Agronomic Performance and Phytochemical Profile of Lettuce Grown in Anaerobic Dairy Digestate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Assessment of Heavy Metal Risks and Nutrient Compositions of AD
2.2. Experimental Design and Treatments
2.3. Lettuce Nursery, Transplantation, and Plant Sampling
2.4. Phytonutrient Profile and Heavy Metal Uptake
2.5. Statistical Analysis
3. Results
3.1. Effect of AD on Plant Growth and Fresh Biomass
3.2. Phytonutrient Profiles of Lettuce Leaves
3.3. Heavy Metal Concentrations in Lettuce Leaves
3.4. Does Dairy Digestate Improve Lettuce Quality?
4. Discussion
4.1. Growth and Fresh Biomass
4.2. Phytonutrient Profile of Lettuce in Response to NFSs
4.3. Effect of AD on Heavy Metal Bioaccumulation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Won, S.; Shim, S.-M.; You, B.-G.; Choi, Y.-S.; Ra, C. Nutrient production from dairy cattle manure and loading on arable land. Asian-Australas. J. Anim. Sci. 2017, 30, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Bai, Z.; Luo, J.; Ledgard, S.; Wu, Z.; Ma, L. Nutrient losses and greenhouse gas emissions from dairy production in China: Lessons learned from historical changes and regional differences. Sci. Total Environ. 2017, 598, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
- Chastain, J.P.; Camberato, J.J. Dairy manure production and nutrient content. In Confined Animal Manure Managers Certification Program Manual B Dairy Version 1; Clemson University Cooperative Extension Service: Clemson, SC, USA, 2004; pp. 1–16. [Google Scholar]
- Alburquerque, J.A.; de la Fuente, C.; Ferrer-Costa, A.; Carrasco, L.; Cegarra, J.; Abad, M.; Bernal, M.P. Assessment of the fertiliser potential of digestates from farm and agroindustrial residues. Biomass Bioenergy 2012, 40, 181–189. [Google Scholar] [CrossRef]
- Jovicich, E.; Cantliffe, D.J.; Simonne, E.H.; Stoffella, P.J. Comparative water and fertilizer use efficiencies of two production systems for cucumbers. Acta Hortic. 2007, 731, 235–241. [Google Scholar] [CrossRef]
- Correia ECS. Reação de Cultivares de Alface do Grupo Americano a Meloidoygine Incognita, M. Javanica e M. Enterolobii (55f. Dissertação (Mestrado em Agronomia); Universidade Estadual Paulista “Júlio de Mesquita Filho”: Botucatu, Brazil, 2013. [Google Scholar]
- Sacks, F.M.; Willett, W.C.; Smith, A.; Brown, L.E.; Rosner, B.; Moore, T.J. Effect on Blood Pressure of Potassium, Calcium, and Magnesium in Women with Low Habitual Intake. Hypertension 1998, 31, 131–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, S. What Is the Main Function of Phosphorus in the Body? 2018. Available online: https://healthyeating.sfgate.com/main-function-phosphorus-body-5789.html (accessed on 6 March 2020).
- Survase, S.; Bajaj, I.; Singhal, R. Biotechnological production of vitamins. Food Technol. Biotechnol. 2006, 44, 381–396. [Google Scholar]
- El-Nakhel, C.; Petropoulos, S.A.; Pannico, A.; Kyriacou, M.C.; Giordano, M.; Colla, G.; Troise, A.D.; Vitaglione, P.; De Pascale, S.; Rouphael, Y. The bioactive profile of lettuce produced in a closed soilless system as configured by combinatorial effects of genotype and macrocation supply composition. Food Chem. 2020, 309, 125713. [Google Scholar] [CrossRef]
- Herrera, E.; Jiménez, R.; Aruoma, O.I.; Hercberg, S.; Sánchez-García, I.; Fraga, C. Aspects of antioxidant foods and supplements in health and disease. Nutr. Rev. 2009, 67 (Suppl. 1), S140–S144. [Google Scholar] [CrossRef]
- Davis, J.M.; Murphy, E.A.; Carmichael, M.D. Effects of the dietary flavonoid quercetin upon performance and health. Curr. Sport. Med. Rep. 2009, 8, 206–213. [Google Scholar] [CrossRef]
- Kim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.; Waterland, N.L. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- Sulaiman, S.F.; Yusoff, N.A.; Eldeen, I.M.S.; Seow, E.M.; Sajak, A.A.B.; Supriatno; Ooi, K.L. Correlation between total phenolic and mineral contents with antioxidant activity of eight Malaysian bananas (Musa sp.). J. Food Compos. Anal. 2011, 24, 1–10. [Google Scholar] [CrossRef]
- CCME. Recommended Canadian Soil Quality Guidelines; Canadian Council of Ministers of the Environment (CCME): Winnipeg, MB, Canada, 1997.
- CCME. Recommended Canadian Soil Quality Guidelines; Canadian Council of Ministers of the Environment (CCME): Winnipeg, MB, Canada, 2015.
- CCME. Recommended Canadian Soil Quality Guidelines; Canadian Council of Ministers of the Environment (CCME): Winnipeg, MB, Canada, 2009.
