Assessment of Soil Suitability Using Machine Learning in Arid and Semi-Arid Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Study Area
2.1.2. Soil Data
2.1.3. Satellite Data
2.2. Methodology
2.2.1. The Suitability Inventory Map (SIM)
2.2.2. Processing of Geochemical Soil’s Parameters
2.2.3. Processing Phenological Metrics
2.2.4. Machine Learning Algorithms
K-Nearest Neighbor
Extreme Gradient Boosting Tree
Artificial Neural Network
Support Vector Machine
Random Forest
Models Hyperparameters
2.2.5. Evaluation of the ML Algorithms Performance
Statistical Measures
ROC Curve and AUC
3. Results
3.1. Relative Importance of the Factors Affecting Soil Suitability
3.2. Spatial Soil Suitability Analysis
3.3. Validation of the Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abd-Elmabod, S.; Bakr, N.; Muñoz-Rojas, M.; Pereira, P.; Zhang, Z.; Cerdà, A.; Jordán, A.; Mansour, H.; De La Rosa, D.; Jones, L. Assessment of Soil Suitability for Improvement of Soil Factors and Agricultural Management. Sustainability 2019, 11, 1588. [Google Scholar] [CrossRef] [Green Version]
- Hanh, H.Q.; Azadi, H.; Dogot, T.; Ton, V.D.; LeBailly, P. Dynamics of Agrarian Systems and Land Use Change in North Vietnam. Land Degrad. Dev. 2017, 28, 799–810. [Google Scholar] [CrossRef] [Green Version]
- Santana-Cordero, A.M.; Ariza, E.; Romagosa, F. Studying the historical evolution of ecosystem services to inform management policies for developed shorelines. Environ. Sci. Policy 2016, 64, 18–29. [Google Scholar] [CrossRef]
- Tengberg, A.; Radstake, F.; Zhang, K.; Dunn, B.; Tengberg, A. Scaling up of Sustainable Land Management in the Western People’s Republic of China: Evaluation of a 10-Year Partnership. Land Degrad. Dev. 2013, 27, 134–144. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L. Soil Salinity Mapping and Monitoring in Arid and Semi-Arid Regions Using Remote Sensing Technology: A Review. Adv. Remote Sens. 2013, 2, 373–385. [Google Scholar] [CrossRef] [Green Version]
- Brevik, E.C.; Calzolari, C.; Miller, B.A.; Pereira, P.; Kabala, C.; Baumgarten, A.; Jordán, A. Soil mapping, classification, and pedologic modeling: History and future directions. Geoderma 2016, 264, 256–274. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Sam, K.; Coulon, F.; Prpich, G. Working towards an integrated land contamination management framework for Nigeria. Sci. Total. Environ. 2016, 571, 916–925. [Google Scholar] [CrossRef] [Green Version]
- Velmurugan, A.; Swarnam, T.; Ambast, S.; Kumar, N. Managing waterlogging and soil salinity with a permanent raised bed and furrow system in coastal lowlands of humid tropics. Agric. Water Manag. 2016, 168, 56–67. [Google Scholar] [CrossRef]
- Adeyolanu, O.D.; Are, K.S.; Adelana, A.O.; Denton, O.A.; Oluwatosin, G.A. Characterization, Suitability Evaluation and Soil Quality Assessment of Three Soils of Sedimentary Formation for Sustainable Crop Production. J. Agric. Ecol. Res. Int. 2017, 11, 1–10. [Google Scholar] [CrossRef]
- Rossiter, D. Land evaluation: Towards a revised framework; Land and Water Discussion Paper 6, FAO. FAO, Rome (2007), 107 pp., ISSN: 1729-0554; Only available in PDF format as www.fao.org/nr/lman/docs/lman_070601_en.pdf; free. Geoderma 2009, 148, 428–429. [Google Scholar] [CrossRef]
- Pereira, P.; Brevik, E.; Trevisani, S. Mapping the environment. Sci. Total Environ. 2018, 610–611, 17–23. [Google Scholar] [CrossRef]
- Smetanova, A.; Pereira, P.; Brevik, E.; Munoz-Rojas, M.; Miller, B.; Smetanova, A.; Depellegrin, D.; Misiune, I.; Novara, A.; Cerda, A. Soil mapping and process modelling for sustainable land management. In Soil Mapping and Process Modelling for Sustainable Land Use Management; Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 29–60. ISBN 9780128052006. [Google Scholar]
