equisetum 1 and Equisetum 2) and chitosan;
- Formulations based on plant extracts (four products): cinnamon extract (two formulations: Cinnamon 1 and Cinnamon 2), Mimosa, and Camelia;
- Fungicides authorised for organic farming as defined by the European Commission [26] (two products): potassium hydrogen carbonate (PHC) and lime sulphur.
2.1.3. Effect of Alternatives to Copper on Mycelial Growth
2.1.4. Analyses for the Presence of Fungicidal Pollutants in the Formulations
2.1.5. Cost of Alternatives to Copper Application
2.2. Greenhouse Evaluation of Two Selected Alternatives to Copper as Fungicides against Botrytis cinerea
2.2.1. Location and Experimental Greenhouses
2.2.2. Plant Material and Crop Conditions
2.2.3. Treatments and Experimental Design
2.2.4. Analysed Variables
- Grey mould incidence
- Crop production
2.3. Statistical Analyses
3. Results
3.1. In Vitro Screening of Alternatives to Copper as Fungicides against Botrytis cinerea
3.1.1. Effect of Alternatives to Copper on Mycelial Growth and on Spore and Sclerotia Production
3.1.2. Fungicidal vs. Fungistatic Efficacy of the Treatments
3.1.3. Presence of Fungicidal Pollutants in the Products
3.1.4. Comparison of Product Application Costs
3.2. Greenhouse Evaluation of Two Selected Alternatives to Copper as Fungicides against Botrytis cinerea
Grey Mould Incidence
- Distribution of symptoms in plants
- Tomato plant mortality due to grey mould
- Crop production
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elad, Y. Cultural and Integrated Control of Botrytis spp. In Botrytis–The Fungus, the Pathogen, and Its Management in Agricultural Systems; Fillinger, S., Elad, Y., Eds.; Springer: Cham, Switzerland, 2016; pp. 149–164. ISBN 978-3-319-23370-3. [Google Scholar]
- Garfinkel, A.R. The history of Botrytis taxonomy, the rise of phylogenetics, and implications for species recognition. Phytopathology 2021, 111, 437–454. [Google Scholar] [CrossRef] [PubMed]
- Dean, R.; van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boddy, L. Pathogens of autotrophs. In The Fungi, 3rd ed.; Academic Press: London, UK, 2016; pp. 245–292. ISBN 978-0-12-382034-1. [Google Scholar]
- Carisse, O. Epidemiology and Aerobiology of Botrytis spp. In Botrytis–The Fungus, the Pathogen, and Its Management in Agricultural Systems; Fillinger, S., Elad, Y., Eds.; Springer: Cham, Switzerland, 2016; pp. 127–148. ISBN 978-3-319-23370-3. [Google Scholar]
- Dik, A.J.; Wubben, J.P. Epidemiology of Botrytis cinerea diseases in greenhouses. In Botrytis: Biology, Pathology and Control; Elad, Y., Williamson, B., Tudzynski, P., Delen, N., Eds.; Springer: Cham, Switzerland, 2007; pp. 310–333. ISBN 978-1-4020-2624-9. [Google Scholar]
- Shtienberg, D.; Elad, Y.; Niv, A.; Nitzani, Y.; Kirshner, B. Significance of leaf infection by Botrytis cinerea in stem rotting of tomatoes grown in non-heated greenhouses. Eur. J. Plant Pathol. 1998, 104, 753–763. [Google Scholar] [CrossRef]
- Elad, Y.; Shtienberg, D.; Yunis, H.; Mahrer, Y. Epidemiology of grey mould, caused by Botrytis cinerea in vegetable greenhouses. In Recent Advances in Botrytis Research; Verhoeff, K., Malathrakis, N.E., Williamson, B., Eds.; Pudoc Scientific Publishers: Wageningen, The Netherlands, 1992; pp. 272–276. [Google Scholar]
- Elad, Y.; Yunis, H. Effect of microclimate and nutrients on development of cucumber gray mold (Botrytis cinerea). Phytoparasitica 1993, 21, 257–268. [Google Scholar] [CrossRef]
- Jarvis, W.R. Managing Diseases in Greenhouse Crops; APS Press: St. Paul, MN, USA, 1992; 288p. [Google Scholar]
- O’Neill, T.M.; Shtienberg, D.; Elad, Y. Effect of some host and microclimate factors on infection of tomato stems by Botrytis cinerea. Plant Dis. 1997, 81, 36–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yunis, H.; Shtienberg, D.; Elad, Y.; Mahrer, Y. Qualitative approach for modelling outbreaks of grey mould epidemics in non-heated cucumber greenhouse. Crop Prot. 1994, 13, 99–104. [Google Scholar] [CrossRef]
- Panno, S.; Davino, S.; Caruso, A.G.; Bertacca, S.; Crnogorac, A.; Mandić, A.; Noris, E.; Matić, S. A Review of the Most Common and Economically Important Diseases That Undermine the Cultivation of Tomato Crop in the Mediterranean Basin. Agronomy 2021, 11, 2188. [Google Scholar] [CrossRef]
- Junta De Andalucía. Producción Ecológica en Andalucía Balance. 2020. Available online: https://www.juntadeandalucia.es/export/drupaljda/DECO21_Balance_Estadistico_Produccion_Ecologica_2020_v1.pdf (accessed on 13 December 2021).