- Spehia, R.S.; Devi, M.; Singh, J.; Sharma, S.; Negi, A.; Singh, S.; Chauhan, N.; Sharma, D.; Sharma, J.C. Lettuce growth and yield in Hoagland solution with an organic concoction. Int. J. Veg. Sci. 2018, 24, 557–566. [Google Scholar] [CrossRef]
- Zandvakili, O.R.; Barker, A.V.; Hashemi, M.; Etemadi, F.; Autio, W.R. Comparisons of commercial organic and chemical fertilizer solutions on growth and composition of lettuce. J. Plant Nutr. 2019, 42, 990–1000. [Google Scholar] [CrossRef]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants and Waters. Soil Sci. 1962, 93, 68. [Google Scholar] [CrossRef] [Green Version]
- Bottoms, T.G.; Smith, R.F.; Cahn, M.D.; Hartz, T.K. Nitrogen requirements and N status determination of lettuce. HortScience 2012, 47, 1768–1774. [Google Scholar] [CrossRef] [Green Version]
- Fishman, M.J.; Friedman, L.C. Methods for Determination of Inorganic Substances in Water and Fluvial Sediments; US Department of the Interior, Geological Survey: Washington, DC, USA, 1989.
- Akhavan, H.-R.; Barzegar, M. Determination of water-soluble vitamins in 15 Iranian pomegranate cultivars and their variation after pasteurization and cold storage. Int. Food Res. J. 2017, 24, 1429–1436. [Google Scholar]
- Boonpangrak, S.; Lalitmanat, S.; Suwanwong, Y.; Prachayasittikul, S.; Prachayasittikul, V. Analysis of ascorbic acid and isoascorbic acid in orange and guava fruit juices distributed in Thailand by LC-IT-MS/MS. Food Anal. Methods 2016, 9, 1616–1626. [Google Scholar] [CrossRef]
- Gavrilova, V.; Kajdzanoska, M.; Gjamovski, V.; Stefova, M. Separation, characterization and quantification of phenolic compounds in blueberries and red and black currants by HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 2011, 59, 4009–4018. [Google Scholar] [CrossRef]
- Manful, C.F.; Vidal, N.P.; Pham, T.H.; Nadeem, M.; Wheeler, E.; Hamilton, M.C.; Doody, K.M.; Thomas, R.H. Unfiltered beer based marinades reduced exposure to carcinogens and suppressed conjugated fatty acid oxidation in grilled meats. Food Control 2020, 111, 107040. [Google Scholar] [CrossRef]
- Vidal, N.P.; Manful, C.; Pham, T.H.; Wheeler, E.; Stewart, P.; Keough, D.; Thomas, R. Novel unfiltered beer-based marinades to improve the nutritional quality, safety, and sensory perception of grilled ruminant meats. Food Chem. 2020, 302, 125326. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Acosta, M.; Arnao, M.B. Hydrophilic and lipophilic antioxidant activity changes during on-vine ripening of tomatoes (Lycopersicon esculentum Mill.). Postharvest Biol. Technol. 2003, 28, 59–65. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Lin, A.H.-M. Improvement in the quantification of reducing sugars by miniaturizing the Somogyi-Nelson assay using a microtiter plate. Food Chem. 2018, 240, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Slamet, W.; Purbajanti, E.D.; Darmawati, A.; Fuskhah, E. Leaf area index, chlorophyll, photosynthesis rate of lettuce (Lactuca sativa L) under N-organic fertilizer. Indian J. Agric. Res. 2017, 51, 365–369. [Google Scholar] [CrossRef] [Green Version]
- Sapkota, S.; Sapkota, S.; Liu, Z. Effects of nutrient composition and lettuce cultivar on crop production in hydroponic culture. Horticulturae 2019, 5, 72. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Li, Q.; Xiong, L.; Kronzucker, H.J.; Krämer, U.; Shi, W. Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress. Plant Physiol. 2012, 160, 2040–2051. [Google Scholar] [CrossRef] [Green Version]
- Garbin, M.L.; Dillenburg, L.R. Effects of different nitrogen sources on growth, chlorophyll concentration, nitrate reductase activity and carbon and nitrogen distribution in Araucaria angustifolia. Braz. J. Plant Physiol. 2008, 20, 295–303. [Google Scholar] [CrossRef]
- Bittsánszky, A.; Pilinszky, K.; Gyulai, G.; Komives, T. Overcoming ammonium toxicity. Plant Sci. 2015, 231, 184–190. [Google Scholar] [CrossRef]