- Ghosh, P.; Lepcha, K. Weighted linear combination method versus grid based overlay operation method—A study for potential soil erosion susceptibility analysis of Malda district (West Bengal) in India. Egypt. J. Remote Sens. Space Sci. 2018, 22, 95–115. [Google Scholar] [CrossRef]
- Oertli, J.J. Limitations to the diagnostic information obtained from soil analyses. Nutr. Cycl. Agroecosystems 1990, 26, 189–196. [Google Scholar] [CrossRef]
- Akumu, C.; Johnson, J.; Etheridge, D.; Uhlig, P.; Woods, M.; Pitt, D.; McMurray, S. GIS-fuzzy logic-based approach in modeling soil texture: Using parts of the Clay Belt and Hornepayne region in Ontario Canada as a case study. Geoderma 2015, 239–240, 13–24. [Google Scholar] [CrossRef]
- Habibi, V.; Ahmadi, H.; Jafari, M.; Moeini, A. Mapping soil salinity using a combined spectral and topographical index with artificial neural network. PLoS ONE 2021, 16, e0228494. [Google Scholar] [CrossRef]
- Whitney, K.; Scudiero, E.; El-Askary, H.M.; Skaggs, T.H.; Allali, M.; Corwin, D.L. Validating the use of MODIS time series for salinity assessment over agricultural soils in California, USA. Ecol. Indic. 2018, 93, 889–898. [Google Scholar] [CrossRef]
- Zhang, T.-T.; Qi, J.-G.; Gao, Y.; Ouyang, Z.-T.; Zeng, S.-L.; Zhao, B. Detecting soil salinity with MODIS time series VI data. Ecol. Indic. 2015, 52, 480–489. [Google Scholar] [CrossRef]
- Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data. Remote Sens. 2015, 7, 16398–16421. [Google Scholar] [CrossRef] [Green Version]
- Malczewski, J. Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 270–277. [Google Scholar] [CrossRef]
- Mokarram, M.; Hojati, M. Using ordered weight averaging (OWA) aggregation for multi-criteria soil fertility evaluation by GIS (case study: Southeast Iran). Comput. Electron. Agric. 2017, 132, 1–13. [Google Scholar] [CrossRef]
- Barakat, A.; Hilali, A.; El Baghdadi, M.; Touhami, F. Landfill site selection with GIS-based multi-criteria evaluation technique. A case study in Béni Mellal-Khouribga Region, Morocco. Environ. Earth Sci. 2017, 76, 413. [Google Scholar] [CrossRef]
- McBratney, A.; Santos, M.M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Roell, Y.E.; Beucher, A.; Møller, P.G.; Greve, M.B.; Greve, M.H. Comparing a Random Forest Based Prediction of Winter Wheat Yield to Historical Yield Potential. Agronomy 2020, 10, 395. [Google Scholar] [CrossRef] [Green Version]
- Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Rasoli, L.; Kerry, R.; Scholten, T. Land Suitability Assessment and Agricultural Production Sustainability Using Machine Learning Models. Available online: https://doaj.org/article/84f719cf0a2549d0a85bdce76ed12a97 (accessed on 3 October 2022).
- Rentschler, T.; Gries, P.; Behrens, T.; Bruelheide, H.; Kühn, P.; Seitz, S.; Shi, X.; Trogisch, S.; Scholten, T.; Schmidt, K. Comparison of catchment scale 3D and 2.5D modelling of soil organic carbon stocks in Jiangxi Province, PR China. PLoS ONE 2019, 14, e0220881. [Google Scholar] [CrossRef]
- Teng, H.; Rossel, R.A.V.; Shi, Z.; Behrens, T. Updating a national soil classification with spectroscopic predictions and digital soil mapping. Catena 2018, 164, 125–134. [Google Scholar] [CrossRef]
- West, D.; Dellana, S.; Qian, J. Neural network ensemble strategies for financial decision applications. Comput. Oper. Res. 2005, 32, 2543–2559. [Google Scholar] [CrossRef]
- Jayaraman, V.; Sridevi, S.; Monica, K.M.; Lakshminarayanan, A.R. Predicting the Soil Suitability using Machine Learning Techniques. In Proceedings of the 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON), Bengaluru, India, 19–21 November 2021; Volume 1, pp. 200–202. [Google Scholar] [CrossRef]
- Chan, J.C.-W.; Paelinckx, D. Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 2008, 112, 2999–3011. [Google Scholar] [CrossRef]
- Wang, S.-J.; Mathew, A.; Chen, Y.; Xi, L.-F.; Ma, L.; Lee, J. Empirical analysis of support vector machine ensemble classifiers. Expert Syst. Appl. 2009, 36, 6466–6476. [Google Scholar] [CrossRef]