- Cajamar. Análisis de la Campaña Hortofrutícola de Almería. Campaña 2020/2021. 2021. Available online: https://publicacionescajamar.es/series-tematicas/informes-coyuntura-analisis-de-campana/analisis-de-la-campana-hortofruticola-de-almeria-campana-2020-2021 (accessed on 28 July 2022).
- Blancard, D. Enfermedades del Tomate. Observar, Identificar, Luchar; Mundiprensa-INRA: Paris, France, 1990; 212p. [Google Scholar]
- Messiaen, C.M.; Blancard, D.; Rouxel, F.; Lafon, R. Enfermedades de las Hortalizas, 3rd ed.; Mundiprensa-INRA: Paris, France, 1995; 576p. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) 2021/1165 of 15 July 2021 Authorising Certain Products and Substances for Use in Organic Production and Establishing Their Lists. 2021. Available online: http://data.europa.eu/eli/reg_impl/2021/1165/oj (accessed on 3 August 2022).
- Tamm, L.; Thuerig, B.; Apostolov, S.; Blogg, H.; Borgo, E.; Corneo, P.E.; Fittje, S.; de Palma, M.; Donko, A.; Experton, C.; et al. Use of Copper-Based Fungicides in Organic Agriculture in Twelve European Countries. Agronomy 2022, 12, 673. [Google Scholar] [CrossRef]
- Varga, K.; Fehér, J.; Trugly, B.; Drexler, D.; Leiber, F.; Verrastro, V.; Magid, J.; Chylinski, C.; Athanasiadou, S.; Thuerig, B.; et al. The State of Play of Copper, Mineral Oil, External Nutrient Input, Anthelmintics, Antibiotics and Vitamin Usage and Available Reduction Strategies in Organic Farming across Europe. Sustainability 2022, 14, 3182. [Google Scholar] [CrossRef]
- La Torre, A.; Iovino, V.; Caradonia, F. Copper in plant protection: Current situation and prospects. Phytopathol. Mediterr. 2018, 57, 201–236. [Google Scholar]
- Golubeva, P.; Ryo, M.; Muller, L.A.H.; Ballhausen, M.B.; Lehmann, A.; Sosa-Hernández, M.A.; Rillig, M.C. Soil Saprobic Fungi Differ in Their Response to Gradually and Abruptly Delivered Copper. Front. Microbiol. 2020, 11, 1195. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, O.M.; Azab, K.S. Biological indicators, genetic polymorphism and expression in Aspergillus flavus under copper mediated stress. J. Radiat. Res. Appl. Sci. 2013, 6, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Marín-Guirao, J.I.; De Cara-García, M.; Crisol-Martínez, E.; Gómez-Tenorio, M.Á.; García-Raya, P.; Tello-Marquina, J.C. Association of plant development to organic matter and fungal presence in soils of horticultural crops. Ann. Appl. Biol. 2019, 174, 339–348. [Google Scholar] [CrossRef]
- European Commission. Commission Implementig Regulation (EU) 2018/1981 of 13 December 2018 Renewing the Approval of the Active Substances Copper Compounds, as Candidates for Substitution, in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending the Annex to Commission Implementing Regulation (EU) No 540/2011. 2018. Available online: http://data.europa.eu/eli/reg_impl/2018/1981/oj (accessed on 3 August 2022).