- Esteban, R.; Ariz, I.; Cruz, C.; Moran, J.F. Review: Mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci. 2016, 248, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Britto, D.T.; Kronzucker, H.J. NH4+ toxicity in higher plants: A critical review. J. Plant Physiol. 2002, 159, 567–584. [Google Scholar] [CrossRef] [Green Version]
- Overvoorde, P.; Fukaki, H.; Beeckman, T. Auxin control of root development. Cold Spring Harb. Perspect. Biol. 2010, 2, a001537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Li, B.-H.; Kronzucker, H.J.; Shi, W.-M. Root growth inhibition by NH4+ in Arabidopsis is mediated by the root tip and is linked to NH4+ efflux and GMPase activity. Plant Cell Environ. 2010, 33, 1529–1542. [Google Scholar] [CrossRef] [PubMed]
- Caretto, S.; Linsalata, V.; Colella, G.; Mita, G.; Lattanzio, V. Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int. J. Mol. Sci. 2015, 16, 26378–26394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, C.; Qian, W.; Wang, W.; Wu, Y.; Yu, C.; Jiang, X.; Wang, D.; Wu, P. GDP-mannose pyrophosphorylase is a genetic determinant of ammonium sensitivity in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2008, 105, 18308–18313. [Google Scholar] [CrossRef] [Green Version]
- Pantoja, O. High affinity ammonium transporters: Molecular mechanism of action. Front. Plant Sci. 2012, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lai, N.; Gao, K.; Chen, F.; Yuan, L.; Mi, G. Ammonium inhibits primary root growth by reducing the length of meristem and elongation zone and decreasing elemental expansion rate in the root apex in Arabidopsis thaliana. PLoS ONE 2013, 8, e61031. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Li, G.; Kronzucker, H.J.; Baluška, F.; Shi, W. Ammonium stress in Arabidopsis: Signaling, genetic loci, and physiological targets. Trends Plant Sci. 2014, 19, 107–114. [Google Scholar] [CrossRef]
- Petersson, S.V.; Johansson, A.I.; Kowalczyk, M.; Makoveychuk, A.; Wang, J.Y.; Moritz, T.; Grebe, M.; Benfey, P.N.; Sandberg, G.; Ljung, K. An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 2009, 21, 1659–1668. [Google Scholar] [CrossRef]
- Kempinski, C.F.; Haffar, R.; Barth, C. Toward the mechanism of NH4+ sensitivity mediated by Arabidopsis GDP-mannose pyrophosphorylase. Plant Cell Environ. 2011, 34, 847–858. [Google Scholar] [CrossRef]
- Conklin, P.L.; Norris, S.R.; Wheeler, G.L.; Williams, E.H.; Smirnoff, N.; Last, R.L. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc. Natl. Acad. Sci. USA 1999, 96, 4198–4203. [Google Scholar] [CrossRef] [Green Version]
- Loqué, D.; Mora, S.I.; Andrade, S.L.; Pantoja, O.; Frommer, W.B. Pore mutations in ammonium transporter AMT1 with increased electrogenic ammonium transport activity. J. Biol. Chem. 2009, 284, 24988–24995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neocleous, D.; Savvas, D. The effects of phosphorus supply limitation on photosynthesis, biomass production, nutritional quality, and mineral nutrition in lettuce grown in a recirculating nutrient solution. Sci. Hortic. 2019, 252, 379–387. [Google Scholar] [CrossRef]
- Kapoulas, N.; Koukounaras, A.; Ilić, Z.S. Nutritional quality of lettuce and onion as companion plants from organic and conventional production in north Greece. Sci. Hortic. 2017, 219, 310–318. [Google Scholar] [CrossRef]
- Timothy, K.H.; Johnstone, P.R.; Williams, E.; Smith, R.F. Establishing lettuce leaf nutrient optimum ranges through DRIS analysis. HortScience 2007, 42, 143–146. [Google Scholar]
- Marino, D.; Moran, J.F. Can ammonium stress be positive for plant performance? Front. Plant Sci. 2019, 10, 1103. [Google Scholar] [CrossRef] [Green Version]
- Hoopen, F.T.; Cuin, T.A.; Pedas, P.; Hegelund, J.N.; Shabala, S.; Schjoerring, J.K.; Jahn, T.P. Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: Molecular mechanisms and physiological consequences. J. Exp. Bot. 2010, 61, 2303–2315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczerba, M.W.; Britto, D.T.; Balkos, K.D.; Kronzucker, H.J. Alleviation of rapid, futile ammonium cycling at the plasma membrane by potassium reveals K+-sensitive and -insensitive components of NH4+ transport. J. Exp. Bot. 2008, 59, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczerba, M.W.; Britto, D.T.; Ali, S.A.; Balkos, K.D.; Kronzucker, H.J. NH4+-stimulated and inhibited components of K+ transport in rice (Oryza sativa L.). J. Exp. Bot. 2008, 59, 3415–3423. [Google Scholar] [CrossRef] [Green Version]