- Pham, B.T.; Nguyen, M.D.; Nguyen-Thoi, T.; Ho, L.S.; Koopialipoor, M.; Quoc, N.K.; Armaghani, D.J.; Van Le, H. A novel approach for classification of soils based on laboratory tests using Adaboost, Tree and ANN modeling. Transp. Geotech. 2020, 27, 100508. [Google Scholar] [CrossRef]
- Sheikhi, S. An effective fake news detection method using WOA-xgbTree algorithm and content-based features. Appl. Soft Comput. 2021, 109, 107559. [Google Scholar] [CrossRef]
- Benabdelouahab, T.; Lebrini, Y.; Boudhar, A.; Hadria, R.; Htitiou, A.; Lionboui, H. Monitoring spatial variability and trends of wheat grain yield over the main cereal regions in Morocco: A remote-based tool for planning and adjusting policies. Geocarto Int. 2019, 36, 2303–2322. [Google Scholar] [CrossRef]
- Diouf, A.A.; Hiernaux, P.; Brandt, M.; Faye, G.; Djaby, B.; Diop, M.B.; Ndione, J.A.; Tychon, B. Do Agrometeorological Data Improve Optical Satellite-Based Estimations of the Herbaceous Yield in Sahelian Semi-Arid Ecosystems? Remote Sens. 2016, 8, 668. [Google Scholar] [CrossRef] [Green Version]
- Barakate, M.; Ouhdouch, Y.; Oufdou, K.; Beaulieu, C. Characterization of rhizospheric soil streptomycetes from Moroccan habitats and their antimicrobial activities. World J. Microbiol. Biotechnol. 2002, 18, 49–54. [Google Scholar] [CrossRef]
- Khellouk, R.; Barakat, A.; El Jazouli, A.; Boudhar, A.; Lionboui, H.; Rais, J.; Benabdelouahab, T. An integrated methodology for surface soil moisture estimating using remote sensing data approach. Geocarto Int. 2019, 36, 1443–1458. [Google Scholar] [CrossRef]
- Rapport Gebral, Direction Regional de L’agriculture Monographie de la Region Beni Mellal Khenifra. Marchè N 25/99-00/DPA/38/SA 2015. Beni Mellal, Morocco, 2015. Available online: https://coeurdumaroc.ma/cri/public/documents/agriculture-72745.pdf (accessed on 29 November 2022).
- Namous, M.; Hssaisoune, M.; Pradhan, B.; Lee, C.-W.; Alamri, A.; Elaloui, A.; Edahbi, M.; Krimissa, S.; Eloudi, H.; Ouayah, M.; et al. Spatial Prediction of Groundwater Potentiality in Large Semi-Arid and Karstic Mountainous Region Using Machine Learning Models. Water 2021, 13, 2273. [Google Scholar] [CrossRef]
- Pulatov, A.; Khamidov, A.; Akhmatov, D.; Pulatov, B.; Vasenev, V. Soil salinity mapping by different interpolation methods in Mirzaabad district, Syrdarya Province. IOP Conf. Ser. Mater. Sci. Eng. 2020, 883, 012089. [Google Scholar] [CrossRef]
- Jonsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Reed, B.C.; Brown, J.F.; Vanderzee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring phenological variability from satellite imagery. J. Veg. Sci. 1994, 5, 703–714. [Google Scholar] [CrossRef]
- Durgun, Y.; Gobin, A.; Van De Kerchove, R.; Tychon, B. Crop Area Mapping Using 100-m Proba-V Time Series. Remote Sens. 2016, 8, 585. [Google Scholar] [CrossRef] [Green Version]
- Htitiou, A.; Boudhar, A.; Chehbouni, A.; Benabdelouahab, T. National-Scale Cropland Mapping Based on Phenological Metrics, Environmental Covariates, and Machine Learning on Google Earth Engine. Remote Sens. 2021, 13, 4378. [Google Scholar] [CrossRef]
- Htitiou, A.; Boudhar, A.; Lebrini, Y.; Hadria, R.; Lionboui, H.; Elmansouri, L.; Tychon, B.; Benabdelouahab, T. The Performance of Random Forest Classification Based on Phenological Metrics Derived from Sentinel-2 and Landsat 8 to Map Crop Cover in an Irrigated Semi-arid Region. Remote Sens. Earth Syst. Sci. 2019, 2, 208–224. [Google Scholar] [CrossRef]
- Diouf, A.A.; Djaby, B.; Diop, M.B.; Wele, A.; Ndione, J.A. Tychon Fonctions D’ajustement Pour L’estimation de la Production Fourragère Herbacée des Parcours Naturels du Sénégal à Partir du NDVI s10 de SPOT-Vegetation. Juill. 2014. Available online: https://orbi.uliege.be/handle/2268/203858 (accessed on 21 May 2019).