- European Commission. Consolidated Text: Commission Implementing Regulation (EU) No 540/2011 of 25 May 2011 Implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as Regards the List of Approved Active Substances (Part E of the Annex; Text with EEA Relevance). Available online: http://data.europa.eu/eli/reg_impl/2011/540/oj (accessed on 3 August 2022).
- Katsoulas, N.; Løes, A.K.; Andrivon, D.; Cirvilleri, G.; de Cara, M.; Kir, A.; Knebl, L.; Malińska, K.; Oudshoorn, F.W.; Willer, H.; et al. Current use of copper, mineral oils and sulphur for plant protection in organic horticultural crops across 10 European countries. Org. Agric. 2020, 10 (Suppl. S1), 159–171. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols. A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press Inc.: New York, NY, USA, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- Valera, D.L.; Belmonte, L.J.; Molina-Aiz, F.D.; López, A.; Camacho, F. The greenhouses of Almería, Spain: Technological analysis and profitability. Acta Hortic. 2017, 1170, 219–226. [Google Scholar] [CrossRef]
- Baeza, E.; Pérez-Parra, J.; López, J.C.; Gázquez, J.C. Ventilación natural. In Manejo del Clima en el Invernadero Mediterráneo; Sánchez-Guerrero, M.C., Lorenzo, P., Alonso, F.J., Medrano, E., Eds.; Instituto de Investigación y Formación Agraria y Pesquera de Andalucía: Almería, Spain, 2010; pp. 13–32. [Google Scholar]
- Fan, F.; Li, N.; Li, G.Q.; Luo, C.X. Occurrence of Fungicide Resistance in Botrytis cinerea from Greenhouse Tomato in Hubei Province, China. Plant Dis. 2016, 100, 2414–2421. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Fu, L.; Tan, H.; Jiang, J.; Che, Z.; Tian, Y.; Chen, G. Resistance to Boscalid in Botrytis cinerea From Greenhouse-Grown Tomato. Plant Dis. 2021, 105, 628–635. [Google Scholar] [CrossRef]
- Rosslenbroich, H.J.; Stuebler, D. Botrytis cinerea—History of chemical control and novel fungicides for its management. Crop Prot. 2000, 19, 557–561. [Google Scholar] [CrossRef]
- Rodríguez, A.; Acosta, A.; Rodríguez, C. Fungicide resistance of Botrytis cinerea in tomato greenhouses in the Canary Islands and effectiveness of non-chemical treatments against gray mold. World J. Microbiol. Biotechnol. 2014, 30, 2397–2406. [Google Scholar] [CrossRef]
- Kovačec, E.; Regvar, M.; van Elteren, J.T.; Arčon, I.; Papp, T.; Makovec, D.; Vogel-Mikuš, K. Biotransformation of copper oxide nanoparticles by the pathogenic fungus Botrytis cinerea. Chemosphere 2017, 180, 178–185. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, N.; Yang, J.; Yang, L.; Wu, M.; Chen, W.; Li, G.; Zhang, J. Contrast Between Orange- and Black-Colored Sclerotial Isolates of Botrytis cinerea: Melanogenesis and Ecological Fitness. Plant Dis. 2018, 102, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Jabnoun-Khiareddine, H.; Abdallah, R.; El-Mohamedy, R.; Abdel-Kareem, F.; Gueddes-Chahed, M.; Hajlaoui, A.; Daami-Remadi, M. Comparative efficacy of potassium salts against soil-borne and air-borne fungi and their ability to suppress tomato wilt and fruit rots. J. Microb. Biochem. Technol. 