- Britto, D.T.; Kronzucker, H.J. Futile cycling at the plasma membrane: A hallmark of low-affinity nutrient transport. Trends Plant Sci. 2006, 11, 529–534. [Google Scholar] [CrossRef]
- Mou, B.; Ryder, E.J. Relationship between the nutritional value and the head structure of lettuce. Int. Hortic. Congr. Adv. Veg. Breed. 2002, 637, 361–367. [Google Scholar] [CrossRef]
- Piwpuan, N.; Zhai, X.; Brix, H. Nitrogen nutrition of Cyperus laevigatus and Phormium tenax: Effects of ammonium versus nitrate on growth, nitrate reductase activity and N uptake kinetics. Aquat. Bot. 2013, 106, 42–51. [Google Scholar] [CrossRef]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Gorenjak, A.H.; Cencič, A. Nitrate in vegetables and their impact on human health. A review. Acta Aliment. 2013, 42, 158–172. [Google Scholar] [CrossRef]
- André, C.M.; Oufir, M.; Hoffmann, L.; Hausman, J.-F.; Rogez, H.; Larondelle, Y.; Evers, D. Influence of environment and genotype on polyphenol compounds and in vitro antioxidant capacity of native Andean potatoes (Solanum tuberosum L.). J. Food Compos. Anal. 2009, 22, 517–524. [Google Scholar] [CrossRef]
- Deng, B.; Li, Y.; Xu, D.; Ye, Q.; Liu, G. Nitrogen availability alters flavonoid accumulation in Cyclocarya paliurus via the effects on the internal carbon/nitrogen balance. Sci. Rep. 2019, 9, 2370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taleon, V.; Dykes, L.; Rooney, W.L.; Rooney, L.W. Effect of genotype and environment on flavonoid concentration and profile of black sorghum grains. J. Cereal Sci. 2012, 56, 470–475. [Google Scholar] [CrossRef]
- Healy, E.F.; Sanders, J.; King, P.J.; Robinson, W.E., Jr. A docking study of L-chicoric acid with HIV-1 integrase. J. Mol. Graph. Model. 2009, 27, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Liang, X.; Li, K.; Dai, P.; Li, J.; Liang, B.; Sun, C.; Lin, X. Metabolomics analysis reveals potential mechanisms of phenolic accumulation in lettuce (Lactuca sativa L.) induced by low nitrogen supply. Plant Physiol. Biochem. 2021, 158, 446–453. [Google Scholar] [CrossRef]
- Prinsi, B.; Negrini, N.; Morgutti, S.; Espen, L. Nitrogen starvation and nitrate or ammonium availability differently affect phenolic composition in green and purple basil. Agronomy 2020, 10, 498. [Google Scholar] [CrossRef] [Green Version]
- Toscano, S.; Ferrante, A.; Leonardi, C.; Romano, D. PAL activities in asparagus spears during storage after ammonium sulfate treatments. Postharvest Biol. Technol. 2018, 140, 34–41. [Google Scholar] [CrossRef]
- Naguib, A.E.-M.M.; El-Baz, F.K.; Salama, Z.A.; Abd El Baky Hanaa, H.; Ali, H.F.; Gaafar, A.A. Enhancement of phenolics, flavonoids and glucosinolates of broccoli (Brassica olaracea, var. Italica) as antioxidants in response to organic and bio-organic fertilizers. J. Saudi Soc. Agric. Sci. 2012, 11, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Kusano, M.; Fukushima, A.; Redestig, H.; Saito, K. Metabolomic approaches toward understanding nitrogen metabolism in plants. J. Exp. Bot. 2011, 62, 1439–1453. [Google Scholar] [CrossRef] [PubMed]
- Kováčik, J.; Klejdus, B.; Bačkor, M.; Repčák, M. Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes. Plant Sci. 2007, 172, 393–399. [Google Scholar] [CrossRef]
- Abbate, C.; Toscano, S.; Arcidiacono, R.; Romano, D.; Russo, A.; Mazzeo, G. Induced responses of Bougainvillea glabra Choisy (Nyctaginaceae) against Phenacoccus peruvianus Granara de Willink (Hemiptera: Pseudococcidae) attack: Preliminary results. Arthropod-Plant Interact. 2017, 12, 41–48. [Google Scholar] [CrossRef]