- Lebrini, Y.; Boudhar, A.; Hadria, R.; Lionboui, H.; Elmansouri, L.; Arrach, R.; Ceccato, P.; Benabdelouahab, T. Identifying Agricultural Systems Using SVM Classification Approach Based on Phenological Metrics in a Semi-arid Region of Morocco. Earth Syst. Environ. 2019, 3, 277–288. [Google Scholar] [CrossRef]
- Brownlee, J. Boosting and AdaBoost for Machine Learning. Machine Learning Mastery. 24 April 2016. Available online: https://machinelearningmastery.com/boosting-and-adaboost-for-machine-learning/ (accessed on 22 August 2022).
- Kawabata, D.; Bandibas, J. Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN). Geomorphology 2009, 113, 97–109. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; He, X.; Shen, F.; Zhou, C.; Zhu, A.-X.; Gao, B.; Chen, Z.; Li, M. Improving prediction of soil organic carbon content in croplands using phenological parameters extracted from NDVI time series data. Soil Tillage Res. 2019, 196, 104465. [Google Scholar] [CrossRef]
Classes | Sub-Classes | Groups | Codes |
---|---|---|---|
Raw mineral soils | No climatic | Erosion | MNE |
Little evolved soils | No climatic | Erosion | NNE |
Little evolved soils | No climatic | Colluvial contribution | NNC |
Calci-magnesic soils | Carbonates | Rendzines | CCR |
Calci-magnesic soils | Carbonates | Limestone browns | CCB |
isohumic soils | In pedoclimate in the rainy season | Subtropical browns | ISB |
Browned soils | Temperatehumid climates | Browns | BThB |
ironsesquioxide soils | Fersiallitics | Low-leaching calcium reserve | XFeC |
Little evolved soils | No Climatic | Collu-alluvial contribution | NNCA |
Phenological Parameters | Abbreviation | Description |
---|---|---|
Start of season | SOS | Time for which the left edge has increased to 10% of the seasonal amplitude measured from the left minimum level. |
End of season | EOS | Time for which the right edge has decreased to 10% of the seasonal amplitude measured from the right minimum level. |
Middle of season | MOS | Mean value of the times for which the left part of the VGI curve has increased to the 90% level and the right part has decreased to the 90% level. |
Length of season | LOS | Time from the start to the end of the season. |
Base value | BVAL | The average of the left and right minimum values. |
Maximum value | PEAK | Maximum VGI value for the fitted function during the season. |
Amplitude | AMPL | Difference between the peak value and the base level. |
Large integral | LINTG | The area under the smoothed curve between SOS and EOS. |
Small integral | SINTG | The area below the base level from the SOS to EOS. |
Left derivative | LDERIV | Rate of increase at the SOS between the left 10% and 90% of the amplitude. |
Right derivative | RDERIV | Rate of decrease at the EOS between the right 10% and 90% of the amplitude. |
Start of season value | SOSV | Start of season value. |
End of season value | EOSV | End of season value. |
Soil Suitability | ANN | KNN | RF | SVM | XgbTree |
---|---|---|---|---|---|
NS | 54% | 31% | 36% | 31% | 41% |
S3 | 3% | 24% | 18% | 14% | 11% |
S2 | 3% | 20% | 17% | 17% | 8% |
S1 | 40% | 25% | 29% | 39% | 40% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismaili, M.; Krimissa, S.; Namous, M.; Htitiou, A.; Abdelrahman, K.; Fnais, M.S.; Lhissou, R.; Eloudi, H.; Faouzi, E.; Benabdelouahab, T. Assessment of Soil Suitability Using Machine Learning in Arid and Semi-Arid Regions. Agronomy 2023, 13, 165. https://doi.org/10.3390/agronomy13010165
Ismaili M, Krimissa S, Namous M, Htitiou A, Abdelrahman K, Fnais MS, Lhissou R, Eloudi H, Faouzi E, Benabdelouahab T. Assessment of Soil Suitability Using Machine Learning in Arid and Semi-Arid Regions. Agronomy. 2023; 13(1):165. https://doi.org/10.3390/agronomy13010165
Chicago/Turabian StyleIsmaili, Maryem, Samira Krimissa, Mustapha Namous, Abdelaziz Htitiou, Kamal Abdelrahman, Mohammed S. Fnais, Rachid Lhissou, Hasna Eloudi, Elhousna Faouzi, and Tarik Benabdelouahab. 2023. "Assessment of Soil Suitability Using Machine Learning in Arid and Semi-Arid Regions" Agronomy 13, no. 1: 165. https://doi.org/10.3390/agronomy13010165
APA StyleIsmaili, M., Krimissa, S., Namous, M., Htitiou, A., Abdelrahman, K., Fnais, M. S., Lhissou, R., Eloudi, H., Faouzi, E., & Benabdelouahab, T. (2023). Assessment of Soil Suitability Using Machine Learning in Arid and Semi-Arid Regions. Agronomy, 13(1), 165. https://doi.org/10.3390/agronomy13010165