2016, 8, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Palmer, C.L.; Horst, R.K.; Langhans, R.W. Use of Bicarbonates to Inhibit in vitro Colony Growth of Botrytis cinerea. Plant Dis. 1997, 81, 1432–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piermann, L.; Fujinawa, M.K.; Pontes, N.C.; Galvão, J.A.H.; Bettiol, W. Inhibition of mycelial growth, conidial germination, and Botrytis cinerea Pers.: Fr colonization in begonia with biocompatible products. Sci. Agric. 2023, 80, e20210062. [Google Scholar] [CrossRef]
- Almasaudi, N.M.; Al-Qurashi, A.D.; Elsayed, M.I.; Abo-Elyousr, K.A.M. Essential oils of oregano and cinnamon as an alternative method for control of gray mold disease of table grapes caused by Botrytis cinerea. J. Plant Pathol. 2022, 104, 317–328. [Google Scholar] [CrossRef]
- Ebrahimi, L.; Jalali, H.; Etebarian, H.R.; Sahebani, N. Evaluation of antifungal activity of some plant essential oils against tomato grey mould disease. J. Plant Pathol. 2022, 104, 641–650. [Google Scholar] [CrossRef]
- Kowalska, J.; Tyburski, J.; Krzymińska, J.; Jakubowska, M. Cinnamon powder: An In Vitro and In Vivo evaluation of antifungal and plant growth promoting activity. Eur. J. Plant Pathol. 2020, 156, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Sernaite, L.; Rasiukevičiūtė, N.; Valiuškaitė, A. The extracts of cinnamon and cloves as potential biofungicides against strowbery grey mould. Plants 2020, 9, 613. [Google Scholar] [CrossRef]
- Wilson, C.L.; Solar, J.M.; Ghaouth, A.E.; Wisniewski, M.E. Rapid evaluation of plant extracts and essential oils for antifungal activity against Botrytis cinerea. Plant Dis. 1997, 81, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, J.; Tyburski, J.; Matysiak, K.; Jakubowska, M.; Łukaszyk, J.; Krzymińska, J. Cinnamon as a Useful Preventive Substance for the Care of Human and Plant Health. Molecules 2021, 26, 5299. [Google Scholar] [CrossRef]
- Melgarejo-Flores, B.G.; Ortega-Ramírez, L.A.; Silva-Espinoza, B.A.; González-Aguilar, G.A.; Miranda, M.R.A.; Ayala-Zavala, J.F. Antifungal protection and antioxidant enhancement of table grapes treated with emulsions, vapors, and coatings of cinnamon leaf oil. Postharvest Biol. Technol. 2013, 86, 321–328. [Google Scholar] [CrossRef]
- Laurent, A.; Makowski, D.; Aveline, N.; Dupin, S.; Miguez, F.E. On-Farm Trials Reveal Significant but Uncertain Control of Botrytis cinerea by Aureobasidium pullulans and Potassium Bicarbonate in Organic Grapevines. Front. Plant Sci. 2021, 12, 620786. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, F.; Anastassiadou, M.; Arena, M.; Auteri, D.; Brancato, A.; Bura, L.; Carrasco Cabrera, L.; Castoldi, A.F.; Chaideftou, E.; Chiusolo, A.; et al. Conclusion on the peer review of the pesticide risk assessment of the active substance potassium hydrogen carbonate. EFSA J. 2021, 19, 6593. [Google Scholar] [CrossRef]