- Mollavali, M.; Perner, H.; Rohn, S.; Riehle, P.; Hanschen, F.S.; Schwarz, D. Nitrogen form and mycorrhizal inoculation amount and timing affect flavonol biosynthesis in onion (Allium cepa L.). Mycorrhiza 2018, 28, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Azzini, E.; Lazzé, M.C.; Raguzzini, A.; Pizzala, R.; Maiani, G.; Palomba, L.; Maiani, G. Antioxidants in Italian head lettuce (Lactuca sativa var. capitata L.) grown in organic and conventional systems under greenhouse conditions. J. Food Biochem. 2014, 38, 56–61. [Google Scholar] [CrossRef]
- Rajaashekar, C.B.; Oh, M.-M.; Carey, E.E. Organic crop management enhances chicoric acid content in lettuce. Food Nutr. Sci. 2012, 3, 1296–1302. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Lv, J.; Dawuda, M.M.; Xie, J.; Yu, J.; Li, J.; Zhang, X.; Tang, C.; Wang, C.; Gan, Y. Appropriate ammonium-nitrate ratio improves nutrient accumulation and fruit quality in pepper (Capsicum annuum L.). Agronomy 2019, 9, 683. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Liang, X.; Dai, P.; Chen, Y.; Zhang, Y.; Zhang, M.; Lu, L.; Jin, C.; Lin, X. Alteration of phenolic composition in lettuce (Lactuca sativa L.) by reducing nitrogen supply enhances its anti-proliferative effects on colorectal cancer cells. Int. J. Mol. Sci. 2019, 20, 4205. [Google Scholar] [CrossRef] [Green Version]
- Beiquan, M. Nutrient content of lettuce and its improvement. Curr. Nutr. Food Sci. 2009, 5, 242–248. [Google Scholar]
- Liu, X.; Ardo, S.; Bunning, M.; Parry, J.; Zhou, K.; Stushnoff, C.; Stoniker, F.; Yu, L.; Kendall, P. Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT Food Sci. Technol. 2007, 40, 552–557. [Google Scholar] [CrossRef]
- Wen-jun, G. Effect of biogas slurry and biogas residues on quality of greenhouse mini cucumber. Soil Fertil. Sci. China 2007, 5, 40–43. [Google Scholar]
- Wei-Sheng, S. Effect of biogas fertilizer on yield and quality of lettuce in soilless culture. Soil Fertil. Sci. China 2008, 1, 60–62. [Google Scholar]
- Ibrahim, M.H.; Jaafar, H.Z.E.; Karimi, E.; Ghasemzadeh, A. Impact of organic and inorganic fertilizers application on the phytochemical and antioxidant activity of Kacip Fatimah (Labisia pumila Benth). Molecules 2013, 18, 10973–10988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhaj Alali, F.; Askari Sarcheshmeh, M.A.; Babalar, M. Effect of ammonium content in nutrition solution on vitamin C, phenols, and antioxidant capacity of three apple cultivars during cold storage. DYSONA Appl. Sci. 2020, 1, 64–72. [Google Scholar]
- Watson, S.A.; Noggle, G.R. Effect of mineral deficinecies upon the synthesis of riboflavin and ascorbic acid by the oat plant. Plant Physiol. 1947, 22, 228–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldwell, C.R. Alkylperoxyl radical scavenging activity of red leaf lettuce (Lactuca sativa L.) phenolics. J. Agricutlural Food Chem. 2003, 51, 4589–4595. [Google Scholar] [CrossRef] [PubMed]
- Jakovljević, D.; Topuzović, M.; Stanković, M. Nutrient limitation as a tool for the induction of secondary metabolites with antioxidant activity in basil cultivars. Ind. Crops Prod. 2019, 138, 111462. [Google Scholar] [CrossRef]
- Cheng, L.; Han, M.; Yang, L.-m.; Li, Y.; Sun, Z.; Zhang, T. Changes in the physiological characteristics and baicalin biosynthesis metabolism of Scutellaria baicalensis Georgi under drought stress. Ind. Crops Prod. 2018, 122, 473–482. [Google Scholar] [CrossRef]
- Pott, D.M.; Osorio, S.; Vallarino, J.G. From central to specialized metabolism: An overview of some secondary compounds derived from the primary metabolism for their role in conferring nutritional and organoleptic characteristics to fruit. Front. Plant Sci. 2019, 10, 835. [Google Scholar] [CrossRef] [Green Version]
- Mampholo, B.M.; Maboko, M.M.; Soundy, P.; Sivakumar, D. Variety-specific responses of lettuce grown in a gravel-film technique closed hydroponic system to N supply on yield, morphology, phytochemicals, mineral content and safety. J. Integr. Agric. 2018, 17, 2447–2457. [Google Scholar] [CrossRef] [Green Version]
- Anjana, S.U.; Iqbal, M. Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agron. Sustain. Dev. 2007, 27, 45–57. [Google Scholar] [CrossRef]
- Jordan, R.A.; Riberio, E.F.; de Oliveira, F.C.; Geisenhoff, L.O.; Martins, E.A.S. Yield of lettuce grown in hydroponic and aquaponic systems using different substrates. Rev. Bras. Eng. Agric. Ambient 2018, 22, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Eissa, M.A.; Negim, O.E. Heavy metals uptake and translocation by lettuce and spinach grown on a metal-contaminated soil. J. Soil Sci. Plant Nutr 2018, 18, 1097–1107. [Google Scholar] [CrossRef] [Green Version]
- Ezziddine, M.; Liltved, H.; Seljåsen, R. Hydroponic Lettuce Cultivation Using Organic Nutrient Solution from Aerobic Digested Aquacultural Sludge. Agronomy 2021, 11, 1484. [Google Scholar] [CrossRef]
- Lira, R.M.D.; Silva, Ê.F.D.F.; Silva, G.F.D.; Santos, A.N.D.; Rolim, M.M. Production, water consumption and nutrient content of Chinese cabbage grown hydroponically in brackish water. Rev. Ciência Agronômica 2015, 46, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Guo, S.; Wang, Y.; Yi, D.; Wang, J. Poultry biogas slurry can partially substitute for mineral fertilizers in hydroponic lettuce production. Environ. Sci. Pollut. Res. 2019, 26, 659–671. [Google Scholar] [CrossRef]
Source of Variation | Leaf Area (cm2 plant−1) | Total Chlorophyll Content (mg g−1 DW) | Fresh Biomass (g plant−1) | Root–Shoot Ratio |
---|---|---|---|---|
Nutrient feed solutions (NFSs) | ||||
AD | 1301.10 ± 57.86 c | 33.45 ± 0.26 c | 101.58 ± 4.86 c | 0.12 ± 0.01 b |
AD+NS | 1818.40 ± 75.12 b | 38.13 ± 0.34 b | 255.34 ± 19.46 b | 0.12 ± 0.00 b |
NS | 2704.60 ± 118.33 a | 44.82 ± 2.00 a | 356.39 ± 22.93 a | 0.22 ± 0.02 a |
Cultivars | ||||
Newham | 1678.10 ± 123.63 b | 38.06 ± 1.03 b | 186.50 ± 23.54 b | 0.19 ± 0.02 a |
Romaine | 2204.70 ± 161.23 a | 39.84 ± 1.28 a | 269.04 ± 30.32 a | 0.12 ± 0.01 b |
NFSs × Cultivars | ||||
AD × Newham | 1111.40 ± 16.03 e | 33.15 ± 0.44 d | 89.07 ± 1.99 d | 0.14 ± 0.02 bc |
(AD+NS) × Newham | 1600.50 ± 74.59 d | 37.83 ± 0.54 c | 167.86 ± 15.69 c | 0.13 ± 0.00 bcd |
NS × Newham | 2322.20 ± 40.58 b | 43.21 ± 0.54 b | 302.58 ± 27.20 b | 0.29 ± 0.02 a |
DD × Romaine | 1490.80 ± 8.88 d | 33.75 ± 0.27 d | 114.09 ± 6.13 d | 0.10 ± 0.01 d |
(AD+NS) × Romaine | 2036.30 ± 16.82 c | 38.44 ± 0.42 c | 282.82 ± 9.88 b | 0.11 ± 0.00 cd |
NS × Romaine | 3087.00 ± 37.48 a | 46.42 ± 0.38 a | 410.20 ± 20.39 a | 0.15 ± 0.00 b |
Significance | ||||
NFSs | *** | *** | *** | *** |
Cultivars | *** | *** | *** | *** |
NFSs × Cultivars | *** | *** | * | *** |
Source of Variation | P (mg g−1 DW) | K (mg g−1 DW) | Ca (mg g−1 DW) | Mg (mg g−1 DW) | NH4+ (mg N kg−1 FW) | NO3− (mg N kg−1 FW) |
---|---|---|---|---|---|---|
Nutrient feed solutions (NFSs) | ||||||
AD | 2.85 ± 0.33 c | 25.10 ± 0.97 c | 5.87 ± 0.15 c | 1.46 ± 0.05 c | 591.90 ± 25.10 a | 398.69 ± 47.68 b |
AD+NS | 3.73 ± 0.23 b | 34.78 ± 1.44 b | 7.50 ± 0.40 b | 1.97 ± 0.09 b | 390.65 ± 14.59 b | 460.24 ± 50.10 b |
NS | 6.41 ± 0.27 a | 80.57 ± 2.03 a | 12.91 ± 0.51 a | 2.61 ± 0.13 a | 248.10 ± 7.50 c | 596.79 ± 46.96 a |
Cultivars | ||||||
Newham | 3.53 ± 0.39 b | 43.78 ± 5.70 b | 7.95 ± 0.68 b | 1.81 ± 0.11 b | 387.23 ± 35.50 b | 405.92 ± 15.64 b |
Romaine | 5.13 ± 0.38 a | 49.86 ± 6.20 a | 9.57 ± 0.85 a | 2.22 ± 0.15 a | 433.20 ± 37.49 a | 564.56 ± 53.25 a |
NFSs × Cultivars | ||||||
AD × Newham | 3.78 ± 0.20 | 23.53 ± 0.52 | 5.62 ± 0.05 | 1.34 ± 0.05 | 559.38 ± 46.76 | 338.38 ± 14.32 |
(AD+NS) × Newham | 3.05 ± 0.18 | 31.38 ± 0.95 | 6.48 ± 0.47 | 1.76 ± 0.04 | 362.88 ± 12.27 | 406.62 ± 11.47 |
NS × Newham | 5.62 ± 0.11 | 76.42 ± 2.01 | 11.74 ± 0.39 | 2.33 ± 0.12 | 239.43 ± 9.97 | 472.75 ± 18.78 |
AD × Romaine | 3.78 ± 0.20 | 26.67 ± 1.69 | 6.12 ± 0.28 | 1.58 ± 0.05 | 624.42 ± 12.70 | 459.00 ± 91.33 |
(AD+NS) × Romaine | 4.40 ± 0.15 | 38.18 ± 1.91 | 8.52 ± 0.28 | 2.18 ± 0.14 | 418.43 ± 21.85 | 513.85 ± 98.81 |
NS × Romaine | 7.20 ± 0.24 | 84.72 ± 2.70 | 14.08 ± 0.68 | 2.88 ± 0.18 | 256.76 ± 10.87 | 720.83 ± 56.52 |
Significance | ||||||
NFSs | *** | *** | *** | *** | *** | ** |
Cultivars | *** | *** | *** | *** | * | *** |
NFSs × Cultivars | NS | NS | NS | NS | NS | NS |