- Pérez-Vargas, M. Epidemiología y Control de Phytophthora parasitica en Cultivos de Tomate y Pimiento Bajo Abrigo en el Sureste Peninsular de España. Ph.D. Thesis, Universidad de Almería, Almería, Spain, 2011; 116p. [Google Scholar]
Product (% Active Ingredient) | Commercial Name, Manufacturer | Minimum Dose | Maximum Dose |
---|---|---|---|
Copper gluconate 5% | Cobregluc, Bioera S.L. | 2 mL/L | 4 mL/L |
Zinc 6% | Zibac, Nutricrop S.L. | 2 mL/L | 2.5 mL/L |
Silicon (23%) | Hortosil, Nutricrop S.L. | 2 mL/L | 4 mL/L |
Equisetum 1 (2%) | Equisetomax, Bioera S.L. | 2 mL/L | 5 mL/L |
Equisetum 2 (2%) | Lykos, Nutricrop S.L. | 3 mL/L | 5 mL/L |
Chitosan (3%) | Camaro, Nutricrop S.L. | 1 mL/L | 3 mL/L |
Cinnamon 1 * | Verumze, Bioera S.L. | 1 mL/L | 1.5 mL/L |
Cinnamon 2 * | Cinna, Hortalan Med S.L. | 1.5 mL/L | 3 mL/L |
Mimosa * | Mimset, Hortalan Med S. L. | 2 mL/L | 3 mL/L |
Camelia * | Simensis, Hortalan Med S.L. | 3 mL/L | 5 mL/L |
Potassium hydrogen carbonate (85%) (PHC) | Armicarb®, Certis Europe B.V. | 3 g/L | 5 g/L |
Lime sulphur (18.5%) | Polisulfuro de cal ORO, Químicas ORO S.A. | - | 100 mL/L |
Copper oxychloride (50%) | Codimur 50, Exclusivas Sarabia S.A. | - | 4 g/L |
Cost of Application (EUR/ha) | ||||
---|---|---|---|---|
Product | Unitary Price | Minimum Dose | Maximum Dose | |
Silicon 23% | 12 | EUR/5 L | 5 | 10 |
Copper gluconate 5% | 6 | EUR/L | 12 | 24 |
Copper oxychloride 50% | 6 | EUR/kg | 12 | 24 |
Chitosan | 11 | EUR/L | 11 | 32 |
Equisetum 2 | 7 | EUR/L | 20 | 33 |
Zinc 6% | 16 | EUR/L | 31 | 39 |
Equisetum 1 | 9 | EUR/L | 19 | 47 |
Mimosa | 17 | EUR/L | 38 | 56 |
Cinnamon 1 | 50 | EUR/L | 50 | 75 |
Cinnamon 2 | 24 | EUR/L | 39 | 78 |
Potassium hydrogen carbonate 85% | 100 | EUR/5 kg | 60 | 100 |
Camelia | 26 | EUR/L | 78 | 130 |
Lime sulphur 18.5% | 70 | EUR/25 L | - | 300 |
GH1 + GH2 Tomato “Valenciano-Type” | GH3 Tomato cv. Caniles | |||||||
---|---|---|---|---|---|---|---|---|
Treatment | Petioles (%) | Leaves (%) | Stem (%) | Fruits (%) | Petioles (%) | Leaves (%) | Stem (%) | Fruits (%) |
Season 1, 2019–2020 | ||||||||
Cinnamon extract (200 mL/hL) | 4.9 ± 3.7 | 52.6 ± 10.6 | 4.3 ± 3.1 | 38.3 ± 11.0 | 35.4 ± 5.4 | 41.3 ± 6.4 | 17.5 ± 2.6 | 5.8 ± 4.8 |
Copper oxychloride 50% (400 g/hL) | 7.7 ± 4.4 | 49.9 ± 17.5 | 3.5 ± 4.1 | 39.0 ± 10.7 | 25.0 ± 6.8 | 51.7 ± 7.9 | 15.3 ± 2.9 | 8.0 ± 1.3 |
Potassium hydrogen carbonate 85% (300 g/hL) | 4.4 ± 2.2 | 47.8 ± 19.4 | 9.6 ± 4.2 | 38.2 ± 17.4 | 30.3 ± 9.7 | 45.3 ± 9.2 | 17.8 ± 8.6 | 6.7 ± 3.7 |
p-value | 0.4684 | 0.9167 | 0.1165 | 0.9927 | 0.2088 | 0.2282 | 0.8382 | 0.5868 |
Season 2, 2020–2021 | ||||||||