Source of Variation | S (mg g−1 DW) | B (µg g−1 DW) | Zn (µg g−1 DW) | Mn (µg g−1 DW) | Fe (µg g−1 DW) |
---|---|---|---|---|---|
Nutrient feed solutions (NFSs) | |||||
DD | 1.53 ± 0.09 c | 33.71 ± 0.70 c | 30.45 ± 4.75 b | 52.00 ± 2.41 c | 154.42 ± 7.44 c |
AD+NS | 2.24 ± 0.08 b | 43.33 ± 0.62 b | 28.78 ± 3.29 b | 77.33 ± 8.33 b | 255.00 ± 4.11 b |
NS | 2.86 ± 0.14 a | 54.96 ± 1.41 a | 56.02 ± 6.28 a | 231.79 ± 17.53 a | 300.42 ± 4.33 a |
Cultivars | |||||
Newham | 1.99 ± 0.11 b | 42.92 ± 1.84 b | 49.03 ± 4.75 a | 91.08 ± 15.28 b | 227.00 ± 16.60 b |
Romaine | 2.42 ± 0.18 a | 45.08 ± 2.57 a | 27.81 ± 3.73 b | 149.67 ± 23.95 a | 246.22 ± 13.81 a |
NFSs × Cultivars | |||||
DD × Newham | 1.48 ± 0.13 d | 34.08 ± 1.00 d | 43.88 ± 4.90 b | 45.33 ± 1.45 d | 138.83 ± 10.40 |
(AD+NS) × Newham | 2.04 ± 0.06 c | 42.67 ± 0.95 c | 30.05 ± 2.47 cd | 49.83 ± 0.91 d | 246.50 ± 6.00 |
NS × Newham | 2.46 ± 0.13 b | 52.00 ± 0.82 b | 73.15 ± 2.53 a | 178.08 ± 10.23 b | 296.17 ± 7.84 |
AD × Romaine | 1.57 ± 0.14 c | 33.33 ± 1.05 d | 17.02 ± 1.78 d | 58.67 ± 2.36 d | 170.50 ± 5.66 |
(AD+NS) × Romaine | 2.43 ± 0.10 c | 44.00 ± 0.79 c | 27.52 ± 6.39 cd | 104.83 ± 1.28 c | 263.50 ± 3.10 |
NS × Romaine | 3.27 ± 0.05 a | 57.92 ± 2.15 a | 38.88 ± 7.06 bc | 285.50 ± 9.70 a | 304.67 ± 3.74 |
Significance | |||||
NFSs | *** | *** | *** | *** | *** |
Cultivars | *** | * | *** | *** | *** |
NFSs × Cultivars | * | * | *** | *** | NS |
Source of Variation | Chlorogenic Acid (µg g−1 DW) | Chicoric Acid (µg g−1 DW) | Luteolin (µg g−1 DW) | Quercetin-3-O-β-D-glucuronide (µg g−1 DW) | Quercetin-3-glucoside (µg g−1 DW) | Quercetin- 3-O-(6″-O-malonyl)-β-D-glucoside (µg g−1 DW) |
---|---|---|---|---|---|---|
Nutrient feed solutions (NFSs) | ||||||
AD | 5.50 ± 0.21 a | 52.71 ± 10.68 a | 0.78 ± 0.04 a | 86.13 ± 10.02 a | 2.74 ± 0.15 a | 114.27 ± 40.15 a |
AD+NS | 3.34 ± 0.14 b | 29.88 ± 5.28 b | 0.27 ± 0.01 b | 63.26 ± 16.66 a | 1.60 ± 0.07 b | 42.30 ± 17.76 b |
NS | 2.25 ± 0.13 c | 28.71 ± 6.02 b | 0.13 ± 0.01 c | 17.82 ± 7.72 b | 0.68 ± 0.14 c | 11.57 ± 2.78 b |
Cultivars | ||||||
Newham | 3.76 ± 0.34 | 49.34 ± 7.59 a | 0.36 ± 0.06 b | 42.08 ± 8.75 | 1.45 ± 0.21 b | 9.35 ± 1.67 b |
Romaine | 3.63 ± 0.36 | 0.03 ± 0.00 b | 0.43 ± 0.08 a | 69.39 ± 13.60 | 1.90 ± 0.58 a | 102.74 ± 28.170 a |
NFSs × Cultivars | ||||||
AD × Newham | 5.49 ± 0.42 | 61.40 ± 21.68 | 0.66 ± 0.01 b | 81.26 ± 13.23 | 2.38 ± 0.10 b | 16.67 ± 3.09 b |
(NS+DD) × Newham | 3.35 ± 0.18 | 38.48 ± 7.97 | 0.29 ± 0.02 c | 40.45 ± 3.88 | 1.66 ± 0.12 c | 7.17 ± 1.19 b |
NS × Newham | 2.45 ± 0.10 | 48.13 ± 1.05 | 0.12 ± 0.01 d | 4.53 ± 1.53 | 0.31 ± 0.02 e | 4.22 ± 0.68 b |
DD × Romaine | 5.52 ± 0.11 | 44.02 ± 1.17 | 0.90 ± 0.03 a | 91.53 ± 16.03 | 3.10 ± 0.20 a | 211.87 ± 57.21 a |
(AD+NS) × Romaine | 3.33 ± 0.22 | 21.29 ± 5.44 | 0.25 ± 0.02 c | 86.06 ± 31.59 | 1.55 ± 0.09 c | 77.42 ± 29.89 b |
NS × Romaine | 2.05 ± 0.23 | 9.29 ± 2.77 | 0.14 ± 0.10 d | 31.10 ± 13.76 | 1.05 ± 0.16 d | 18.92 ± 3.46 b |
Significance | ||||||
NFSs | *** | * | *** | *** | *** | *** |
Cultivars | NS | *** | *** | NS | *** | *** |
NFSs × Cultivars | NS | NS | *** | NS | *** | *** |
Source of Variation | Vitamin C (µg g−1 FW) | Riboflavin (µg g−1 FW) | Folate (µg g−1 FW) | Pantothenic Acid (µg g−1 FW) | Total Phenolic Content (mg g−1 FW) | Total Antioxidant Activity (mg g−1 FW) | Soluble Sugars (mg g−1 FW) |
---|---|---|---|---|---|---|---|
Nutrient feed solutions (NFSs) | |||||||
AD | 0.68 ± 0.08 c | 2.15 ± 0.06 c | 510.92 ± 81.84 a | 32.71 ± 2.73 a | 3.11 ± 0.07 a | 33.44 ± 0.07 a | 17.01 ± 2.32 a |
AD+NS | 2.14 ± 0.18 b | 3.16 ± 0.13 b | 207.17 ± 7.98 b | 17.78 ± 1.45 b | 2.24 ± 0.05 b | 27.31 ± 0.05 b | 10.51 ± 0.95 b |
NS | 8.09 ± 0.55 a | 4.91 ± 0.27 a | 197.67 ± 22.61 b | 14.96 ±1.84 b | 1.49 ± 0.03 c | 23.31 ± 0.03 c | 6.44 ± 0.34 c |
Cultivars | |||||||
Newham | 3.17 ± 0.58 b | 2.98 ± 0.21 b | 211.83 ± 11.28 b | 20.90 ± 1.59 | 2.13 ± 0.15 b | 26.93 ± 0.15 b | 7.66 ± 0.38 b |
Romaine | 4.12 ± 1.00 a | 3.83 ± 0.35 a | 398.67 ± 66.88 a | 22.73 ± 3.17 | 2.42 ± 0.17 a | 29.04 ± 0.17 a | 14.98 ± 1.81 a |