Cinnamon extract (200 mL/hL) | 5.8 ± 1.4 | 58.7 ± 4.8 | 0.7 ± 0.7 | 34.8 ± 6.1 | 11.0 ± 6.3 | 83.8 ± 8.1 | 0.0 ± 0.0 | 5.3 ± 3.7 |
Copper oxychloride 50% (400 g/hL) | 6.1 ± 0.7 | 68.0 ± 5.0 | 0.9 ± 0.5 | 25.0 ± 4.8 | 14.9 ± 11.5 | 79.7 ± 14.5 | 0.0 ± 0.0 | 5.4 ± 3.9 |
Potassium hydrogen carbonate 85% (300 g/hL) | 4.7 ± 0.3 | 59.8 ± 5.3 | 0.8 ± 0.4 | 34.7 ± 5.7 | 9.9 ± 4.6 | 85.7 ± 4.6 | 0.0 ± 0.0 | 4.5 ± 3.1 |
p-value | 0.1517 | 0.0534 | 0.6524 | 0.0506 | 0.9639 | 0.9775 | -- | 0.9111 |
Tomato Variety | Season | Interaction (T. Variety × Season) | |||||
---|---|---|---|---|---|---|---|
Location | Valenciano-Type (%) | cv. Caniles (%) | p-Value | 2019/2020 | 2020/2021 | p-Value | p-Value |
Petioles | 5.6 ± 2.6 | 21.1 ± 12.1 | 0.0000 | 18.0 ± 14.0 | 8.7 ± 6.2 | 0.0001 | 0.0000 |
Leaves | 56.1 ± 12.8 | 64.6 ± 20.8 | 0.0032 | 48.1 ± 12.0 | 72.6 ± 13.2 | 0.0000 | 0.0000 |
Stem | 3.3 ± 4.0 | 8.4 ± 9.3 | 0.0048 | 11.3 ± 7.4 | 0.4 ± 0.5 | 0.0000 | 0.0000 |
Fruits | 35.0 ± 10.3 | 5.9 ± 3.4 | 0.0000 | 22.7 ± 18.4 | 18.3 ± 14.5 | 0.0385 | 0.7100 |
Total Marketable Tomato Production (kg m−2) | ||||
---|---|---|---|---|
Trial | Cinnamon Extract (200 mL/hL) | Copper Oxychloride 50% (400 g/hL) | Potassium Hydrogen Carbonate 85% (300 g/hL) | p-Value |
“Valenciano-type” Season 1 (2019/2020) | 14.65 ± 2.07 | 13.81 ± 0.58 | 12.66 ± 0.39 | 0.2551 |
“Valenciano-type” Season 2 (2020/2021) | 17.55 ± 1.18 | 15.77 ± 0.52 | 16.09 ± 1.82 | 0.2928 |
cv. Caniles Season 1 (2019/2020) | 15.63 ± 1.84 | 14.42 ± 1.41 | 14.56 ± 1.11 | 0.4774 |
cv. Caniles Season 2 (2019/2020) | 14.69 ± 1.36 | 15.08 ± 0.88 | 15.18 ± 0.34 | 0.5843 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín-Guirao, J.I.; Páez-Cano, F.C.; García-García, M.d.C.; Katsoulas, N.; de Cara-García, M. Evaluation of Copper-Free Alternatives to Control Grey Mould in Organic Mediterranean Greenhouse Tomato Production. Agronomy 2023, 13, 137. https://doi.org/10.3390/agronomy13010137
Marín-Guirao JI, Páez-Cano FC, García-García MdC, Katsoulas N, de Cara-García M. Evaluation of Copper-Free Alternatives to Control Grey Mould in Organic Mediterranean Greenhouse Tomato Production. Agronomy. 2023; 13(1):137. https://doi.org/10.3390/agronomy13010137
Chicago/Turabian StyleMarín-Guirao, Jose Ignacio, Francisco César Páez-Cano, María del Carmen García-García, Nikolaos Katsoulas, and Miguel de Cara-García. 2023. "Evaluation of Copper-Free Alternatives to Control Grey Mould in Organic Mediterranean Greenhouse Tomato Production" Agronomy 13, no. 1: 137. https://doi.org/10.3390/agronomy13010137
APA StyleMarín-Guirao, J. I., Páez-Cano, F. C., García-García, M. d. C., Katsoulas, N., & de Cara-García, M. (2023). Evaluation of Copper-Free Alternatives to Control Grey Mould in Organic Mediterranean Greenhouse Tomato Production. Agronomy, 13(1), 137. https://doi.org/10.3390/agronomy13010137