NFSs × Cultivars | |||||||
AD × Newham | 0.86 ± 0.06 d | 2.04 ± 0.08 e | 264.33 ± 5.87 b | 28.96 ± 1.76 | 2.91 ± 0.03 b | 32.38 ± 0.03 | 9.63 ± 0.13 c |
(AD+NS) × Newham | 2.29 ± 0.31 c | 2.79 ± 0.09 d | 193.33 ± 13.39 b | 16.84 ± 1.64 | 2.09 ± 0.02 d | 26.28 ± 0.02 | 7.39 ± 0.04 d |
NS × Newham | 6.35 ± 0.34 b | 4.12 ± 0.04 b | 177.83 ± 15.23 b | 16.88 ± 0.73 | 1.41 ± 0.01 f | 22.14 ± 0.01 | 5.97 ± 0.26 d |
DD × Romaine | 0.51 ± 0.10 d | 2.26 ± 0.08 e | 757.50 ± 71.53 a | 36.46 ± 4.91 | 3.31 ± 0.05 a | 34.51 ± 0.05 | 24.40 ± 1.37 a |
NS × Romaine | 9.84 ± 0.06 a | 5.69 ± 0.25 a | 217.50 ± 43.12 b | 13.03 ± 3.54 | 1.57 ± 0.05 e | 24.28 ± 0.05 | 6.91 ± 0.58 d |
(AD+NS) × Romaine | 2.00 ± 0.20 c | 3.52 ± 0.10 c | 221.00 ± 4.91 b | 18.71 ± 2.48 | 2.39 ± 0.02 c | 28.34 ± 0.02 | 13.63 ± 0.31 b |
NS × Romaine | 9.84 ± 0.06 a | 5.69 ± 0.25 a | 217.50 ± 43.12 b | 13.03 ± 3.54 | 1.57 ± 0.05 e | 24.28 ± 0.05 | 6.91 ± 0.58 d |
Significance | |||||||
NFS | *** | *** | *** | *** | *** | *** | *** |
Cultivars | *** | *** | *** | NS | *** | *** | *** |
NFSs × Cultivars | *** | *** | *** | NS | *** | NS | *** |
Source of Variation | As (mg kg−1 DW) | Cd (mg kg−1 DW) | Co (mg kg−1 DW) | Cu (mg kg−1 DW) | Pb (mg kg−1 DW) | Mo (mg kg−1 DW) | Ni (mg kg−1 DW) |
---|---|---|---|---|---|---|---|
Nutrient feed solutions (NFSs) | |||||||
AD | 0.11 ± 0.01 | 0.02 ± 0.00 ab | 0.04 ± 0.01 b | 3.65 ± 0.17 c | 0.14 ± 0.03 | 0.43 ± 0.07 a | 0.36 ± 0.07 |
AD+NS | 0.10 ± 0.00 | 0.02 ± 0.00 b | 0.05 ± 0.01 b | 4.51 ± 0.15 b | 0.14 ± 0.03 | 0.36 ± 0.04 b | 0.28 ± 0.03 |
NS | 0.10 ± 0.00 | 0.03 ± 0.00 a | 0.07 ± 0.01 a | 5.75 ± 0.18 a | 0.14 ± 0.01 | 1.16 ± 0.10 b | 0.35 ± 0.02 |
Cultivars | |||||||
Newham | 0.11 ± 0.01 | 0.03 ± 0.00 a | 0.07 ± 0.01 a | 4.12 ± 0.21 b | 0.14 ± 0.01 | 0.76 ± 0.11 a | 0.38 ± 0.04 |
Romaine | 0.10 ± 0.00 | 0.02 ± 0.00 b | 0.04 ± 0.00 b | 5.16 ± 0.22 a | 0.15 ± 0.02 | 0.54 ± 0.10 b | 0.29 ± 0.03 |
NFSs × Cultivars | |||||||
AD × Newham | 0.12 ± 0.02 | 0.02 ± 0.00 b | 0.06 ± 0.00 | 3.08 ± 0.04 | 0.13 ± 0.02 | 0.48 ± 0.04 | 0.46 ± 0.12 |
(AD+NS) × Newham | 0.10 ± 0.00 | 0.02 ± 0.00 b | 0.06 ± 0.01 | 4.07 ± 0.03 | 0.12 ± 0.02 | 0.44 ± 0.06 | 0.33 ± 0.03 |
NS × Newham | 0.10 ± 0.00 | 0.05 ± 0.00 a | 0.09 ± 0.01 | 5.22 ± 0.06 | 0.17 ± 0.02 | 1.35 ± 0.08 | 0.35 ± 0.02 |
AD × Romaine | 0.10 ± 0.00 | 0.02 ± 0.00 b | 0.03 ± 0.00 | 4.22 ± 0.07 | 0.15 ± 0.06 | 0.38 ± 0.14 | 0.27 ± 0.05 |
(AD+NS) × Romaine | 0.10 ± 0.00 | 0.01 ± 0.00 b | 0.03 ± 0.01 | 6.29 ± 0.16 | 0.17 ± 0.05 | 0.27 ± 0.03 | 0.24 ± 0.03 |
NS × Romaine | 0.10 ± 0.00 | 0.01 ± 0.00 b | 0.05 ± 0.01 | 4.96 ± 0.13 | 0.12 ± 0.02 | 0.97 ± 0.16 | 0.36 ± 0.04 |
Allowable limits in lettuce/plants | 0.33 mg kg−1 | 0.20 mg kg−1 | 40 mg kg−1 | 0.3 mg kg−1 | 1.5 mg kg−1 | ||
Significance | |||||||
NFSs | NS | *** | *** | *** | NS | *** | NS |
Cultivars | NS | *** | *** | *** | NS | ** | NS |
NFS × Cultivars | NS | *** | NS | NS | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faran, M.; Nadeem, M.; Manful, C.F.; Galagedara, L.; Thomas, R.H.; Cheema, M. Agronomic Performance and Phytochemical Profile of Lettuce Grown in Anaerobic Dairy Digestate. Agronomy 2023, 13, 182. https://doi.org/10.3390/agronomy13010182
Faran M, Nadeem M, Manful CF, Galagedara L, Thomas RH, Cheema M. Agronomic Performance and Phytochemical Profile of Lettuce Grown in Anaerobic Dairy Digestate. Agronomy. 2023; 13(1):182. https://doi.org/10.3390/agronomy13010182
Chicago/Turabian StyleFaran, Muhammad, Muhammad Nadeem, Charles F. Manful, Lakshman Galagedara, Raymond H. Thomas, and Mumtaz Cheema. 2023. "Agronomic Performance and Phytochemical Profile of Lettuce Grown in Anaerobic Dairy Digestate" Agronomy 13, no. 1: 182. https://doi.org/10.3390/agronomy13010182
APA StyleFaran, M., Nadeem, M., Manful, C. F., Galagedara, L., Thomas, R. H., & Cheema, M. (2023). Agronomic Performance and Phytochemical Profile of Lettuce Grown in Anaerobic Dairy Digestate. Agronomy, 13(1), 182. https://doi.org/10.3390/agronomy13010182